Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95570
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡豐羽zh_TW
dc.contributor.advisorFeng-Yu Tsaien
dc.contributor.author方元雋zh_TW
dc.contributor.authorYuan-Jyun Fangen
dc.date.accessioned2024-09-11T16:34:30Z-
dc.date.available2024-09-12-
dc.date.copyright2024-09-11-
dc.date.issued2024-
dc.date.submitted2024-08-07-
dc.identifier.citation1. Deshmukh, M. K. G.; Sameeroddin, M.; Abdul, D.; Abdul Sattar, M., Renewable energy in the 21st century: A review. Materials Today: Proceedings 2023, 80, 1756-1759.
2. Agency, I. E., Net renewable electricity capacity additions by technology, 2017-2023. 2023.
3. Olaleru, S. A.; Kirui, J. K.; Wamwangi, D.; Roro, K. T.; Mwakikunga, B., Perovskite solar cells: The new epoch in photovoltaics. Solar Energy 2020, 196, 295-309.
4. Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society 2009, 131 (17), 6050-6051.
5. NREL, Best Research-Cell Efficiency Chart. 2024/6.
6. Giuliano, G.; Bonasera, A.; Arrabito, G.; Pignataro, B., Semitransparent Perovskite Solar Cells for Building Integration and Tandem Photovoltaics: Design Strategies and Challenges. Sol Rrl 2021, 5 (12).
7. Miah, M. H.; Khandaker, M. U.; Rahman, M. B.; Nur-E-Alam, M.; Islam, M. A., Band gap tuning of perovskite solar cells for enhancing the efficiency and stability: issues and prospects. Rsc Adv 2024, 14 (23), 15876-15906.
8. Bandara, R. M. I.; Silva, S. M.; Underwood, C. C. L.; Jayawardena, K. D. G. I.; Sporea, R. A.; Silva, S. R. P., Progress of Pb-Sn Mixed Perovskites for Photovoltaics: A Review. Energy Environ Mater 2022, 5 (2), 370-400.
9. Zhang, H.; Park, N.-G., Progress and issues in p-i-n type perovskite solar cells. DeCarbon 2024, 3, 100025.
10. Hussain, W.; Sawar, S.; Sultan, M., Leveraging machine learning to consolidate the diversity in experimental results of perovskite solar cells. Rsc Adv 2023, 13 (32), 22529-22537.
11. Rahmany, S.; Etgar, L., Semitransparent Perovskite Solar Cells. ACS Energy Letters 2020, 5 (5), 1519-1531.
12. Zhou, Y. P.; Ma, X. Y.; Yang, P. X.; He, Y. L., Enhance and balance AVT and PCE of the semi-transparent perovskite solar cells for BIPV via grating-based photonic crystals. Materials Today Chemistry 2023, 30, 101520.
13. Lim, S.-H.; Seok, H.-J.; Kwak, M.-J.; Choi, D.-H.; Kim, S.-K.; Kim, D.-H.; Kim, H.-K., Semi-transparent perovskite solar cells with bidirectional transparent electrodes. Nano Energy 2021, 82, 105703.
14. Khatoon, S.; Kumar Yadav, S.; Chakravorty, V.; Singh, J.; Bahadur Singh, R.; Hasnain, M. S.; Hasnain, S. M. M., Perovskite solar cell’s efficiency, stability and scalability: A review. Materials Science for Energy Technologies 2023, 6, 437-459.
15. Li, X. D.; Zhang, W. X.; Wang, Y. C.; Zhang, W. J.; Wang, H. Q.; Fang, J. F., In-situ cross-linking strategy for efficient and operationally stable methylammoniun lead iodide solar cells. Nat Commun 2018, 9.
16. Zhang, T.; He, Q.; Yu, J.; Chen, A.; Zhang, Z.; Pan, J., Recent progress in improving strategies of inorganic electron transport layers for perovskite solar cells. Nano Energy 2022, 104, 107918.
17. Zhou, H.; Wang, H.; Yue, C.; He, L.; Li, H.; Zhang, H.; Yang, S.; Ma, T., Photocatalytic degradation by TiO2-conjugated/coordination polymer heterojunction: Preparation, mechanisms, and prospects. Applied Catalysis B: Environment and Energy 2024, 344, 123605.
18. Apergi, S.; Brocks, G.; Tao, S.; Olthof, S., Probing the Reactivity of ZnO with Perovskite Precursors. ACS Applied Materials & Interfaces 2024, 16 (12), 14984-14994.
19. Eze, V. O.; Seike, Y.; Mori, T., Efficient planar perovskite solar cells using solution-processed amorphous WOx/fullerene C60 as electron extraction layers. Org Electron 2017, 46, 253-262.
20. Xu, Y., Lin, Z., Wei, W., Hao, Y., Liu, S., Ouyang, J., Chang, J., Recent Progress of Electrode Materials for Flexible Perovskite Solar Cells. Nano-Micro Letters 14. 2022.
21. Hecht, D. S.; Hu, L. B.; Irvin, G., Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures. Adv Mater 2011, 23 (13), 1482-1513.
22. Hu, L.; Kim, H. S.; Lee, J.-Y.; Peumans, P.; Cui, Y., Scalable Coating and Properties of Transparent, Flexible, Silver Nanowire Electrodes. ACS Nano 2010, 4 (5), 2955-2963.
23. Kumar, P.; You, S. J.; Vomiero, A., Recent Progress in Materials and Device Design for Semitransparent Photovoltaic Technologies. Adv Energy Mater 2023, 13 (39).
24. Zhao, W. Z.; Duan, Y., Advanced Applications of Atomic Layer Deposition in Perovskite-Based Solar Cells. Adv Photon Res 2021, 2 (7).
25. Oke, J. A.; Jen, T.-C., Atomic layer deposition and other thin film deposition techniques: from principles to film properties. Journal of Materials Research and Technology 2022, 21, 2481-2514.
26. George, S. M., Atomic Layer Deposition: An Overview. Chemical Reviews 2010, 110 (1), 111-131.
27. Lee, S. U.; Park, H.; Shin, H.; Park, N. G., Atomic layer deposition of SnO
using hydrogen peroxide improves the efficiency and stability of perovskite solar cells. Nanoscale 2023, 15 (10), 5044-5052.
28. Zhu, S.; Liu, J.; Sun, J., Growth of ultrathin SnO2 on carbon nanotubes by atomic layer deposition and their application in lithium ion battery anodes. Applied Surface Science 2019, 484, 600-609.
29. Brinkmann, K. O.; Gahlmann, T.; Riedl, T., Atomic Layer Deposition of Functional Layers in Planar Perovskite Solar Cells. Sol Rrl 2020, 4 (1).
30. Yang, F.; Wang, C.; Bai, H. Y.; Wang, W. H.; Liu, Y. H., Periodic island-layer-island growth during deposition of ultrastable metallic glasses. Commun Mater 2021, 2 (1).
31. Macco, B., Uniform or Area-Selective ALD of In2O3:H?
– It’s all about nucleation. 2017.
32. Hultqvist, A.; Jacobsson, T. J.; Svanström, S.; Edoff, M.; Cappel, U. B.; Rensmo, H.; Johansson, E. M. J.; Boschloo, G.; Törndahl, T., SnOx Atomic Layer Deposition on Bare Perovskite—An Investigation of Initial Growth Dynamics, Interface Chemistry, and Solar Cell Performance. ACS Applied Energy Materials 2021, 4 (1), 510-522.
33. Bracesco, A. E. A., Burgess, C.H., Todinova, A., Zardetto, V., Koushik, D., Kessels, W.M.M. (Erwin) ., Dogan, I., Weijtens, C.H.L., Veenstra, S., Andriessen, R., Creatore, M., The chemistry and energetics of the interface between metal halide perovskite and atomic layer deposited metal oxides. Journal of Vacuum Science & Technology A 38, 063206. 2020.
34. Bracesco, A. E. A.; Jansen, J. W. P.; Xue, H.; Zardetto, V.; Brocks, G.; Kessels, W. M. M.; Tao, S.; Creatore, M., In Situ IR Spectroscopy Studies of Atomic Layer-Deposited SnO2 on Formamidinium-Based Lead Halide Perovskite. ACS Applied Materials & Interfaces 2023, 15 (31), 38018-38028.
35. Mallik, N.; Hajhemati, J.; Frégnaux, M.; Coutancier, D.; Toby, A.; Zhang, S.-T.; Hartmann, C.; Hüsam, E.; Saleh, A.; Vincent, T.; Fournier, O.; Wilks, R. G.; Aureau, D.; Félix, R.; Schneider, N.; Bär, M.; Schulz, P., Interface defect formation for atomic layer deposition of SnO2 on metal halide perovskites. Nano Energy 2024, 126, 109582.
36. Hoffmann, L.; Brinkmann, K. O.; Malerczyk, J.; Rogalla, D.; Becker, T.; Theirich, D.; Shutsko, I.; Görrn, P.; Riedl, T., Spatial Atmospheric Pressure Atomic Layer Deposition of Tin Oxide as an Impermeable Electron Extraction Layer for Perovskite Solar Cells with Enhanced Thermal Stability. ACS Applied Materials & Interfaces 2018, 10 (6), 6006-6013.
37. Brinkmann, K. O.; Zhao, J.; Pourdavoud, N.; Becker, T.; Hu, T.; Olthof, S.; Meerholz, K.; Hoffmann, L.; Gahlmann, T.; Heiderhoff, R.; Oszajca, M. F.; Luechinger, N. A.; Rogalla, D.; Chen, Y.; Cheng, B.; Riedl, T., Suppressed decomposition of organometal halide perovskites by impermeable electron-extraction layers in inverted solar cells. Nat Commun 2017, 8.
38. Palmstrom, A. F.; Raiford, J. A.; Prasanna, R.; Bush, K. A.; Sponseller, M.; Cheacharoen, R.; Minichetti, M. C.; Bergsman, D. S.; Leijtens, T.; Wang, H. P.; Bulovic, V.; McGehee, M. D.; Bent, S. F., Interfacial Effects of Tin Oxide Atomic Layer Deposition in Metal Halide Perovskite Photovoltaics. Adv Energy Mater 2018, 8 (23).
39. Raiford, J. A.; Boyd, C. C.; Palmstrom, A. F.; Wolf, E. J.; Fearon, B. A.; Berry, J. J.; McGehee, M. D.; Bent, S. F., Enhanced Nucleation of Atomic Layer Deposited Contacts Improves Operational Stability of Perovskite Solar Cells in Air. Adv Energy Mater 2019, 9 (47).
40. Jen-Hsien Huang, F.-Y. T., Atomic-layer-deposited SnOx films as electron-transporting and passivation layers for organic-inorganic hybrid perovskite solar cells. 2022.
41. Zhu, R.; Chung, C.-H.; Cha, K. C.; Yang, W.; Zheng, Y. B.; Zhou, H.; Song, T.-B.; Chen, C.-C.; Weiss, P. S.; Li, G.; Yang, Y., Fused Silver Nanowires with Metal Oxide Nanoparticles and Organic Polymers for Highly Transparent Conductors. ACS Nano 2011, 5 (12), 9877-9882.
42. Jiu, J. T.; Wang, J.; Sugahara, T.; Nagao, S.; Nogi, M.; Koga, H.; Suganuma, K.; Hara, M.; Nakazawa, E.; Uchida, H., The effect of light and humidity on the stability of silver nanowire transparent electrodes. Rsc Adv 2015, 5 (35), 27657-27664.
43. Zilberberg, K.; Gasse, F.; Pagui, R.; Polywka, A.; Behrendt, A.; Trost, S.; Heiderhoff, R.; Görrn, P.; Riedl, T., Highly Robust Indium-Free Transparent Conductive Electrodes Based on Composites of Silver Nanowires and Conductive Metal Oxides. Adv Funct Mater 2014, 24 (12), 1671-1678.
44. Mittelman, A. M.; Fortner, J. D.; Pennell, K. D., Effects of ultraviolet light on silver nanoparticle mobility and dissolution. Environ Sci-Nano 2015, 2 (6), 683-691.
45. Wang, J.; Jiu, J.; Sugahara, T.; Nagao, S.; Nogi, M.; Koga, H.; Suganuma, K.; He, P. In The effect of ultraviolet radiation on silver nanowire transparent electrode based on flexible polymeric film substrate, 2015 IEEE 15th International Conference on Nanotechnology (IEEE-NANO), 27-30 July 2015; 2015; pp 526-529.
46. Lian, L.; Dong, D.; Feng, D. X.; He, G. F., Low roughness silver nanowire flexible transparent electrode by low temperature solution-processing for organic light emitting diodes. Org Electron 2017, 49, 9-18.
47. Dou, Y. X.; Liu, Z. W.; Wu, Z. L.; Liu, Y. F.; Li, J.; Leng, C. Q.; Fang, D.; Liang, G. J.; Xiao, J. Y.; Li, W.; Wei, X. Z.; Huang, F. Z.; Cheng, Y. B.; Zhong, J., Self-augmented ion blocking of sandwiched 2D/1D/2D electrode for solution processed high efficiency semitransparent perovskite solar cell. Nano Energy 2020, 71.
48. Dung-Yue Su, F.-Y. T., Silver nanowires and graphene sheets applied on applications of flexible electrode, supercapacitor and stretchable gas-permeation barrier. 2019.
49. Novoselov, K. S.; Blake, P.; Katsnelson, M. I., Graphene: Electronic Properties. In Encyclopedia of Materials: Science and Technology, Buschow, K. H. J.; Cahn, R. W.; Flemings, M. C.; Ilschner, B.; Kramer, E. J.; Mahajan, S.; Veyssière, P., Eds. Elsevier: Oxford, 2008; pp 1-6.
50. Xiong, X.; Jiang, C.; Xie, Q., Broadband transmission properties of graphene-dielectric interfaces. Results in Physics 2019, 14, 102521.
51. Ricciardulli, A. G.; Yang, S.; Wetzelaer, G. J. A. H.; Feng, X. L.; Blom, P. W. M., Hybrid Silver Nanowire and Graphene-Based Solution-Processed Transparent Electrode for Organic Optoelectronics. Adv Funct Mater 2018, 28 (14).
52. Kholmanov, I. N.; Magnuson, C. W.; Aliev, A. E.; Li, H.; Zhang, B.; Suk, J. W.; Zhang, L. L.; Peng, E.; Mousavi, S. H.; Khanikaev, A. B.; Piner, R.; Shvets, G.; Ruoff, R. S., Improved Electrical Conductivity of Graphene Films Integrated with Metal Nanowires. Nano Letters 2012, 12 (11), 5679-5683.
53. Chen, S.; Li, H.; Zhao, K.; Wu, D., Preparation of graphene films bridged with Ag nanowires and its application in heterojunction solar cells. Solar Energy 2020, 198, 167-174.
54. Lin, C. C.; Lin, D. X.; Lin, S. H., Degradation problem in silver nanowire transparent electrodes caused by ultraviolet exposure. Nanotechnology 2020, 31 (21).
55. Chen, C.; Liang, J.; Zhang, J.; Liu, X.; Yin, X.; Cui, H.; Wang, H.; Wang, C.; Li, Z.; Gong, J.; Lin, Q.; Ke, W.; Tao, C.; Da, B.; Ding, Z.; Xiao, X.; Fang, G., Interfacial engineering of a thiophene-based 2D/3D perovskite heterojunction for efficient and stable inverted wide-bandgap perovskite solar cells. Nano Energy 2021, 90, 106608.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95570-
dc.description.abstract半透明鈣鈦礦太陽能電池(STPSCs)因其高效率和製造便利性,具有許多潛在應用,包括串聯太陽能電池、綠色建築和農業。本研究旨在通過三管齊下的方法提高STPSCs的效率和穩定性: (1) 使用銀納米線(Ag NWs)和石墨烯納米片(GNS)組成的奈米複合材料,開發穩定、高導電性、透明且可溶液加工的電極; (2) 採用鈍化方法,通過用2-噻吩乙胺氯化物(TEACl)處理鈣鈦礦層的表面,以提高STPSC半元件的穩定性,使其能夠耐受GNS/Ag NWs頂部電極的溶液處理而不發生降解; (3) 開發低溫(80°C)原子層沉積(ALD)SnOx薄膜,作為STPSC元件的輔助電子傳輸層(ETL)和保護層。在GNS含量為0.001 wt%的條件下,GNS/Ag NWs電極達到10 Ω/sq的片電阻(Rs)、66%的平均可見光透過率(AVT),並於高溫高濕環境下具有長期穩定性,這歸功於於GNS既作為連接介質,又作為單個Ag NWs周圍的保護屏障。TEACl鈍化處理和ALD SnOx輔助ETL均提高了PSC元件的功率轉換效率(PCE)和穩定性,使STPSC半元件於大氣環境下噴塗GNS/Ag NWs透明電極而不發生降解。最終獲得的STPSC元件達到高達13.63%的PCE,與使用熱蒸發Ag頂部電極的非透明元件相當。zh_TW
dc.description.abstractSemitransparent perovskite solar cells (STPSCs) offer many potential applications, including tandem solar cells, green buildings, and agriculture, owing to their high efficiency and ease of manufacturing. This study aims to enhance the efficiency and stability of STPSCs through a three-pronged approach: (1) developing stable, highly conductive, transparent, and solution-processed electrodes for STPSCs using a nanocomposite of Ag nanowires (Ag NWs) and graphene nano-sheets (GNS); (2) adopting a passivation method involving treating the surface of the perovskite layer with 2-thiopheneethylammonium chloride (TEACl) to enhance the stability of half STPSC devices so that they can withstand the solution processing of the GNS/Ag NWs top electrode without degradation; (3) developing low-temperature (80C) atomic layer deposition (ALD) SnOx thin films to function as both an auxiliary electron-transporting layer (ETL) and a protection layer for STPSC devices. With a GNS content of 0.001 wt%, GNS/Ag NWs electrodes achieved a sheet resistance (Rs) of 10 Ω/sq, average visible transmittance (AVT) of 66%, and long-term stability in damp heat, thanks to the GNS serving both as a connecting medium and protecting shields around individual Ag NWs. Both the TEACl passivation and the ALD SnOx auxiliary ETL improved the power conversion efficiency (PCE) and the stability of PSC devices, while allowing STPSC half- devices to be spray-coated with the GNS/Ag NWs transparent electrodes in the ambient air without degradation. The resultant STPSC devices achieved a PCE of up to 13.63%, on par with that of opaque devices with a thermally-evaporated Ag top electrode.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-11T16:34:30Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-11T16:34:30Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
Acknowledgments ii
摘要 iii
Abstract iv
Contents vi
List of Figures ix
List of Tables xiv
Chapter 1 Introduction 1
1.1 Perovskite Solar Cells (PSCs) 1
1.2 Semitransparent perovskite solar cells (STPSCs) 7
1.3 Atomic layer deposition (ALD) for PSCs and STPSCs 12
1.4 Transparent electrodes with Ag NWs and GNS/Ag NWs 20
1.4.1 Transparent electrodes with Ag NWs 20
1.5 Objectives Statement and Approaches 25
Chapter 2 Experimental Sections 26
2.1 Materials 26
2.2 Instruments 28
2.3 Dispersibility Test of GNS 29
2.4 Fabrication of STPSCs 33
2.4.1 Cleaning of tin-doped indium oxide (ITO) substrate: 33
2.4.2 Preparation of Cu:NiOx solution: 33
2.4.3 Spin-coating of Cu:NiOx as a HTL layer: 33
2.4.4 Preparation of P3HTCOOH solution: 34
2.4.5 Spin-coating of P3HTCOOH as an HTL passivation layer: 34
2.4.6 Preparation of perovskite precursor: 34
2.4.7 Spin-coating of perovskite layer: 34
2.4.8 Preparation of TEACl solution 35
2.4.9 Spin-coating of TEACl as a perovskite passivation layer 35
2.4.10 Preparation of PCBM solution 35
2.4.11 Spin-coating of PCBM as an ETL 35
2.4.12 Preparation of PEI solution 36
2.4.13 Spin-coating of PEI as a modification layer 36
2.4.14 Deposition of ALD SnOx film 36
2.4.15 Spray-coating of GNS/Ag NWs solution as a transparent electrode 36
2.5 Characterization 39
Chapter 3 Results and Discussion 40
3.1 Effects of GNS addition on the properties of Ag NWs films 40
3.2 Characteristics of PSC Devices with an ALD SnOx auxiliary ETL 46
3.2.1 PV characteristics and stability 46
3.2.2 Improving device stability with TEACl passivation 50
3.2.3 Mechanisms underlying the effects of TEACl passivation 53
3.3 PV characteristics of STPSC devices 60
Chapter 4 Conclusion 62
Reference 64
-
dc.language.isoen-
dc.subject石墨烯zh_TW
dc.subject半透明鈣鈦礦太陽能電池zh_TW
dc.subject透明電極zh_TW
dc.subject原子層沉積zh_TW
dc.subject氧化物半導體zh_TW
dc.subject銀奈米線zh_TW
dc.subjectgrapheneen
dc.subjecttransparent electrodeen
dc.subjectSemitransparent perovskite solar cellsen
dc.subjectatomic layer depositionen
dc.subjectoxide semiconductorsen
dc.subjectsilver nanowiresen
dc.title透過原子層沉積和銀奈米線電極實現穩定高效的半透明鈣鈦礦太陽能電池zh_TW
dc.titleStable and Efficient Semitransparent Perovskite Solar Cells Enabled by Atomic Layer Deposition and Ag Nanowires-Based Electrodesen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李坤穆;黃裕清;闕居振zh_TW
dc.contributor.oralexamcommitteeKun-Mu Lee;Yu-Ching Huang;Chu-Chen Chuehen
dc.subject.keyword半透明鈣鈦礦太陽能電池,原子層沉積,氧化物半導體,銀奈米線,石墨烯,透明電極,zh_TW
dc.subject.keywordSemitransparent perovskite solar cells,atomic layer deposition,oxide semiconductors,silver nanowires,graphene,transparent electrode,en
dc.relation.page73-
dc.identifier.doi10.6342/NTU202403554-
dc.rights.note未授權-
dc.date.accepted2024-08-10-
dc.contributor.author-college工學院-
dc.contributor.author-dept材料科學與工程學系-
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
2.88 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved