請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9545完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 廖運炫 | |
| dc.contributor.author | Hsin-Chih Li | en |
| dc.contributor.author | 李心智 | zh_TW |
| dc.date.accessioned | 2021-05-20T20:27:55Z | - |
| dc.date.available | 2008-09-30 | |
| dc.date.available | 2021-05-20T20:27:55Z | - |
| dc.date.copyright | 2008-08-08 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-08-04 | |
| dc.identifier.citation | 1. 吳英正,”快速無模成型技術,” 機械月刊,Vol. 19, No.9, 82年9月 pp.146-154.
2. J.P. Kruth, “Material Increases Manufacturing by Rapid Prototyping Technologies,” Annals of the CIRP, Vol. 40/2, 1991, pp.603-610. 3. J.P. Kruth, “Rapid Prototyping, A New Applications of Physical and Chemical Processes for Material Accretion Manufacturing,” Proceedings of the 11th International Symposium for ElectroMachining, 1995, pp.3-28. 4. J.P. Kruth, “Progress in Additive Manufacturing and Rapid Prototyping,” Annals of the CIRP, Vol. 47/2, 1998, pp.525-540. 5. A. Kataria and W. Rosen, “Building Around Inserts:Methods for Fabricating Complex Devices in Stereolithography,” Rapid Prototyping Journal, Vol. 7, No. 5, 2001, pp. 253-261. 6. J. Kathryn and F.F. Kong, “Procedure for Rapid Fabrication of Non-assembly Mechanisms with Embedded Components,” Proceedings of the ASME Design Engineering Technical Conference, Montreal, Canada, Sep. 29-Oct. 2, 2002, pp. 1239-1245. 7. C. Mavroidis and J. Kathryn, “Fabrication of Non-assembly Mechanisms and Robotic Systems Using Rapid Prototyping,” Journal of Mechanical Design, Vol. 123, Issue 4, 2001, pp. 516-524. 8. Y.G. Im, S.I. Chung, J.H. Son, Y.D. Jung, J.G. Jo, and H.D. Jeong, “Functional Prototype Development: Inner Visible Multi-color Prototype Fabrication Process Using Stereo Lithography,” Journal of Materials Processing Technology, Vol. 130-131, 2002, pp. 372-377. 9. Y.G. Im, B.S. Cho, S.H. Seo, J.H. Son, S.I. Chung, and H.D. Jeong, “Functional Prototype Development of Multi-Layer Board (BLB) Using Rapid Prototyping Technology,” Journal of Materials Processing Technology, Vol. 187-188, 2007, pp. 619-622. 10. L.E. Weiss and F.B. Prinz, “Shape Deposition Manufacturing of Heterogeneous Structures,” Journal of Manufacturing Systems, Vol. 16, No. 4, 1997, pp. 239-248. 11. M. Hatanaka and R. Mark, “Process Planning for Embedding Flexible Materials in Multi-Material Prototypes,” Proceedings of the ASME Design Engineering Technical Conference, Vol. 3, 2003, pp. 325-333. 12. Q. Dan and A. Noshir, “Void Eliminating Toolpath for Extrusion Based Multi-Material Layered Manufacturing,” Rapid Prototyping Journal, Vol. 8, No. 5, 2002, pp. 38-45. 13. Y. Yan and X. Zhuo, “Layered Manufacturing of Tissue Engineering Scaffolds via Multi-Nozzle Deposition,” Materials Letters, Vol. 57, No. 18, 2003, pp.2623-2628. 14. Y. Yan and X. Zhuo, “Fabrication of Porous Poly (L-lactic acid) Scaffolds for Bone Tissue Engineering via Precise Extrusion,” Scripta Materialia, Vol. 45, No. 7, 2001, pp. 773-779. 15. C. L. Liew, K. F. Leong, C. K. Chua and Z. Du, “Dual Material Rapid Prototyping Techniques for the Development of Biomedical Devices. Part 1: Space Creation,” The International Journal of Advanced Manufacturing Technology, Vol. 18, 2001, pp. 717-723. 16. S.M. Hur, K.H. Choi, S.H. Lee, and P.K. Chang, “Determination of Fabricating Orientation and Packing in SLS Process,” Journal of Materials Processing Technology, Vol. 112, 2001, pp. 236-243. 17. D. Klosterman, R. Chartoff, N. Osborne, G. Graves, A. Lightman and G. Han, “Laminated Object Manufacturing of Advanced Ceramics and Composites,” Proceedings of the 7th International Conference on Rapid Prototyping, Dayton, USA, 1997, pp.43-50. 18. C. Chi, L. Dodin, S. Pak, “Development and Fabrication of Metallic LOM Objects,” The Proceeding of the 7th International Conference on Rapid Prototyping, Dayton, USA, 1997, pp. 293-299. 19. T. Obikawa, M. Yoshino, and J. Shinozuka, “Sheet Steel Lamination for Rapid Manufacturing,” Journal of Materials Processing Technology, Vol. 89-90, 1999, pp. 171-176. 20. B.G. Bryden, I.R. Pashby, D.I. Wimpenny, and C. Adams, “Laminated Steel Tooling in the Aerospace Industry,” Materials and Design, Vol. 21, 2000, pp. 403-408. 21. “Metal tape for LOM,” Rapid Prototyping report, Long Peak Engineering Inc., February, 1996. 22. Y.Y. Chiu, Y.S. Liao and C.C. Hou, “Automatic Fabrication for Bridged Laminated Object Manufacturing (LOM) Process,” Journal of Materials Processing Technology, Vol. 140, No. 1-3, 2003, pp. 179-184. 23. Y.S. Liao, H.C. Li, and M.T. Chen, “The Study of Rapid Prototyping Process with Embedded Functional Inserts,” Journal of Materials Processing Technology, Vol. 192-193, 2007, pp. 68-74. 24. Y.S. Liao and L.C. Chiu, ”A New Approach of Online Waste Removal Process for Laminated Object Manufacturing (LOM) ,” Journal of Materials Processing Technology, Vol. 140, No. 1-3, 2003, pp. 136-140. 25. Y.A. Song and S. Park, ”Experimental Investigations into Rapid Prototyping of Composites by Novel Hybrid Deposition Process,” Journal of Materials Processing Technology, Vol. 171, 2006, pp. 35-40. 26. M.Y. Zhou, J. T. Xi and J.Q. Yan, ”Modeling and processing of Functionally Graded materials for Rapid Prototyping,” Journal of Materials Processing Technology, Vol. 146, 2004, pp. 396-402. 27. 邱雲堯,”快速原型之層狀成形法(LOM)研究,” 國立台灣大學機械工程學研究所博士論文,2000. 28. M. Burns, K.J. Hayworth and C.L. Thomas, “Automating Sheet Based Fabrication: The Conveyed-Adherent Process,” Proceedings of the 8th Solid Freeform Fabrication Symposium, 1996, pp. 281-290. 29. D. Klosterman, R. Chartoff, N. Osborne and G. Graves, “Automated Fabrication of Monolithic and Ceramic Matrix Composites via Laminated Object Manufacturing (LOM) ,” Proceedings of the 9th Solid Freeform Fabrication Symposium, 1997, pp.537-549. 30. D. Klosterman, B. Priore and R. Chartoff, “Laminated Object Manufacturing of Polymer Matrix Composites,” Proceedings of the 7th International Conference on Rapid Prototyping, 1997, pp. 283-292. 31. D. Klosterman, R. Chartoff, B. Priore, N. Osborne, G. Graves and A. Lightman, “Structural Composites via Laminated Object Manufacturing,” Proceedings of the 8th Solid Freeform Fabrication Symposium, 1996, pp. 105-115. 32. Y.S. Liao and Y.Y. Chiu, “Adaptive Crosshatch Approach for the Laminated Object Manufacturing (LOM) Process,” International Journal of Production Research, Vol. 39, No. 15, 2001, pp. 3479-3490. 33. Q. Huang and Y. Wang, “Research on Cutting Meshes in LOM,” The 1st International Conference on Rapid Prototyping and Manufacturing, 1998, pp. 618-620. 34. I. Cho and K. Lee, “Development of a New Sheet Deposition Type Rapid Prototyping System,” International Journal of Machine Tool and Manufactures, Vol. 40, No. 12, 2000, pp. 1813-1829. 35. J. Hur and K. Lee, “Efficient Algorithm for Automatic Support Structure Generation in Layered Manufacturing,” The 1996 ASME Design Engineering Technical Conferences and Computers in Engineering Conference, 1996. 36. A. Dolenc and I. Makela, “Slicing procedures for layered manufacturing techniques,” Computer-Aided Design, Vol. 26, No. 2,1994, pp. 119-126. 37. P. Kulkarni and D. Dutta, “An accurate slicing procedure for layered manufacturing,” Computer-Aided Design, Vol. 28, No. 9, 1996, pp. 683-697. 38. E. Sabourin, S. A. Houser and F. H. Bohn, “Adaptive slicing using stepwise uniform refinement,” Rapid Prototyping Journal, Vol. 2, No. 4, 1996, pp. 20-26. 39. E. Sabourin, S. A. Houser and F. H. Bohn, “Accurate exterior, fast interior layered manufacturing,” Rapid Prototyping Journal, Vol.3, No.2, 1997, pp. 44-52. 40. W. Cheng, F.Y.H. Fuh, A.Y.C. Nee, Y.S. Wong, H.T. Loh and T. Miyazawa, “Multi-objective optimization of part-building orientation in stereolithography,” Rapid Prototyping Journal, Vol. 1, No. 4, 1995, pp. 12-23. 41. M. Bablani and A. Bagchi, “Quantification of errors in rapid prototyping processes, and determination of preferred orientation of parts,” Transactions of NAMRI/SME, Vol. ⅩⅩⅩⅢ, 1995, pp. 319-324. 42. D. C. Thompson and R. H. Crawford, “Optimizing part quality with orientation,” Solid Freeform Fabrication Proceedings, 1995, pp. 362-368. 43. P. T. Lan, S. Y. Chou, L. L. Chen and D. Gemmill, “”Determining fabrication orientations for rapid prototyping with stereolithography apparatus,” Computer-Aided Design, Vol. 29, No. 1, 1997, pp. 53-62. 44. F. Xu, H.T. Loh and Y.S. Wong, “Considerations and selection of optimal orientation for different rapid prototyping systems,” Rapid Prototyping Journal, Vol. 5, No. 2, 1999, pp. 54-60. 45. R. Famieson and H. Hacker, “Direct slicing of CAD models for rapid prototyping,” Rapid Prototyping Journal, Vol. 1, No. 2, 1995, pp. 4-12. 46. 邱立誠, “快速原型系統─新式線上撥料薄片積層法之發展,” 國立台灣大學機械工程學系研究所碩士論文,2002. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9545 | - |
| dc.description.abstract | 新世代之快速原型技術有全新名詞,稱為快速生產或快速製造。如何能快速製作具功能性元件,如嵌入件、組合件、及具有多種材質之原型,為目前快速原型技術的重要研究課題。一般大多數的快速原型系統侷限於製程加工或是材料的限制,難以製作具多材質之功能性元件,其中的薄片積層法製程,因薄片材料多樣性,可製作不同材質之元件,具發展潛力,但也因積層加工方式及廢料剝除問題無法達成。
為能製作具多種材質之功能性元件,擴展快速原型新領域,本文以薄片積層法的製程為基礎,發展了一套嶄新的多種材料之薄片積層法加工製程以先切後黏再切兩次切割的方式,順利自動去除廢料並提出多種材料積層製程規劃。新製程是以物件概念為依據,將加工層內每個2D輪廓圖形都轉化為物件,依據材質、層級、群組方式定義物件,進行物件積層加工,在此提出一套物件道次加工流程演算法則與簡化方式,可順利將切層內所有物件依序完成加工,應用於多種材質物件的積層製作。研究中利用製程中獨特的多重送料匣裝置,能將工件階梯狀誤差精度控制在定值下,提供數個不同厚度的薄片材料,進行可變層厚的加工,可減少薄片積層數量,增進製程的加工效率。此外研究中提出了特殊支撐結構之建構法則以及簡化方式,利用物件概念將水溶性材料或是臘材置入於空區域(廢料區),產生合宜的支撐結構,可有效解決廢料剝除的問題。 本研究以兩個不同案例進行模擬驗證,驗證得知,多種材料之薄片積層法加工製程不但可製作複雜的中空工件,也能應用於多種材質之元件製作。因此新式多種材料薄層積層法,不但可提升薄片積層製程的競爭能力,更能擴展整個快速原型製程應用的新領域。 | zh_TW |
| dc.description.abstract | The evolution of the new generation rapid prototyping (RP) technology has brought RP technology a new terminology named Rapid Production or Rapid Manufacturing. The efficient production of functional parts including RP part with insert, assembly part, and the multi-materials mock-up has been paid much attention in the current rapid prototyping technology. The inherent restrictions of the processes and materials are the main causes to refrain most of the rapid prototyping systems from making multi-materials functional parts. The Laminated Object Manufacturing (LOM), a kind of RP system, has great potential in this aspect since various materials are applicable to the process. On the other hand, the de-cubing problem of waste material of the process impedes its practical progress.
In order to explore the new frontier of the RP technology in making multi-materials functional parts, a novel multi-materials LOM process is proposed in this study. In the proposed approach, two-stage cutting processes where a post cutting process following the normal cut-bond process are adopted to remove the waste material in-process such that manufacturing of multi-materials RP part can be accomplished. The object definition is the key concept in this new process. Each 2D contour in a layer is transformed as an object. Then the object manufacturing process is carried out according to the object definition of material, layer hierarchy, and related group. An algorithm together with its simplifying method is proposed to take all steps needed for different objects in one layer. A unique multi-material feeding mechanism is proposed in this study to achieve a reasonable tolerance of layer geometry. In addition, it can provide laminating materials with different thicknesses so that the number of the laminating layer can be reduced and the process efficiency can be significantly enhanced. More, a new forming methodology of the special supporting structure is also proposed by defining the blank area (waste-material area) as the object made of water-soluble material. Two case studies are investigated in the thesis. It is verified that not only the complex hollow part but also the multi-materials object is manufactured. The proposed new multi-materials laminated object manufacturing process is expected to make LOM more competitive besides opening up a new application field of RP technology. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T20:27:55Z (GMT). No. of bitstreams: 1 ntu-97-D89522019-1.pdf: 3260058 bytes, checksum: 9d08abb9e39172416b26cc72e37520d4 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 中文摘要……………………………………………………………… Ⅰ
英文摘要……………………………………………………………… Ⅱ 目錄…………………………………………………………………… Ⅳ 圖目錄………………………………………………………………… Ⅵ 表目錄………………………………………………………………… Ⅹ 第一章 緒論…………………………………………………………. 1 1.1 前言…………………………………………………………… 1 1.2 文獻回顧……………………………………………………… 2 1.2.1快速原型原理…………………………………………… 3 1.2.2快速原型技術分類………………………………………. 5 1.3功能性原型件製作之文獻回顧………………………………. 7 1.4研究動機與目的…………………………………………….. 11 1.5本文內容…………………………………………………….. 11 第二章 薄片基層法相關原理……………………………………… 13 2.1薄片加工法(LOM)之加工原理……………………………. 13 2.2薄片積層法(LOM)廢料撥除效率相關製程之優劣點探討.. 15 第三章 多種材料之薄片積層法製程……………………………… 21 3.1多種材料之薄片積層製程步驟說明……………………….. 21 3.2製程流程演算法則……………………………………..….. 30 3.2.1多種材料積層加工製程探討………………..………. 30 3.2.2物件分類……………………………………………... 35 3.2.3物件積層加工順序演算………………………………. 46 3.2.4物件積層加工順序法則歸納………………………... 50 3.3可變層厚之積層加工效率探討…………………………….. 52 3.4小結…………………………………………………………… 55 第四章 多種材料薄片積層法之支撐結構建構法則與簡化方法.. 56 4.1多種材料積層加工法支撐建構法則…………………….... 56 4.2支撐結構簡化法則………………………………………….. 60 4.3小結………………………………………………………….. 64 第五章 多種材料的積層加工製程模擬驗證……………........ 65 5.1驗證流程規劃………………………………………………… 65 5.2案例驗證……………………………………………………… 66 5.3小結…………………………………………………………… 89 第六章 案例驗證結果與討論……………………………………… 90 6.1工件幾何造形製作之差異…………………………………… 90 6.2製作具多種材質元件之特色………………………………… 91 6.3製程特色探討………………………………………………… 92 第七章 結論與未來展望.......…….…………………………… 94 7.1結論…………………………………………………………… 94 7.2未來展望……………………………………………………… 95 參考文獻..........…….…………………………………………… 96 | |
| dc.language.iso | zh-TW | |
| dc.title | 以LOM為基礎的多種材料薄片快速原型製程之研究 | zh_TW |
| dc.title | Study of an Innovative LOM-Based Multi-Materials Rapid Prototyping Process | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 鐘添東,蔡明忠,鄭逸琳,邱雲堯 | |
| dc.subject.keyword | 快速原型,薄片積層法,線上撥料,多種材料積層加工,結構性梯度變化的材質, | zh_TW |
| dc.subject.keyword | Rapid Prototyping,LOM,On-line De-cubing,Multi-Materials Layer Manufacturing,Functional Gradient Material, | en |
| dc.relation.page | 101 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2008-08-04 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-97-1.pdf | 3.18 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
