請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95446| 標題: | 研究具拉伸應變之鍺錫合金於法布里-孛羅腔體與彎曲條件的應變效應 Study of Achieving Tensile Strained GeSn to Fabry Perot Cavity and strain effect of bending condition |
| 作者: | 陳子軒 Tzu-Hsuan Chen |
| 指導教授: | 張子璿 Tzu-Hsuan Chang |
| 關鍵字: | 鍺錫合金,薄膜轉移,直接能隙,紅外線檢測器,彎折基板, GeSn,Membrane Transfer,Direct Bandgap,Infrared Photodetector,Substrate Bending, |
| 出版年 : | 2024 |
| 學位: | 碩士 |
| 摘要: | 自從十九世紀時紅外光被發現後,隨著製程技術的卓越發展,紅外線光檢測器在當今社會上擁有著許多的應用,廣泛運用於夜視、溫度監測、遠距離通信、生物醫療成像領域。當技術越來越進步且應用需求的增加,世人對紅外光檢測器的性能需求也將會越高。
傳統的紅外光檢測器多採用三五族半導體,如 InGaAs、InSb等,這些材料因其優良的光電特性和靈敏度而被大量應用。但是,三五族材料的高成本、製造難度大以及與標準的矽基CMOS工藝兼容差等缺點壓抑了那些三五族材料在某些應用領域的推廣。因此,尋找新型材料成為了當前重要的研究方向。 這一些年以來鍺錫合金(GeSn)因其許多獨特的特性成為紅外線光檢測領域的熱門研究材料。鍺錫合金是一種IV族合金,相比於傳統的三五族半導體,擁有著低成本的特性、易於與現有矽相兼容等等優勢。更為重要的是,只要調控鍺與錫的比例,鍺錫合金的能帶結構可以被調節,以此就可以實現對各種不同紅外線波長範圍的靈敏檢測。這使的鍺錫合金展現出極高的應用,以作為紅外線光檢測。 在這篇碩論中,由於使用鍺錫合金作為使用紅外線偵測的材料時,需要製作特定的光學結構,需要使用到薄膜轉移技術,把鍺錫合金轉移到具備著高度反射性能基板上。另外,除了調整鍺與錫的比例以外,也可以把鍺錫合金轉移到易彎折的基板上,藉由彎曲基板,達成拉伸作用,亦可以做到調整能帶結構的作用。藉由彎曲基板,可以調整能帶結構,也可以調整不同紅外光的各種波長範圍的靈敏檢測,也有助於拓展穿戴式裝置的進步。 Since the discovery of infrared light in the 19th century, infrared photodetectors have played a crucial role in today's society, finding widespread applications in night vision, temperature monitoring, long-distance communication, and biomedical imaging. As technology advances and application demands increase, the performance equirements for infrared photodetectors have also become more stringent. Traditionally, infrared photodetectors have utilized III-V semiconductor materials, like InGaAs and InSb, which were widely used due to their excellent photoelectric performance and sensitivity. However, the high cost, manufacturing complexity, and poor compatibility with standard silicon-based CMOS processes of III-V materials limit their widespread application in certain fields. Therefore, finding new materials would become the key directions in nowadays research. In recent years, germanium-tin (GeSn) alloys became a hot research material in the field of infrared photodetectors due to their unique properties. GeSn alloys, being Group IV alloys, offer advantages over traditional III-V materials, including lower cost and better compatibility with existing silicon-based processes. More importantly, by adjusting the ratio of germanium to tin, the band structure of GeSn alloys can be tuned, enabling sensitive detection across different infrared wavelength ranges. This has demonstrated great application potential for GeSn alloys in the field of infrared photodetectors. In this thesis, the use of GeSn alloys as materials for infrared detectors necessitates the fabrication of specific optical structures, requiring the use of membrane transfer technology to transfer GeSn onto substrates with high reflective properties (such as gold). Additionally, beyond adjusting the germanium to tin ratio, GeSn can also be transferred to flexible substrates. By bending these substrates, a stretching effect can be achieved, which also allows for the tuning of the band structure. By bending the substrates, it is possible to adjust the band structure and achieve sensitive detection across different infrared wavelength ranges, which also aids in the development of wearable devices. |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95446 |
| DOI: | 10.6342/NTU202404060 |
| 全文授權: | 同意授權(限校園內公開) |
| 電子全文公開日期: | 2029-08-08 |
| 顯示於系所單位: | 電子工程學研究所 |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 4.41 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
