Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95446
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張子璿zh_TW
dc.contributor.advisorTzu-Hsuan Changen
dc.contributor.author陳子軒zh_TW
dc.contributor.authorTzu-Hsuan Chenen
dc.date.accessioned2024-09-09T16:11:58Z-
dc.date.available2024-09-10-
dc.date.copyright2024-09-09-
dc.date.issued2024-
dc.date.submitted2024-08-13-
dc.identifier.citation[1] S. Tsujino, H. Sigg, G. Mussler, D. Christina, and H. von Känel, "Processing light with new technology."
[2] S. Kondratenko et al., "Photovoltage spectroscopy of direct and indirect bandgaps of strained Ge1-xSnx thin films on a Ge/Si (001) substrate," Acta Materialia, vol. 171, pp. 40-47, 2019.
[3] S. Zaima, O. Nakatsuka, N. Taoka, M. Kurosawa, W. Takeuchi, and M. Sakashita, "Growth and applications of GeSn-related group-IV semiconductor materials," Science and technology of advanced materials, vol. 16, no. 4, p. 043502, 2015.
[4] T. D. Eales et al., "Ge1− xSnx alloys: Consequences of band mixing effects for the evolution of the band gap Γ-character with Sn concentration," Scientific reports, vol. 9, no. 1, p. 14077, 2019.
[5] O. Moutanabbir et al., "Monolithic infrared silicon photonics: the rise of (Si) GeSn semiconductors," Applied Physics Letters, vol. 118, no. 11, 2021.
[6] K. Lu Low, Y. Yang, G. Han, W. Fan, and Y.-C. Yeo, "Electronic band structure and effective mass parameters of Ge1-xSnx alloys," Journal of Applied Physics, vol. 112, no. 10, 2012.
[7] A. Rogalski, "Infrared detectors: status and trends," Progress in quantum electronics, vol. 27, no. 2-3, pp. 59-210, 2003.
[8] C. Wu, H. Fu, K. K. Qureshi, B.-O. Guan, and H. Y. Tam, "High-pressure and high-temperature characteristics of a Fabry–Perot interferometer based on photonic crystal fiber," Optics letters, vol. 36, no. 3, pp. 412-414, 2011.
[9] Z. Lin et al., "Extending the color of ultra-thin gold films to blue region via Fabry-Pérot-Cavity-Resonance-Enhanced reflection," Optik, vol. 178, pp. 992-998, 2019.
[10] Y. H. Jung et al., "High-performance green flexible electronics based on biodegradable cellulose nanofibril paper," Nature communications, vol. 6, no. 1, p. 7170, 2015.
[11] F. Xu et al., "Highly stretchable carbon nanotube transistors with ion gel gate dielectrics," Nano letters, vol. 14, no. 2, pp. 682-686, 2014.
[12] M. Richard-Lacroix, Y. Zhang, Z. Dong, and V. Deckert, "Mastering high resolution tip-enhanced Raman spectroscopy: towards a shift of perception," Chemical Society Reviews, vol. 46, no. 13, pp. 3922-3944, 2017.
[13] M. T. Gebrekidan, C. Knipfer, F. Stelzle, J. Popp, S. Will, and A. Braeuer, "A shifted‐excitation Raman difference spectroscopy (SERDS) evaluation strategy for the efficient isolation of Raman spectra from extreme fluorescence interference," Journal of Raman spectroscopy, vol. 47, no. 2, pp. 198-209, 2016.
[14] N. Everall, T. Hahn, P. Matousek, A. W. Parker, and M. Towrie, "Photon migration in Raman spectroscopy," Applied spectroscopy, vol. 58, no. 5, pp. 591-597, 2004.
[15] P. Rostron, S. Gaber, and D. Gaber, "Raman spectroscopy, review," laser, vol. 21, p. 24, 2016.
[16] J. Zi, H. Büscher, C. Falter, W. Ludwig, K. Zhang, and X. Xie, "Raman shifts in Si nanocrystals," Applied Physics Letters, vol. 69, no. 2, pp. 200-202, 1996.
[17] R. Chen et al., "Demonstration of a Ge/GeSn/Ge quantum-well microdisk resonator on silicon: enabling high-quality Ge (Sn) materials for micro-and nanophotonics," Nano letters, vol. 14, no. 1, pp. 37-43, 2014.
[18] A. Gassenq et al., "Raman spectral shift versus strain and composition in GeSn layers with 6%–15% Sn content," Applied Physics Letters, vol. 110, no. 11, 2017.
[19] Q. Zhang, Y. Liu, J. Yan, C. Zhang, Y. Hao, and G. Han, "Theoretical investigation of tensile strained GeSn waveguide with Si 3 N 4 liner stressor for mid-infrared detector and modulator applications," Optics Express, vol. 23, no. 6, pp. 7924-7932, 2015.
[20] M. N. Ghasemi Nejhad, C. Pan, and H. Feng, "Intrinsic strain modeling and residual stress analysis for thin-film processing of layered structures," J. Electron. Packag., vol. 125, no. 1, pp. 4-17, 2003.
[21] S. Hampshire, "Silicon nitride ceramics–review of structure, processing and properties," Journal of achievements in materials and manufacturing engineering, vol. 24, no. 1, pp. 43-50, 2007.
[22] M. Bocanegra-Bernal and B. Matovic, "Mechanical properties of silicon nitride-based ceramics and its use in structural applications at high temperatures," Materials Science and Engineering: A, vol. 527, no. 6, pp. 1314-1338, 2010.
[23] Z. Krstic and V. D. Krstic, "Silicon nitride: the engineering material of the future," Journal of Materials Science, vol. 47, pp. 535-552, 2012.
[24] S. Gangopadhyay, "Crystalline Silicon Nitride Films on Si (111): Growth Mechanism, Surface Structure and Chemistry down to Atomic Scale," in Multilayer Thin Films-Versatile Applications for Materials Engineering: IntechOpen, 2020.
[25] M. Gupta, V. Rathi, R. Thangaraj, O. Agnihotri, and K. Chari, "The preparation, properties and applications of silicon nitride thin films deposited by plasma-enhanced chemical vapor deposition," Thin Solid Films, vol. 204, no. 1, pp. 77-106, 1991.
[26] D. Daineka, P. Bulkin, G. Girard, J.-E. Bourée, and B. Drévillon, "High density plasma enhanced chemical vapor deposition of optical thin films," The European Physical Journal-Applied Physics, vol. 26, no. 1, pp. 3-9, 2004.
[27] C. Yang and J. Pham, "Characteristic study of silicon nitride films deposited by LPCVD and PECVD," Silicon, vol. 10, no. 6, pp. 2561-2567, 2018.
[28] N. Hegedüs, K. Balázsi, and C. Balázsi, "Silicon nitride and hydrogenated silicon nitride thin films: A review of fabrication methods and applications," Materials, vol. 14, no. 19, p. 5658, 2021.
[29] X. Hu et al., "Investigation of residual stress effect during the anodic bonding process with different bondable materials for wafer level packaging design," in 2016 IEEE 18th Electronics Packaging Technology Conference (EPTC), 2016: IEEE, pp. 325-330.
[30] P.-Y. Chen, W.-C. Wang, and Y.-T. Wu, "Experimental investigation of thin film stress by Stoney’s formula," Measurement, vol. 143, pp. 39-50, 2019.
[31] S. Huang and X. Zhang, "Extension of the Stoney formula for film–substrate systems with gradient stress for MEMS applications," Journal of Micromechanics and Microengineering, vol. 16, no. 2, p. 382, 2006.
[32] H. Mäckel and R. Lüdemann, "Detailed study of the composition of hydrogenated SiNx layers for high-quality silicon surface passivation," Journal of applied physics, vol. 92, no. 5, pp. 2602-2609, 2002.
[33] M. Martyniuk, J. Antoszewski, C. Musca, J. Dell, and L. Faraone, "Stress in low-temperature plasma enhanced chemical vapour deposited silicon nitride thin films," Smart Materials and Structures, vol. 15, no. 1, p. S29, 2005.
[34] J. Zhang, Z. Chen, Y. Hao, Z. Wen, Y. Jin, and Z. Wen, "PECVD SiO2/Si3N4 double layers electrets for application in MEMS power generator," Power MEMS, pp. 105-108, 2007.
[35] D. C. Schram, "Plasma processing and chemistry," Pure and applied chemistry, vol. 74, no. 3, pp. 369-380, 2002.
[36] D.-l. Li, X.-f. Feng, Z.-y. Wen, Z.-g. Shang, and Y. She, "Stress control of silicon nitride films deposited by plasma enhanced chemical vapor deposition," Optoelectronics Letters, vol. 12, no. 4, pp. 285-289, 2016.
[37] Z. Gan, C. Wang, and Z. Chen, "Material structure and mechanical properties of silicon nitride and silicon oxynitride thin films deposited by plasma enhanced chemical vapor deposition," Surfaces, vol. 1, no. 1, pp. 59-72, 2018.
[38] B.-J. Huang et al., "Electrically injected GeSn vertical-cavity surface emitters on silicon-on-insulator platforms," ACS Photonics, vol. 6, no. 8, pp. 1931-1938, 2019.
[39] L. Di Gaspare et al., "Epi-cleaning of Ge/GeSn heterostructures," Journal of applied physics, vol. 117, no. 4, 2015.
[40] S. An, H. Park, and M. Kim, "Recent advances in single crystal narrow band-gap semiconductor nanomembranes and their flexible optoelectronic device applications: Ge, GeSn, InGaAs, and 2D materials," Journal of Materials Chemistry C, vol. 11, no. 7, pp. 2430-2448, 2023.
[41] S. Gupta et al., "Highly Selective Dry Etching of Germanium over Germanium–Tin (Ge1–x Sn x): A Novel Route for Ge1–x Sn x Nanostructure Fabrication," Nano letters, vol. 13, no. 8, pp. 3783-3790, 2013.
[42] S. Wu et al., "Wafer-scale nanostructured black silicon with morphology engineering via advanced Sn-assisted dry etching for sensing and solar cell applications," Nanoscale, vol. 15, no. 10, pp. 4843-4851, 2023.
[43] J. Benedict, R. Anderson, S. Klepeis, and M. Chaker, "A procedure for cross sectioning specific semiconductor devices for both SEM and TEM analysis," MRS Online Proceedings Library (OPL), vol. 199, p. 189, 1990.
[44] S. Gupta, M. Dixit, K. Sharma, and N. Saxena, "Mechanical study of metallized polyethylene terephthalate (PET) films," Surface and Coatings Technology, vol. 204, no. 5, pp. 661-666, 2009.
[45] M. Hara, C. H. Park, and M. Akazaki, "Effects of Heat Treatment and Mechanical Stresses on the Dielectric Strength of Uniaxially Drawn Pet Film," IEEE transactions on electrical insulation, no. 4, pp. 273-280, 1984.
[46] M. K. Hassan and M. Cakmak, "Mechanisms of structural organizational processes as revealed by real time mechano optical behavior of PET film during sequential biaxial stretching," Polymer, vol. 55, no. 20, pp. 5245-5254, 2014.
[47] K.-S. Chen, A. A. Ayón, X. Zhang, and S. M. Spearing, "Effect of process parameters on the surface morphology and mechanical performance of silicon structures after deep reactive ion etching (DRIE)," Journal of Microelectromechanical Systems, vol. 11, no. 3, pp. 264-275, 2002.
[48] C. Choi, "3-D nanopatterning and nanofabrication: Using nano-scalloping effects in bosch deep reactive ion etching. AzoNano," Nanotechnology Thought Leaders Series, 2010.
[49] R. Legtenberg, H. Jansen, M. de Boer, and M. Elwenspoek, "Anisotropic reactive ion etching of silicon using SF 6/O 2/CHF 3 gas mixtures," Journal of the electrochemical society, vol. 142, no. 6, p. 2020, 1995.
[50] A. Campo, C. Cardinaud, and G. Turban, "Comparison of etching processes of silicon and germanium in SF6–O2 radio‐frequency plasma," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 13, no. 2, pp. 235-241, 1995.
[51] R. Cheng et al., "Relaxed and strained patterned germanium-tin structures: a Raman scattering study," ECS Journal of Solid State Science and Technology, vol. 2, no. 4, p. P138, 2013.
[52] Y.-C. Tai, P.-L. Yeh, S. An, H.-H. Cheng, M. Kim, and G.-E. Chang, "Strain-free GeSn nanomembranes enabled by transfer-printing techniques for advanced optoelectronic applications," Nanotechnology, vol. 31, no. 44, p. 445301, 2020.
[53] M. A. Haque and M. T. A. Saif, "A review of MEMS-based microscale and nanoscale tensile and bending testing," Experimental mechanics, vol. 43, pp. 248-255, 2003.
[54] A. Chin and T. Chang, "Multilayer reflectors by molecular‐beam epitaxy for resonance enhanced absorption in thin high‐speed detectors," Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena, vol. 8, no. 2, pp. 339-342, 1990.
[55] Z. Kong et al., "Growth and strain modulation of GeSn alloys for photonic and electronic applications," Nanomaterials, vol. 12, no. 6, p. 981, 2022.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95446-
dc.description.abstract自從十九世紀時紅外光被發現後,隨著製程技術的卓越發展,紅外線光檢測器在當今社會上擁有著許多的應用,廣泛運用於夜視、溫度監測、遠距離通信、生物醫療成像領域。當技術越來越進步且應用需求的增加,世人對紅外光檢測器的性能需求也將會越高。

傳統的紅外光檢測器多採用三五族半導體,如 InGaAs、InSb等,這些材料因其優良的光電特性和靈敏度而被大量應用。但是,三五族材料的高成本、製造難度大以及與標準的矽基CMOS工藝兼容差等缺點壓抑了那些三五族材料在某些應用領域的推廣。因此,尋找新型材料成為了當前重要的研究方向。

這一些年以來鍺錫合金(GeSn)因其許多獨特的特性成為紅外線光檢測領域的熱門研究材料。鍺錫合金是一種IV族合金,相比於傳統的三五族半導體,擁有著低成本的特性、易於與現有矽相兼容等等優勢。更為重要的是,只要調控鍺與錫的比例,鍺錫合金的能帶結構可以被調節,以此就可以實現對各種不同紅外線波長範圍的靈敏檢測。這使的鍺錫合金展現出極高的應用,以作為紅外線光檢測。

在這篇碩論中,由於使用鍺錫合金作為使用紅外線偵測的材料時,需要製作特定的光學結構,需要使用到薄膜轉移技術,把鍺錫合金轉移到具備著高度反射性能基板上。另外,除了調整鍺與錫的比例以外,也可以把鍺錫合金轉移到易彎折的基板上,藉由彎曲基板,達成拉伸作用,亦可以做到調整能帶結構的作用。藉由彎曲基板,可以調整能帶結構,也可以調整不同紅外光的各種波長範圍的靈敏檢測,也有助於拓展穿戴式裝置的進步。
zh_TW
dc.description.abstractSince the discovery of infrared light in the 19th century, infrared photodetectors have played a crucial role in today's society, finding widespread applications in night vision, temperature monitoring, long-distance communication, and biomedical imaging. As technology advances and application demands increase, the performance equirements for infrared photodetectors have also become more stringent.

Traditionally, infrared photodetectors have utilized III-V semiconductor materials, like InGaAs and InSb, which were widely used due to their excellent photoelectric performance and sensitivity. However, the high cost, manufacturing complexity, and poor compatibility with standard silicon-based CMOS processes of III-V materials limit their widespread application in certain fields. Therefore, finding new materials would become the key directions in nowadays research.

In recent years, germanium-tin (GeSn) alloys became a hot research material in the field of infrared photodetectors due to their unique properties. GeSn alloys, being Group IV alloys, offer advantages over traditional III-V materials, including lower cost and better compatibility with existing silicon-based processes. More importantly, by adjusting the ratio of germanium to tin, the band structure of GeSn alloys can be tuned, enabling sensitive detection across different infrared wavelength ranges. This has demonstrated great application potential for GeSn alloys in the field of infrared photodetectors.

In this thesis, the use of GeSn alloys as materials for infrared detectors necessitates the fabrication of specific optical structures, requiring the use of membrane transfer technology to transfer GeSn onto substrates with high reflective properties (such as gold). Additionally, beyond adjusting the germanium to tin ratio, GeSn can also be transferred to flexible substrates. By bending these substrates, a stretching effect can be achieved, which also allows for the tuning of the band structure. By bending the substrates, it is possible to adjust the band structure and achieve sensitive detection across different infrared wavelength ranges, which also aids in the development of wearable devices.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-09-09T16:11:58Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-09-09T16:11:58Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iii
Contents v
List of Figures viii
List of Tables xii
Chapter 1: Introduction 1
1.1 Group IV Semiconductors and GeSn 1
1.2 Mid Infrared photodetector and FP cavity 5
1.3 Applications of Membrane Transfer Technique 7
Chapter 2: Raman Spectra 8
2.1 Introduction of Raman 8
2.2 Stress and Strain analysis of Raman 9
2.3 GeSn and strain analysis of Raman 10
Chapter 3: Strained Nitride Test 13
3.1 Properties of Silicon Nitride 13
3.2 Difference between PECVD and LPCVD 14
3.3 Stress measurement of Applied Si3N4 on Si 16
3.4 Influence of parameters of PECVD Si3N4 18
3.4.1 Influence of ratio of silane to ammonia on Stress in PECVD Si3N4 19
3.4.2 Influence of Nitrogen Flow Rate on Stress in PECVD Si3N4 21
3.4.3 Influence of Power on Stress in PECVD Si3N4 23
3.4.4 Influence of Pressure on Stress in PECVD Si3N4 25
3.4.5 Influence of Deposition Temperature of stress in PECVD Si3N4 27
3.4.6 Influence of Thickness of Stress on PECVD Si3N4 27
3.5 Conclusion 28
Chapter 4: GeSn Membrane Transfer Process 28
4.1 Introduction 29
4.2 GeSn Membrane Transfer and FP cavity Process 29
4.2.1 Isolation for GeSn and Ge for releasing stress 31
4.2.2 Deposit Ti and Au as reflective layer 35
4.2.3 Thin down Process for removing most Silicon of sample 36
4.2.4 PET film preparation for sample 38
4.2.5 Membrane transfer to PET film 42
4.2.6 DRIE 44
4.2.7 Remove remaining Si and Ge 48
4.3 GeSn Raman Spectra Analysis 50
4.3.1 Influence of Isolation for GeSn 51
4.3.2 Influence of Deposition for GeSn 52
4.3.3 Influence of Removing Silicon and Germanium for GeSn 54
4.3.4 Influence of Bending GeSn 55
4.4 FTIR Analysis 58
Chapter 5: Conclusion and Future work 62
Reference 64
-
dc.language.isoen-
dc.subject鍺錫合金zh_TW
dc.subject彎折基板zh_TW
dc.subject紅外線檢測器zh_TW
dc.subject直接能隙zh_TW
dc.subject薄膜轉移zh_TW
dc.subjectMembrane Transferen
dc.subjectInfrared Photodetectoren
dc.subjectGeSnen
dc.subjectSubstrate Bendingen
dc.subjectDirect Bandgapen
dc.title研究具拉伸應變之鍺錫合金於法布里-孛羅腔體與彎曲條件的應變效應zh_TW
dc.titleStudy of Achieving Tensile Strained GeSn to Fabry Perot Cavity and strain effect of bending conditionen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee劉建豪;吳肇欣;林致廷zh_TW
dc.contributor.oralexamcommitteeChien-Hao Liu;Chao-Hsin Wu;Chih-Ting Linen
dc.subject.keyword鍺錫合金,薄膜轉移,直接能隙,紅外線檢測器,彎折基板,zh_TW
dc.subject.keywordGeSn,Membrane Transfer,Direct Bandgap,Infrared Photodetector,Substrate Bending,en
dc.relation.page68-
dc.identifier.doi10.6342/NTU202404060-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-14-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電子工程學研究所-
dc.date.embargo-lift2029-08-08-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
4.41 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved