請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95485完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 潘敏雄 | zh_TW |
| dc.contributor.advisor | Min-Hsiung Pan | en |
| dc.contributor.author | 姚元花 | zh_TW |
| dc.contributor.author | Devy Yulianti Suhendi | en |
| dc.date.accessioned | 2024-09-10T16:19:00Z | - |
| dc.date.available | 2024-09-11 | - |
| dc.date.copyright | 2024-09-10 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-06 | - |
| dc.identifier.citation | Altintas, O., Park, S., & Lee, S.-J. V. The role of insulin/IGF-1 signaling in the longevity of model invertebrates, C. elegans and D. melanogaster. BMB Reports. 2016, 49(2), 81-92.
An, J. H., & Blackwell, T. K. SKN-1 links C. elegans mesendodermal specification to a conserved oxidative stress response. Genes & Development. 2003, 17(15), 1882-1893. Ayuda-Durán, B., González-Manzano, S., Miranda-Vizuete, A., Dueñas, M., Santos-Buelga, C., & González-Paramás, A. M. Epicatechin modulates stress-resistance in C. elegans via insulin/IGF-1 signaling pathway. PLOS ONE. 2019, 14(1), e0199483. Balbin Villaverde, A. I., Netherton, J., & Baker. From past to present: The link between reactive oxygen species in sperm and male infertility. Antioxidants. 2019, 8, 616. Banik, K., Ranaware, A. M., Harsha, C., Nitesh, T., Girisa, S., Deshpande, V., Fan, L., Nalawade, S. P., Sethi, G., & Kunnumakkara, A. B. Piceatannol: A natural stilbene for the prevention and treatment of cancer. Pharmacological Research. 2020, 153, 104635. Barbagallo, B., Prescott, H. A., Boyle, P., Climer, J., & Francis, M. M. A dominant mutation in a neuronal acetylcholine receptor subunit leads to motor neuron degeneration in Caenorhabditis elegans. The Journal of Neuroscience. 2010, 30(42), 13932-13942. Bayir, A. G., Kiziltan, H. S., & Kocyigit, A. Plant family, carvacrol, and putative protection in gastric cancer 2019 (pp. 3-18). Elsevier Blackwell, T. K., Steinbaugh, M. J., Hourihan, J. M., Ewald, C. Y., & Isik, M. SKN-1/Nrf, stress responses, and aging in Caenorhabditis elegans. Free Radical Biology and Medicine. 2015, 88, 290-301. Blum, J., & Fridovich, I. Superoxide, hydrogen peroxide, and oxygen toxicity in two free-living nematode species. Archives of Biochemistry and Biophysics. 1983, 222(1), 35-43. Bonnard, E., Liu, J., Zjacic, N., Alvarez, L., & Scholz, M. Automatically tracking feeding behavior in populations of for aging C. elegans. eLife. 2022, 11. Breitinger, H.-G. Drug synergy–mechanisms and methods of analysis. Toxicity and Drug Testing. 2012, 143-166. Brenner, S. The genetics of Caenorhabditis elegans. Genetics. 1974, 77(1), 71-94. Brown, A. K., & Webb, A. E. Regulation of FOXO factors in mammalian cells 2018 (pp. 165-192). Elsevier Bruns, A. N., & Lo, S. H. Tensin regulates pharyngeal pumping in Caenorhabditis elegans. Biochemical and Biophysical Research Communications. 2020, 522(3), 599-603. Casanova, A., Wevers, A., Navarro-Ledesma, S., & Pruimboom, L. Mitochondria: It is all about energy. Frontiers in Physiology. 2023, 14. Chang, C. H., Ho, C. T., & Liao, V. H. C. N‐γ‐(L‐Glutamyl)‐L‐selenomethionine enhances stress resistance and ameliorates aging indicators via the selenoprotein TRXR‐1 in Caenorhabditis elegans. Molecular Nutrition & Food Research. 2017, 61(8), 1600954. Chaudhary, P., Janmeda, P., Docea, A. O., Yeskaliyeva, B., Abdull Razis, A. F., Modu, B., Calina, D., & Sharifi-Rad, J. Oxidative stress, free radicals and antioxidants: potential crosstalk in the pathophysiology of human diseases. Frontiers in Chemistry. 2023, 11. Chedea, V. S., Tomoiagǎ, L. L., Macovei, Ş. O., Mǎgureanu, D. C., Iliescu, M. L., Bocsan, I. C., Buzoianu, A. D., Voşloban, C. M., & Pop, R. M. Antioxidant/pro-oxidant actions of polyphenols from grapevine and wine by-products-base for complementary therapy in ischemic heart diseases. Frontiers in Cardiovascular Medicine. 2021, 8. Chen, W., Lin, H.-R., Wei, C.-M., Luo, X.-H., Sun, M.-L., Yang, Z.-Z., Chen, X.-Y., & Wang, H.-B. Echinacoside, a phenylethanoid glycoside from Cistanche deserticola, extends lifespan of Caenorhabditis elegans and protects from Aβ-induced toxicity. Biogerontology. 2018, 19(1), 47-65. Choe, K. P., Przybysz, A. J., & Strange, K. The WD40 repeat protein WDR-23 functions with the CUL4/DDB1 ubiquitin ligase to regulate nuclear abundance and activity of SKN-1 in Caenorhabditis elegans. Molecular and Cellular Biology. 2009, 29(10), 2704-2715. Chou, T.-C. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Research. 2010, 70(2), 440-446. Colín-González, A. L., Santana, R. A., Silva-Islas, C. A., Chánez-Cárdenas, M. E., Santamaría, A., & Maldonado, P. D. The antioxidant mechanisms underlying the aged garlic extract and S-Allylcysteine-induced protection. Oxidative Medicine and Cellular Longevity. 2012, 2012, 1-16. Collins, J. J., Huang, C., Hughes, S., & Kornfeld, K. The measurement and analysis of age-related changes in Caenorhabditis elegans. WormBook. 2008, 1-21. Corsi, A. K., Wightman, B., & Chalfie, M. A transparent window into biology: A primer on Caenorhabditis elegans. Genetics. 2015, 200(2), 387-407. Costa, F. P. D., Puty, B., Nogueira, L. S., Mitre, G. P., Santos, S. M. D., Teixeira, B. J. B., Kataoka, M. S. D. S., Martins, M. D., Barboza, C. A. G., Monteiro, M. C., Rogez, H., Oliveira, E. H. C. D., & Lima, R. R. Piceatannol increases antioxidant defense and reduces cell death in human periodontal ligament fibroblast under oxidative stress. Antioxidants. 2019, 9(1), 16. Davis, P., Zarowiecki, M., Arnaboldi, V., Becerra, A., Cain, S., Chan, J., Chen, W. J., Cho, J., Da Veiga Beltrame, E., Diamantakis, S., Gao, S., Grigoriadis, D., Grove, C. A., Harris, T. W., Kishore, R., Le, T., Lee, R. Y. N., Luypaert, M., Müller, H.-M., Nakamura, C., Nuin, P., Paulini, M., Quinton-Tulloch, M., Raciti, D., Rodgers, F. H., Russell, M., Schindelman, G., Singh, A., Stickland, T., Van Auken, K., Wang, Q., Williams, G., Wright, A. J., Yook, K., Berriman, M., Howe, K. L., Schedl, T., Stein, L., & Sternberg, P. W. WormBase in 2022—data, processes, and tools for analyzing Caenorhabditis elegans. Genetics. 2022, 220(4). Deng, J., Dai, Y., Tang, H., & Pang, S. SKN-1 is a negative regulator of daf-16 and somatic stress resistance in Caenorhabditis elegans. G3 Genes|Genomes|Genetics. 2020, 10(5), 1707-1712. Deng, Y., Liu, H., Huang, Q., Tu, L., Hu, L., Zheng, B., Sun, H., Lu, D., Guo, C., & Zhou, L. Mechanism of longevity extension of Caenorhabditis elegans induced by schizophyllum commune fermented supernatant with added radix puerariae. Frontiers in Nutrition. 2022, 9. Dong, C., Zhao, G., Tao, L., Qiu, F., Wang, S., Wang, B., Liu, J., & Duan, S. Antioxidant interactions between S-allyl-L-cysteine and polyphenols using interaction index and isobolographic analysis. Molecules. 2022, 27(13), 4089. Du, J., Wang, X., Li, Y., Ren, X., Zhou, Y., Hu, W., Zhou, C., Jing, Q., Yang, C., Wang, L., Li, H., Fang, L., Zhou, Y., Tong, X., & Wang, Y. DHA exhibits synergistic therapeutic efficacy with cisplatin to induce ferroptosis in pancreatic ductal adenocarcinoma via modulation of iron metabolism. Cell Death & Disease. 2021, 12(7). Du, N., Yang, R., Jiang, S., Niu, Z., Zhou, W., Liu, C., Gao, L., & Sun, Q. Anti-aging drugs and the related signal pathways. Biomedicines. 2024, 12(1), 127. Dues, D. J., Andrews, E. K., Senchuk, M. M., & Van Raamsdonk, J. M. Resistance to stress can be experimentally dissociated from longevity. The Journals of Gerontology: Series A. 2019, 74(8), 1206-1214. Engwa, G. A. Free radicals and the role of plant phytochemicals as antioxidants against oxidative stress-related diseases 2018. InTech Faggionato, D. Suppressors of developmental myogenesis defects resulting in Duchenne muscular dystrophy, genes and mechanisms. 2010. Fan, L., Mao, C., Hu, X., Zhang, S., Yang, Z., Hu, Z., Sun, H., Fan, Y., Dong, Y., Yang, J., Shi, C., & Xu, Y. New insights into the pathogenesis of Alzheimer's Disease. Frontiers in Neurology. 2020, 10. Feng, S., Zhang, C., Chen, T., Zhou, L., Huang, Y., Yuan, M., Li, T., & Ding, C. Oleuropein enhances stress resistance and extends lifespan via Insulin/IGF-1 and SKN-1/Nrf2 signaling pathway in Caenorhabditis elegans. Antioxidants. 2021, 10(11), 1697. Ferrara-Romeo, I., Martinez, P., Saraswati, S., Whittemore, K., Graña-Castro, O., Thelma Poluha, L., Serrano, R., Hernandez-Encinas, E., Blanco-Aparicio, C., Maria Flores, J., & Blasco, M. A. The mTOR pathway is necessary for survival of mice with short telomeres. Nature Communications. 2020, 11(1). Friedman, D. B., & Johnson, T. E. A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics. 1988, 118(1), 75-86. Gerstbrein, B., Stamatas, G., Kollias, N., & Driscoll, M. In vivo spectrofluorimetry reveals endogenous biomarkers that report healthspan and dietary restriction in Caenorhabditis elegans. Aging Cell. 2005, 4(3), 127-137. Giorgi, C., Marchi, S., Simoes, I. C. M., Ren, Z., Morciano, G., Perrone, M., Patalas-Krawczyk, P., Borchard, S., Jędrak, P., Pierzynowska, K., Szymański, J., Wang, D. Q., Portincasa, P., Węgrzyn, G., Zischka, H., Dobrzyn, P., Bonora, M., Duszynski, J., Rimessi, A., Karkucinska-Wieckowska, A., Dobrzyn, A., Szabadkai, G., Zavan, B., Oliveira, P. J., Sardao, V. A., Pinton, P., & Wieckowski, M. R. Mitochondria and reactive oxygen species in aging and age-related diseases 2018 (pp. 209-344). Elsevier Glenn, C. F., Chow, D. K., David, L., Cooke, C. A., Gami, M. S., Iser, W. B., Hanselman, K. B., Goldberg, I. G., & Wolkow, C. A. Behavioral Deficits During Early Stages of Aging in Caenorhabditis elegans Result From Locomotory Deficits Possibly Linked to Muscle Frailty. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences. 2004, 59(12), 1251-1260. Guo, J., Huang, X., Dou, L., Yan, M., Shen, T., Tang, W., & Li, J. Aging and aging-related diseases: from molecular mechanisms to interventions and treatments. Signal Transduction and Targeted Therapy. 2022, 7(1). Guo, J., Li, K., Lin, Y., & Liu, Y. Protective effects and molecular mechanisms of tea polyphenols on cardiovascular diseases. Frontiers in Nutrition. 2023, 10. Guo, X., Kang, J., Wang, Z., Wang, Y., Liu, M., Zhu, D., Yang, F., & Kang, X. Nrf2 signaling in the oxidative stress response after spinal cord injury. Neuroscience. 2022, 498, 311-324. Hardie, D. G., Ross, F. A., & Hawley, S. A. AMP-activated protein kinase: A target for drugs both ancient and modern. Chemistry & Biology. 2012, 19(10), 1222-1236. Harman, D. Aging: A theory based on free radical and radiation chemistry. Journal of Gerontology. 1956, 11(3), 298-300. Heidler, T., Hartwig, K., Daniel, H., & Wenzel, U. Caenorhabditis elegans lifespan extension caused by treatment with an orally active ROS-generator is dependent on DAF-16 and SIR-2.1. Biogerontology. 2010, 11(2), 183-195. Hu, P. J. Dauer. WormBook. 2007. Huang, C., Xiong, C., & Kornfeld, K. Measurements of age-related changes of physiological processes that predict lifespan of Caenorhabditis elegans. Proceedings of the National Academy of Sciences. 2004, 101(21), 8084-8089. Hurtado-Díaz, M. E., Estrada-Valencia, R., Rangel-López, E., Maya-López, M., Colonnello, A., Galván-Arzate, S., Verstraeten, S. V., Karasu, C., Túnez, I., Aschner, M., & Santamaría, A. Thallium toxicity in Caenorhabditis elegans: Involvement of the SKN-1 pathway and protection by S-Allylcysteine. Neurotoxicity Research. 2020, 38(2), 287-298. Isah, T. Stress and defense responses in plant secondary metabolites production. Biological Research. 2019, 52(1). Jenner, P. Oxidative stress in Parkinson's disease. Annals of Neurology. 2003, 53(S3), S26-S38. Jiang, H. W., Li, H. Y., Yu, C. W., Yang, T. T., Hu, J. N., Liu, R., & Deng, Z. Y. The evaluation of antioxidant interactions among 4 common vegetables using isobolographic analysis. Journal of Food Science. 2015, 80(6), C1162-C1169. Joshi, T., Deepa, P. R., & Sharma, P. K. Effect of different proportions of phenolics on antioxidant potential: Pointers for bioactive synergy/antagonism in foods and nutraceuticals. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences. 2022, 92(4), 939-946. Kaliszewska, A., Allison, J., Martini, M., & Arias, N. The interaction of diet and mitochondrial dysfunction in aging and cognition. International Journal of Molecular Sciences. 2021, 22(7), 3574. Keith, S. A., Amrit, F. R. G., Ratnappan, R., & Ghazi, A. The C. elegans healthspan and stress-resistance assay toolkit. Methods. 2014, 68(3), 476-486. Kenyon, C. The plasticity of aging: insights from long-lived mutants. Cell. 2005, 120(4), 449-460. Kim, J.-S., & Park, S.-K. Supplementation of S-allyl cysteine improves health span in Caenorhabditis elegans. Bioscience Journal. 2017, 411-421. Kim, J. S., Park, S.-K., & Lee, H. Sniffer worm, C. elegans, as a toxicity evaluation model organism with sensing and locomotion abilities. PLOS ONE. 2023, 18(8), e0289493. Kim, K. W., & Jin, Y. Neuronal responses to stress and injury in C. elegans. FEBS Letters. 2015, 589(14), 1644-1652. Koh, Y. C., Chok, D., Chang, C. H., Wei, C. C., Wu, C. T., Cheng, K. C., Nagabhushanam, K., Ho, C. T., & Pan, M. H. Prevention of glutamate‐induced neurodegeneration by piceatannol via mitochondrial rescue in vitro and in vivo. Molecular Nutrition & Food Research. 2023, 67(13). Komura, T., Yamanaka, M., Nishimura, K., Hara, K., & Nishikawa, Y. Autofluorescence as a noninvasive biomarker of senescence and advanced glycation end products in Caenorhabditis elegans. npj Aging and Mechanisms of Disease. 2021, 7(1). Kotha, R. R., Tareq, F. S., Yildiz, E., & Luthria, D. L. Oxidative stress and antioxidants—a critical review on in vitro antioxidant assays. Antioxidants. 2022, 11(12), 2388. Krambeck, K., Santos, D., Sousa Lobo, J. M., & Amaral, M. H. Benefits of skin application of piceatannol—A minireview. Australasian Journal of Dermatology. 2023, 64(1). Kumar, R., & R. Gullapalli, R. High throughput screening assessment of reactive oxygen species (ROS) generation using dihydroethidium (DHE) fluorescence dye. Journal of Visualized Experiments. 2024, (203). Kurutas, E. B. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutrition Journal. 2015, 15(1). Kwan, C. S., Vázquez-Manrique, R. P., Ly, S., Goyal, K., & Baylis, H. A. TRPM channels are required for rhythmicity in the ultradian defecation rhythm of C. elegans. BMC Physiology. 2008, 8(1), 11. Lee, M. T., Lin, W. C., Yu, B., & Lee, T. T. Antioxidant capacity of phytochemicals and their potential effects on oxidative status in animals — A review. Asian-Australasian Journal of Animal Sciences. 2016, 30(3), 299-308. Lee, Y. H., Kuk, M. U., So, M. K., Song, E. S., Lee, H., Ahn, S. K., Kwon, H. W., Park, J. T., & Park, S. C. Targeting mitochondrial oxidative stress as a strategy to treat aging and age-related diseases. Antioxidants. 2023, 12(4), 934. Li, W.-J., Wang, C.-W., Tao, L., Yan, Y.-H., Zhang, M.-J., Liu, Z.-X., Li, Y.-X., Zhao, H.-Q., Li, X.-M., He, X.-D., Xue, Y., & Dong, M.-Q. Insulin signaling regulates longevity through protein phosphorylation in Caenorhabditis elegans. Nature Communications. 2021, 12(1). Li, W. H., Shi, Y. C., Chang, C. H., Huang, C. W., & Hsiu‐Chuan Liao, V. Selenite protects Caenorhabditis elegans from oxidative stress via DAF‐16 and TRXR‐1. Molecular Nutrition & Food Research. 2014, 58(4), 863-874. Lidsky, P. V., Yuan, J., Rulison, J. M., & Andino-Pavlovsky, R. Is aging an inevitable characteristic of organic life or an evolutionary adaptation? Biochemistry (Moscow). 2022, 87(12-13), 1413-1445. Lin, K., Hsin, H., Libina, N., & Kenyon, C. Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling. Nature Genetics. 2001, 28(2), 139-145. Liu, Y., Weng, W., Gao, R., & Liu, Y. New insights for cellular and molecular mechanisms of aging and aging-related diseases: herbal medicine as potential therapeutic approach. Oxidative Medicine and Cellular Longevity. 2019, 2019, 1-25. López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. Hallmarks of aging: An expanding universe. Cell. 2023, 186(2), 243-278. Maldonado, E., Morales-Pison, S., Urbina, F., & Solari, A. Aging Hallmarks and the role of oxidative stress. Antioxidants. 2023, 12(3), 651. Mannick, J. B., & Lamming, D. W. Targeting the biology of aging with mTOR inhibitors. Nature Aging. 2023, 3(6), 642-660. Meng, X., Zhou, J., Zhao, C.-N., Gan, R.-Y., & Li, H.-B. Health benefits and molecular mechanisms of resveratrol: A narrative review. Foods. 2020, 9(3), 340. Michael. How mitochondria produce reactive oxygen species. Biochemical Journal. 2009, 417(1), 1-13. Mudd, N., & Liceaga, A. M. Caenorhabditis elegans as an in vivo model for food bioactives: A review. Current Research in Food Science. 2022, 5, 845-856. Nagy, S., Huang, Y.-C., Alkema, M. J., & Biron, D. Caenorhabditis elegans exhibit a coupling between the defecation motor program and directed locomotion. Scientific Reports. 2015, 5(1), 17174. Ochoa, R. Pathology issues in the design of toxicology studies Haschek and Rousseaux's Handbook of Toxicologic Pathology. 2013 (pp. 595-618). Elsevier Ogawa, T., Kodera, Y., Hirata, D., Blackwell, T. K., & Mizunuma, M. Natural thioallyl compounds increase oxidative stress resistance and lifespan in Caenorhabditis elegans by modulating SKN-1/Nrf. Scientific Reports. 2016, 6. Oishi, T., Matsumaru, D., Ota, N., Kitamura, H., Zhang, T., Honkura, Y., Katori, Y., & Motohashi, H. Activation of the NRF2 pathway in Keap1-knockdown mice attenuates progression of age-related hearing loss. npj Aging and Mechanisms of Disease. 2020, 6(1). Park, H.-E. H., Jung, Y., & Lee, S.-J. V. Survival assays using Caenorhabditis elegans. Molecules and Cells. 2017, 40(2), 90-99. Porta-De-La-Riva, M., Fontrodona, L., Villanueva, A., & Cerón, J. Basic Caenorhabditis elegans methods: Synchronization and observation. Journal of Visualized Experiments. 2012, (64). Qi, Z., Ji, H., Le, M., Li, H., Wieland, A., Bauer, S., Liu, L., Wink, M., & Herr, I. Sulforaphane promotes C. elegans longevity and healthspan via DAF-16/DAF-2 insulin/IGF-1 signaling. Aging. 2021, 13(2), 1649-1670. Rais, N., Ved, A., Ahmad, R., Kumar, M., Deepak Barbhai, M., Radha, Chandran, D., Dey, A., Dhumal, S., Senapathy, M., Deshmukh, V. P., Anitha, T., Balamurugan, V., & Lorenzo, J. M. S-Allyl-L-Cysteine — A garlic bioactive: physicochemical nature, mechanism, pharmacokinetics, and health promoting activities. Journal of Functional Foods. 2023, 107, 105657. Rhayem, Y., Thérond, P., Camont, L., Couturier, M., Beaudeux, J.-L., Legrand, A., Jore, D., Gardés-Albert, M., & Bonnefont-Rousselot, D. Chain-breaking activity of resveratrol and piceatannol in a linoleate micellar model. Chemistry and Physics of Lipids. 2008, 155(1), 48-56. Rio, D. C., Ares, M., Hannon, G. J., & Nilsen, T. W. Purification of RNA by SDS solubilization and phenol extraction. Cold Spring Harbor Protocols. 2010, 2010(6), pdb.prot5438. Sanadhya, P., Bucki, P., Liarzi, O., Ezra, D., Gamliel, A., & Braun Miyara, S. Caenorhabditis elegans susceptibility to Daldinia cf. concentrica bioactive volatiles is coupled with expression activation of the stress-response transcription factor daf-16, a part of distinct nematicidal action. PLOS ONE. 2018, 13(5), e0196870. Saxton, R. A., & Sabatini, D. M. mTOR signaling in growth, metabolism, and disease. Cell. 2017, 168(6), 960-976. Schaar, C. E., Dues, D. J., Spielbauer, K. K., Machiela, E., Cooper, J. F., Senchuk, M., Hekimi, S., & Van Raamsdonk, J. M. Mitochondrial and cytoplasmic ROS have opposing effects on lifespan. PLOS Genetics. 2015, 11(2), e1004972. Schapira, A. H. Mitochondria in the aetiology and pathogenesis of Parkinson's disease. The Lancet Neurology. 2008, 7(1), 97-109. Senchuk, M., Dues, D., & Van Raamsdonk, J. Measuring oxidative stress in Caenorhabditis elegans: Paraquat and juglone sensitivity assays. BIO-PROTOCOL. 2017, 7(1). Sharifi-Rad, M., Anil Kumar, N. V., Zucca, P., Varoni, E. M., Dini, L., Panzarini, E., Rajkovic, J., Tsouh Fokou, P. V., Azzini, E., Peluso, I., Prakash Mishra, A., Nigam, M., El Rayess, Y., Beyrouthy, M. E., Polito, L., Iriti, M., Martins, N., Martorell, M., Docea, A. O., Setzer, W. N., Calina, D., Cho, W. C., & Sharifi-Rad, J. Lifestyle, oxidative stress, and antioxidants: Back and forth in the pathophysiology of chronic diseases. Frontiers in Physiology. 2020, 11. Shen, P., Yue, Y., Sun, Q., Kasireddy, N., Kim, K.-H., & Park, Y. Piceatannol extends the lifespan of Caenorhabditis elegans via DAF-16. BioFactors. 2017, 00. Shields, H. J., Traa, A., & Van Raamsdonk, J. M. Beneficial and detrimental effects of reactive oxygen species on lifespan: A comprehensive review of comparative and experimental studies. Frontiers in Cell and Developmental Biology. 2021, 9. Si, H., & Liu, D. Dietary antiaging phytochemicals and mechanisms associated with prolonged survival. The Journal of Nutritional Biochemistry. 2014, 25(6), 581-591. Son, H. G., Altintas, O., Kim, E. J. E., Kwon, S., & Lee, S. J. V. Age‐dependent changes and biomarkers of aging in Caenorhabditis elegans. Aging Cell. 2019, 18(2), e12853. Song, B., Wang, H., Xia, W., Zheng, B., Li, T., & Liu, R. H. Combination of apple peel and blueberry extracts synergistically induced lifespan extension via DAF-16 in Caenorhabditis elegans. Food & Function. 2020, 11(7), 6170-6185. Song, B., Zheng, B., Li, T., & Liu, R. H. Raspberry extract ameliorates oxidative stress in Caenorhabditis elegans via the SKN-1/Nrf2 pathway. Journal of Functional Foods. 2020, 70, 103977. Strayer, A., Wu, Z., Christen, Y., Link, C., & Luo, Y. Expression of the small heat-shock protein Hsp16-2 in Caenorhabditis elegans is suppressed by Ginkgo biloba extract EGb 761. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2004, 17, 2305-2307. Sun, X., Chen, W.-D., & Wang, Y.-D. DAF-16/FOXO transcription factor in aging and longevity. Frontiers in Pharmacology. 2017, 8. Tejeda-Benitez, L., & Olivero-Verbel, J. Caenorhabditis elegans, a biological model for research in toxicology 2016 (pp. 1-35). Springer International Publishing Teuscher, A., & Ewald, C. Overcoming autofluorescence to assess GFP expression during normal physiology and aging in Caenorhabditis elegans. BIO-PROTOCOL. 2018, 8(14). Tian, Y., Zhang, X., Du, M., Li, F., Xiao, M., & Zhang, W. Synergistic antioxidant effects of Araloside A and L-Ascorbic Acid on H2O2-induced HEK293 cells: Regulation of cellular antioxidant status. Oxidative Medicine and Cellular Longevity. 2021, 2021, 1-20. Tissenbaum, H. A. Using C. elegans for aging research. Invertebrate Reproduction & Development. 2015, 59(1), 59-63. Trojanowski, N. F., Raizen, D. M., & Fang-Yen, C. Pharyngeal pumping in Caenorhabditis elegans depends on tonic and phasic signaling from the nervous system. Scientific Reports. 2016, 6(1), 22940. Tsang, Y.-L., Kao, C.-L., Lin, S.-C. A., & Li, C.-J. Mitochondrial dysfunction and oxidative stress in aging and disease. Biomedicines. 2022, 10(11), 2872. Tsao, R. Chemistry and biochemistry of dietary polyphenols. Nutrients. 2010, 2(12), 1231-1246. Tullet, J. M. A., Hertweck, M., An, J. H., Baker, J., Hwang, J. Y., Liu, S., Oliveira, R. P., Baumeister, R., & Blackwell, T. K. Direct inhibition of the longevity-promoting factor SKN-1 by Insulin-like Signaling in C. elegans. Cell. 2008, 132(6), 1025-1038. Van Raamsdonk, J. M., & Hekimi, S. Reactive oxygen species and aging in Caenorhabditis elegans: Causal or casual relationship? Antioxidants & Redox Signaling. 2010, 13(12), 1911-1953. Veal, E., Jackson, T., & Latimer, H. Role/s of ‘Antioxidant’ enzymes in ageing 2018 (pp. 425-450). Springer Singapore Venkateshappa, C., Harish, G., Mahadevan, A., Srinivas Bharath, M. M., & Shankar, S. K. Elevated oxidative stress and decreased antioxidant function in the human hippocampus and frontal cortex with increasing age: Implications for neurodegeneration in Alzheimer’s Disease. Neurochemical Research. 2012, 37(8), 1601-1614. Volpe, C. M. O., Villar-Delfino, P. H., Dos Anjos, P. M. F., & Nogueira-Machado, J. A. Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death & Disease. 2018, 9(2). Wang, D., Ji, D.-C., Yu, C.-Y., Wu, D.-N., & Qi, L. Research progress on the mitochondrial mechanism of age-related non-alcoholic fatty liver. World Journal of Gastroenterology. 2023, 29(13), 1982-1993. Wang, S., Meckling, K. A., Marcone, M. F., Kakuda, Y., & Tsao, R. Synergistic, additive, and antagonistic effects of food mixtures on total antioxidant capacities. Journal of Agricultural and Food Chemistry. 2011, 59(3), 960-968. Webb, A. E., Kundaje, A., & Brunet, A. Characterization of the direct targets of FOXO transcription factors throughout evolution. Aging Cell. 2016, 15(4), 673-685. Weichhart, T. mTOR as regulator of lifespan, aging, and cellular senescence: A mini-review. Gerontology. 2018, 64(2), 127-134. Weir, H. J., Yao, P., Huynh, F. K., Escoubas, C. C., Goncalves, R. L., Burkewitz, K., Laboy, R., Hirschey, M. D., & Mair, W. B. Dietary restriction and AMPK increase lifespan via mitochondrial network and peroxisome remodeling. Cell Metabolism. 2017, 26(6), 884-896.e885. Wu, C.-W., Deonarine, A., Przybysz, A., Strange, K., & Choe, K. P. The Skp1 homologs SKR-1/2 are required for the Caenorhabditis elegans SKN-1 antioxidant/detoxification response independently of p38 MAPK. PLOS Genetics. 2016, 12(10), e1006361. Xiao, Y., Zhang, L., & Liu, Y. Protocol for assessing the healthspan of Caenorhabditis elegans after potential anti-aging drug treatment. STAR Protocols. 2023, 4(2), 102285. Xiong, L.-G., Chen, Y.-J., Tong, J.-W., Gong, Y.-S., Huang, J.-A., & Liu, Z.-H. Epigallocatechin-3-gallate promotes healthy lifespan through mitohormesis during early-to-mid adulthood in Caenorhabditis elegans. Redox Biology. 2018, 14, 305-315. Xu, J., Du, P., Liu, X., Xu, X., Ge, Y., & Zhang, C. Curcumin supplementation increases longevity and antioxidant capacity in Caenorhabditis elegans. Frontiers in Pharmacology. 2023, 14. Yu, C. W., Wu, Y. C., & Liao, V. H. C. Early developmental nanoplastics exposure disturbs circadian rhythms associated with stress resistance decline and modulated by DAF-16 and PRDX-2 in C. elegans. Journal of Hazardous Materials. 2022, 423. Yu, M., Zhang, H., Wang, B., Zhang, Y., Zheng, X., Shao, B., Zhuge, Q., & Jin, K. Key signaling pathways in aging and potential interventions for healthy aging. Cells. 2021, 10(3), 660. Zeng, L., Sun, C., Pei, Z., Yun, T., Fan, S., Long, S., Wu, T., Chen, Z., Yang, Z., & Xu, F. Liangyi Gao extends lifespan and exerts an antiaging effect in Caenorhabditis elegans by modulating DAF-16/FOXO. Biogerontology. 2019, 20(5), 665-676. Zhang, L., Jie, G., Zhang, J., & Zhao, B. Significant longevity-extending effects of EGCG on Caenorhabditis elegans under stress. Free Radical Biology and Medicine. 2009, 46(3), 414-421. Zhang, S., Li, F., Zhou, T., Wang, G., & Li, Z. Caenorhabditis elegans as a useful model for studying aging mutations. Frontiers in Endocrinology. 2020, 11. Zhou, L., Zhang, H., Davies, K. J. A., & Forman, H. J. Aging-related decline in the induction of Nrf2-regulated antioxidant genes in human bronchial epithelial cells. Redox Biology. 2018, 14, 35-40. Zhu, A., Zheng, F., Zhang, W., Li, L., Li, Y., Hu, H., Wu, Y., Bao, W., Li, G., Wang, Q., & Li, H. Oxidation and antioxidation of natural products in the model organism Caenorhabditis elegans. Antioxidants. 2022, 11(4), 705. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95485 | - |
| dc.description.abstract | 老化是所有生物必經的過程並伴隨氧化壓力堆積與生理功能逐漸下降。 S-烯丙基半胱氨酸(SAC)是一種存在於黑蒜中的有機硫化合物,而白皮杉醇(PIC)則屬於二苯基乙烯類化合物,此兩者先前已被證明具有抗衰老效果。先前的研究觀察到多酚化合物和SAC在抗氧化方面具有協同作用。協同作用是透過將兩種或更多濃度較低的化合物結合在一起,以達到與單獨存在的化合物相同或更強的效果。然而,PIC 和 SAC 作為常見的營養素,其抗衰老的協同效應仍不清楚。本研究旨在以秀麗隱桿線蟲模式探討SAC和PIC是否具有抗氧化及抗老化的協同效應。抗氧化壓力實驗使用250 µM Juglone作為壓力誘導劑並透過DHE染色來探測自由基的多寡。透過比較實驗值 (EV) 和理論值 (TV),計算了PIC和SAC的協同作用率(SR)。結果顯示,與對照組和單獨介入 SAC 或 PIC相比,SAC + PIC 組別的線蟲於氧化壓力環境下的存活率分別提升 25.5%、9.5% 及9.2%。在 DHE 染色試驗中,與對照組和單獨使用 SAC 或 PIC 的組別相比, SAC + PIC 組別的線蟲體內分別降低了 43%、9% 及24% 的自由基。於線蟲老化試驗中,相較於對照組,SAC+ PIC的組合延長了線蟲的生命週期並顯著改善線蟲老化指標行為,包含身體彎曲和腸道脂褐素。SAC+PIC的組合顯著提升SKN-1於線蟲中體內轉移至細胞核比例達50%,並提高其下游抗氧化基因gcs-1表現量15% 。總結來說,相較於SAC 5 µM 和PIC 50 µM 處理組別,PIC與SAC的樣品比例 (3⁄4 的 5 µM SAC 和 1⁄4 的 50 µM PIC)對於抗氧化與抗老化模式具有顯著的協同效應,其效果更加提升線蟲的抗氧化能力並降低體內ROS累積、延長壽命並改善老化相關指標。因此,SAC + PIC 的組合可透過較低濃度並具達到相同之抗氧化及抗老化的效果有更佳效果之應用,並具有做為營養補充品之潛力。 | zh_TW |
| dc.description.abstract | Aging is a normal process that is inevitable in all living beings and is associated with oxidative stress accumulation, accompanied by a progressive decline of physiological integrity. S-allylcysteine (SAC), an organosulfur compound found in aged black garlic, and Piceatannol (PIC), a stilbene family, have been shown to possess anti-aging properties. Previous research has demonstrated that polyphenol compounds and SAC exhibit synergistic effects in antioxidant activities. Synergism, in this context, refers to the phenomenon where combining two or more compounds in lower concentrations, produces a stronger effect than when each compound is used alone. However, the synergistic effect of PIC and SAC in common daily nutrients remains unclear. To investigate this, an anti-oxidative stress assay was conducted using 250 µM Juglone, as a stress inducer. Free radical levels were measured using dihydroethidium (DHE) staining. The synergistic effect of PIC and SAC was quantified using the Synergistic Rate (SR), by comparing the experimental value (EV) to the theoretical value (TV). The results indicated that the combination group (SAC + PIC) increased survival rates by 25.5%, 9.5%, and 9.2% compared to the control, SAC alone, and PIC alone, respectively. DHE staining showed that this combination (SAC + PIC) reduced ROS levels by 43%, 9%, and 24% compared to the control, SAC alone, and PIC alone, respectively. Additionally, lifespan was prolonged in wild-type C. elegans, and aging behaviors such as body bends and intestinal lipofuscin accumulation were significantly improved. Furthermore, the combination of SAC and PIC activated the SKN-1 pathway by 50% compared to the control and increased the expression of its downstream gene gcs-1 by 15%. Compared to the individual treatments of 5 µM SAC and 50 µM PIC, the combinations of SAC and PIC (3⁄4 of 5 µM SAC and 1⁄4 of 50 µM PIC) showed significant synergistic effects in both antioxidant and anti-aging. In conclusion, the combination of SAC and PIC demonstrated synergistic effects in enhancing the antioxidative capacity of C. elegans, reducing ROS accumulation, extending lifespan, and improving aging-related indicators at lower concentrations. This study suggests a potential model for the future application of nutritional supplements by combining lower concentrations of multiple compounds to achieve better effects. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-10T16:19:00Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-09-10T16:19:00Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | TABLE OF CONTENTS
ACKNOWLEDGEMENT II 摘要 IV ABSTRACT VI TABLE OF CONTENTS VIII LIST OF FIGURES XI LIST OF TABLES XIII ABBREVIATION XIV I. LITERATURE REVIEW 1 1.1 Aging 1 1.1.1 Reactive Oxygen Species (ROS) 2 1.1.2 Aging-related Diseases 3 1.1.3 Anti-aging Mechanism 5 1.2 Phytochemicals on Aging 9 1.2.1 S-allylcysteine 12 1.2.2 Piceatannol 13 1.3 Synergistic Effect 15 1.4 Caenorhabditis elegans 17 1.4.1 Caenorhabditis elegans as in vivo Model 17 1.4.2 Caenorhabditis elegans as Model for Aging 19 II. OBJECTIVES AND EXPERIMENTAL DESIGN 22 2.1 Objectives 22 2.2 Experimental Design 22 III. MATERIALS AND METHODS 23 3.1 Materials 23 3.1.1 Equipment 23 3.1.2 Reagents 24 3.1.3 Commercial Kits 25 3.1.4 qPCR Primers 26 3.1.5 Compound Origin 26 3.2 Methods 27 3.2.1 C. elegans Culture and Cultivation 27 3.2.2 C. elegans Development and Body Length Assay 28 3.2.3 Antioxidant Activity 28 3.2.3.1 Stress-response Assay 28 3.2.3.2 Intracellular ROS Measurement 29 3.2.4 Aging Indicators 29 3.2.4.1 Pumping Rate Assay 29 3.2.4.2 Defecation Cycle Assay 30 3.2.4.3 Body Bend Assay 30 3.2.4.4 Intestinal Lipofuscin Assay 30 3.2.5 SKN-1 Localization Assay 31 3.2.6 DAF-16 Localization Assay 31 3.2.7 HSP-16.2 Localization Assay 31 3.2.8 RT-qPCR 32 3.2.8.1 RNA Extraction 32 3.2.8.2 DNase I 33 3.2.8.3 RNA Quality Control 34 3.2.8.4 cDNA Synthesis 36 3.2.8.5 RT-qPCR 37 3.2.9 Statistical Analyses 38 IV. RESULTS AND DISCUSSION 39 4.1 Effect of SAC and PIC on Body Length of C. elegans 39 4.2 Effect of SAC and PIC on Oxidative Stress Resistance 40 4.3 SAC and PIC Synergistically Reduce Intracellular ROS Level 45 4.4 SAC and PIC Synergistically Increase the Lifespan of N2 Wild-type C. elegans 48 4.5 SAC and PIC Synergistically Ameliorate Aging Behavior 50 4.6 The Synergistic of SAC and PIC in SKN-1 Localization 56 4.7 Effect of SAC and PIC on Willd-type C. elegans at mRNA Level 59 4.8 Mechanism Study 61 V. CONCLUSIONS 65 VI. BIBLIOGRAPHY 67 SUPPLEMENTARY 80 | - |
| dc.language.iso | en | - |
| dc.subject | 抗老化 | zh_TW |
| dc.subject | 秀麗隱桿線蟲 | zh_TW |
| dc.subject | 協同作用 | zh_TW |
| dc.subject | 白皮杉醇 | zh_TW |
| dc.subject | S-烯丙基半胱氨酸 | zh_TW |
| dc.subject | 老化 | zh_TW |
| dc.subject | piceatannol | en |
| dc.subject | S-allylcysteine | en |
| dc.subject | anti-aging | en |
| dc.subject | aging | en |
| dc.subject | C. elegans | en |
| dc.subject | synergistic effect | en |
| dc.title | 探討S-烯丙基半胱胺酸和白皮杉醇的協同作用於秀麗隱桿線蟲之抗老化功效 | zh_TW |
| dc.title | Investigating the synergistic effect of S-allylcysteine and piceatannol on anti-aging in Caenorhabditis elegans | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 何元順;黃步敏;張嘉哲;魏嘉徵 | zh_TW |
| dc.contributor.oralexamcommittee | Yuan-Soon Ho;Bu-Miin Huang;Chia-Che Chang;Chia-Cheng Wei | en |
| dc.subject.keyword | 老化,抗老化,S-烯丙基半胱氨酸,白皮杉醇,協同作用,秀麗隱桿線蟲, | zh_TW |
| dc.subject.keyword | aging,anti-aging,S-allylcysteine,piceatannol,synergistic effect,C. elegans, | en |
| dc.relation.page | 83 | - |
| dc.identifier.doi | 10.6342/NTU202403530 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-09 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 食品科技研究所 | - |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 5.81 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
