Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95450
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張子璿zh_TW
dc.contributor.advisorTzu-Hsuan Changen
dc.contributor.author趙家廉zh_TW
dc.contributor.authorChia-Lien Chaoen
dc.date.accessioned2024-09-09T16:13:12Z-
dc.date.available2024-09-10-
dc.date.copyright2024-09-09-
dc.date.issued2024-
dc.date.submitted2024-08-14-
dc.identifier.citationG. E. Moore, "Cramming more components onto integrated circuits," Proceedings of the IEEE, vol. 86, no. 1, pp. 82-85, 1998.
[2] Y. Xie, C. Bao, Y. Liu, and A. Srivastava, "2.5 D/3D integration technologies for circuit obfuscation," in 2016 17th International Workshop on Microprocessor and SOC Test and Verification (MTV), 2016: IEEE, pp. 39-44.
[3] LAU, John H.; YUE, Tang Gong. Effects of TSVs (through-silicon vias) on thermal performances of 3D IC integration system-in-package (SiP). Microelectronics Reliability, 2012, 52.11: 2660-2669.
[4] TAKAHASHI, Kenji; SEKIGUCHI, Masahiro. Through silicon via and 3-D wafer/chip stacking technology. In: 2006 Symposium on VLSI Circuits, 2006. Digest of Technical Papers. IEEE, 2006. p. 89-92.
[5] Chen, H., et al., Thermal conductivity of polymer-based composites: Fundamentals and applications. Progress in Polymer Science, 2016. 59: p. 41-85.
[6] A. Kumar, G. Verma, V. Nath, and S. Choudhury, "IC Packaging: 3D IC technology and methods," Proceedings of the International Conference on Nano-electronics, Circuits & Communication Systems, 2017: Springer, pp. 303-317.
[7] J. Xie, Y. Wang, and Y. Xie, "Yield-aware time-efficient testing and self-fixing design for TSV-based 3D ICs," in 17th Asia and South Pacific Design Automation Conference, 2012: IEEE, pp. 738-743.
[8] Lau, J.H. and T.G. Yue. Thermal management of 3D IC integration with TSV (through silicon via). in 2009 59th Electronic Components and Technology Conference. 2009. IEEE.
[9] GODOVSKY, Yu K., et al. Epoxy molding compounds as encapsulation materials for microelectronic devices. Speciality Polymers/Polymer Physics, 1989, 1-48.
[10] W. Cui et al., "Improving thermal conductivity while retaining high electrical resistivity of epoxy composites by incorporating silica-coated multi-walled carbon nanotubes," Carbon, vol. 49, no. 2, pp. 495-500, 2011.
[11] M. Rahaman, R. Theravalappil, S. Bhandari, L. Nayak, and P. Bhagabati, "Electrical conductivity of polymer-graphene composites," in Polymer Nanocomposites Containing Graphene: Elsevier, 2022, pp. 107-139.
[12] WU, Fan, et al. High thermal conductivity 2D materials: From theory and engineering to applications. Advanced Materials Interfaces, 2022, 9.21: 2200409.
[13] CHAUDHRY, A. U.; MABROUK, Abdelnasser; ABDALA, Ahmed. Thermally enhanced pristine polyolefins: Fundamentals, progress and perspective. Journal of Materials Research and Technology, 2020, 9.5: 10796-10806.
[14] S. K. Gulrez et al., "A review on electrically conductive polypropylene and polyethylene," Polymer composites, vol. 35, no. 5, pp. 900-914, 2014.
[15] W. Bauhofer and J. Z. Kovacs, "A review and analysis of electrical percolation in carbon nanotube polymer composites," Composites science and technology, vol. 69, no. 10, pp. 1486-1498, 2009.
[16] GIANCHANDANI, Yogesh B.; TABATA, Osamu; ZAPPE, Hans P. Comprehensive microsystems. (No Title), 2008.
[17] P. Ramm et al., "3D integration technology: Status and application development," in 2010 Proceedings of ESSCIRC, 2010: IEEE, pp. 9-16.
[18] L. Li, P. Ton, M. Nagar, and P. Chia, "Reliability challenges in 2.5 D and 3D IC integration," in 2017 IEEE 67th Electronic Components and Technology Conference (ECTC), 2017: IEEE, pp. 1504-1509.
[19] Conference (3DIC), 2011 IEEE International, 2012: IEEE, pp. 1-7.
[20] W. Thongruang, R. J. Spontak, and C. M. Balik, "Correlated electrical conductivity and mechanical property analysis of high-density polyethylene filled with graphite and carbon fiber," Polymer, vol. 43, no. 8, pp. 2279-2286, 2002.
[21] HAINES, P. J.; READING, M.; WILBURN, F. W. Differential thermal analysis and differential scanning calorimetry. In: Handbook of thermal analysis and calorimetry. Elsevier Science BV, 1998. p. 279-361.
[22] VO, H. Todd, et al. Towards model-based engineering of underfill materials: CTE modeling. Microelectronics Journal, 2001, 32.4: 331-338.
[23] PRIME, R. Bruce, et al. Thermogravimetric analysis (TGA). Thermal analysis of polymers: Fundamentals and applications, 2009, 241-317.
[24] N. Song, D. Jiao, P. Ding, S. Cui, S. Tang, and L. Shi, "Anisotropic thermally conductive flexible films based on nanofibrillated cellulose and aligned graphene nanosheets," Journal of Materials Chemistry C, vol. 4, no. 2, pp. 305-314, 2016.
[25] D. Nuvoli et al., "High concentration few-layer graphene sheets obtained by liquid phase exfoliation of graphite in ionic liquid," Journal of Materials Chemistry, vol. 21, no. 10, pp. 3428-3431, 2011.
[26] TJONG, Sie Chin. Novel nanoparticle‐reinforced metal matrix composites with enhanced mechanical properties. Advanced engineering materials, 2007, 9.8: 639-652.
[27] DEBBARMA, Rousan, et al. Electrical transport and network percolation in graphene and boron nitride mixed-platelet structures. ACS applied materials & interfaces, 2016, 8.13: 8721-8727.
[28] KUNDU, Pijush K.; COHEN, Ira M.; DOWLING, David R. Fluid mechanics. Academic press, 2015.
[29] HO, Chung-Wen; RUEHLI, Albert; BRENNAN, Pierce. The modified nodal approach to network analysis. IEEE Transactions on circuits and systems, 1975, 22.6: 504-509.
[30] RATHINAM, Arunkumar. Design and development of UWE-4: integration of electric propulsion units, structural analysis and orbital heating analysis. 2015.
[31] HUGHES, Thomas JR. The finite element method: linear static and dynamic finite element analysis. Courier Corporation, 2003.
[32] P. Chulkin, "In-situ characterisation of charge transport in organic light-emitting diode by impedance spectroscopy," Electronic Materials, vol. 2, no. 2, pp. 253-273, 2021.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95450-
dc.description.abstract三維集成電路(3DIC)的有效熱管理,由於功率密度增加和散熱需求提升,面臨著顯著挑戰。針對這些挑戰,本研究提出了通過將二維材料整合到熱固性環氧樹脂中來顯著提高封裝材料導熱性的解決方案。我們的研究表明,這一方法在提高材料導熱性方面具有顯著效果,並已成功整合至現有商用產品上,突顯了此方法的實用性和工業可行性。此外,為了實現與生產線的整合,遵守包括熱機械性質在內的參數是至關重要的。這些參數必須符合工業標準,才能確保整合過程的順利進行。為了更好地分析環氧樹脂複合材料,我們也開發了一個穩健的填料散佈模型。該模型不僅為本研究的材料分析提供了分析方式,還為未來的進一步研究和應用提供了堅實的基礎框架。通過這種綜合方法,我們不僅顯著改善了3DIC中的熱管理性能,還在材料科學和電子封裝技術領域開辟了新的研究方向。這一方式不僅能提升當前技術水準,還為未來的技術創新和發展提供了新的可能性,預示著3DIC熱管理技術將迎來更加高效和可靠的發展前景。zh_TW
dc.description.abstractEffective thermal management in 3D integrated circuits (3DIC) presents significant challenges due to increased power densities and heat dissipation requirements. Our research addresses these challenges by integrating 2D material composites into thermoset epoxy, significantly enhancing the thermal conductivity of the packaging material. This integration has been successfully demonstrated in commercial products, highlighting both the practicality and industrial viability of our approach. Moreover, we emphasize the importance of complying with essential parameters, such as thermo-mechanical properties, which are required by industry standards for seamless integration into production lines. Additionally, we have developed a robust filler dispersion model to analyze epoxy composite materials, providing a foundational framework for further studies and applications. This comprehensive approach not only improves thermal management in 3DICs but also sets the stage for future advancements in material science and electronic packaging technologies.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-09T16:13:12Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-09T16:13:12Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iii
Contents iv
List of Figures viii
Chapter 1 Introduction 1
1.1 The Impact of Moore’s Law on 3DIC Development 1
1.2 Crucial role of thermal management in electronic packaging 3
1.3 Enhancing thermal performance with high thermal conductivity fillers 4
1.4 Heat dissipation mechanisms in polymer/epoxy 6
1.5 2D material demonstrates significant promise for advanced thermal management solutions of the future 8
1.6 Conclusion 10
Chapter 2 Issues with conventional packaging 11
2.1 Introduction to chip packaging 12
2.2 The importance of chip-packaging 13
2.3 Conventional packaging technology 14
2.4 Advanced packaging technology 15
2.5 Crucial parameters for packaging material 17
2.5.1 Differential scanning calorimetry (DSC) 17
2.5.2 Thermal conductivity 19
2.5.3 Viscosity 21
2.5.4 Coefficient of Thermal Expansion (CTE) 22
2.5.5 Thermogravimetric analysis (TGA) 23
2.6 Conclusion 24
Chapter 3 Improving thermal conductivity of the epoxy by uniformly dispersing 2D material and the shear stress method 26
3.1 Differential scanning calorimetry (DSC) of epoxy 27
3.2 Enhancement of the thermal conductivity of epoxy 29
3.2.1 Uniformly dispersing Graphene /CNF film 30
3.2.2 Percolation of the uniformly dispersed Graphene-Based Composite 31
3.2.3 Enhancement of the thermal conductivity by the shear stress method 32
3.3 Thermo-mechanical properties of Graphene/CNF/epoxy composites 35
3.3.1 Viscosity measurement for the optimal mixing 36
3.3.2 Coefficient of thermal expansion (CTE) of the Graphene-based composite 38
3.3.3 Thermogravimetric Analysis (TGA) of the Graphene-based composite 40
3.4 Integration of premix material into the mainstream commercial product 41
3.5 Conclusion 44
Chapter 4 Development of the filler dispersion model to analyze epoxy composite materials 45
4.1 Establishment of the simulation model 46
4.1.1 Meshing procedure and algorithm 48
4.1.2 Random distribution of the filler 51
4.1.3 Application of Poole’s Frenkel effect on the model 53
4.1.4 Conductive path-finding 54
4.1.5 Simulation results and analysis 57
4.2. Optimization of the model 58
4.2.1 Filler distribution and alignment control for generating the graphene structure 58
4.2.2 Contribution of different alignments to the conductivity 59
4.2.3 Contribution of different filler’s distance to the conductivity 62
4.3. Conclusion 63
Chapter 5 Conclusion and Future Work 65
Reference 67
-
dc.language.isoen-
dc.subject熱管理zh_TW
dc.subject二維材料zh_TW
dc.subject石墨烯zh_TW
dc.subject熱消散zh_TW
dc.subject電子封裝材料zh_TW
dc.subject填料散佈模型zh_TW
dc.subjectGrapheneen
dc.subjectThermal managementen
dc.subjectFiller distribution modelen
dc.subjectHeat dissipationen
dc.subjectIC packaging materialen
dc.subject2D materialen
dc.title透過有效的二維材料散佈實現超高熱導熱環氧樹脂並建立填料散佈模型以分析此複合材料電特性之研究zh_TW
dc.titleResearch on Achieving Ultra-High Thermal Conductive Epoxy through Effective 2D Material Dispersion and Establishing a Filler Dispersion Model to Analyze the Electrical Properties of the Composite Materialen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林致廷;吳肇欣;劉建豪zh_TW
dc.contributor.oralexamcommitteeChih-Ting Lin;Chao-Hsin Wu;Chien-Hao Liuen
dc.subject.keyword熱管理,二維材料,石墨烯,熱消散,電子封裝材料,填料散佈模型,zh_TW
dc.subject.keywordThermal management,2D material,Graphene,IC packaging material,Heat dissipation,Filler distribution model,en
dc.relation.page69-
dc.identifier.doi10.6342/NTU202404233-
dc.rights.note未授權-
dc.date.accepted2024-08-14-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電子工程學研究所-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
4.13 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved