Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9533Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 傅立成(Li-Chen Fu) | |
| dc.contributor.author | Yu-Chen Ho | en |
| dc.contributor.author | 何育誠 | zh_TW |
| dc.date.accessioned | 2021-05-20T20:27:17Z | - |
| dc.date.available | 2010-09-02 | |
| dc.date.available | 2021-05-20T20:27:17Z | - |
| dc.date.copyright | 2008-09-02 | |
| dc.date.issued | 2008 | |
| dc.date.submitted | 2008-08-18 | |
| dc.identifier.citation | [1] H. H. Bui, Venkatesh, S., West, G, 'Policy recognition in the abstract hidden Markov model,' Journal of Artificial Intelligence Research 17, pp. 451 - 499, 2002.
[2] H. H. Bui, 'A general model for online probabilistic plan recognition,' in International Joint Conferences on Artificial Intelligence, 2003, pp. 1309-1318. [3] T. V. Duong, T. V. Duong, H. H. Bui, D. Q. Phung, and S. A. V. S. Venkatesh, 'Activity recognition and abnormality detection with the switching hidden semi-Markov model,' in IEEE Computer Society Conference on Computer Vision and Pattern Recognition, (CVPR'05), 2005, pp. 838-845 vol. 1. [4] S. V. H. H. Bui, and G. West 'Layered dynamic probabilistic networks for spatio-temporal modelling,' Intelligent Data Analysis, vol. 3(5), pp. 339-361, 1999. [5] D. F. L. Liao, and H. Kautz., 'Learning and inferring transportation routines,' in Proceedings of the National Conference on Artificial Intelligence (AAAI), 2004. [6] D. J. Patterson, D. J. Patterson, D. Fox, H. Kautz, and M. A. P. M. Philipose, 'Fine-grained activity recognition by aggregating abstract object usage,' in Proceedings of Ninth IEEE International Symposium on Wearable Computers, 2005. , 2005, pp. 44-51. [7] D. Wilson, 'Simultaneous tracking & activity recognition (STAR) using many anonymous, binary sensors,' in Proceedings of The 3rd International Conference on Pervasive Computing (Pervasive 05), Munich, Germany, 2005. [8] N. T. Nguyen, N. T. Nguyen, D. Q. Phung, S. Venkatesh, and H. A. B. H. Bui, 'Learning and detecting activities from movement trajectories using the hierarchical hidden Markov model,' in IEEE Computer Society Conference on Computer Vision and Pattern Recognition, (CVPR'05), 2005, pp. 955-960 vol. 2. [9] J. Wu, J. Wu, A. Osuntogun, T. Choudhury, M. A. P. M. Philipose, and J. M. A. R. J. M. Rehg, 'A scalable approach to activity recognition based on object use,' in IEEE 11th International Conference on Computer Vision (ICCV), 2007, pp. 1-8. [10] P. William, P. Matthai, B. J. A., and H. A. Kautz, 'Learning large scale common sense models of everyday life,' in Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence, 2007, pp. 465-470. [11] M. Perkowitz, M. Philipose, D. J. Patterson, and K. P. Fishkin, 'Mining models of human activities from the web,' in Proceedings of the Thirteenth International World Wide Web Conference (WWW 2004), 2004, pp. 573-582. [12] T. X. a. S. Gong., 'Beyond tracking: modelling activity and understanding behaviour,' International Journal of Computer Vision (IJCV), vol. 67(1), pp. 21-51, 2006. [13] R. Hamid, R. Hamid, A. Johnson, S. Batta, A. A. B. A. Bobick, C. A. I. C. Isbell, and G. A. C. G. Coleman, 'Detection and explanation of anomalous activities: representing activities as bags of event n-grams,' in IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2005, pp. 1031-1038 vol. 1. [14] R. Hamid, R. Hamid, S. Maddi, A. Bobick, and I. A. E. I. Essa, 'Structure from statistics - unsupervised activity analysis using Suffix Trees,' in IEEE 11th International Conference on Computer Vision, 2007, pp. 1-8. [15] G. Shaogang and X. Tao, 'Recognition of group activities using dynamic probabilistic networks,' in Proceedings of the Ninth IEEE International Conference on Computer Vision, 2003, pp. 742-749 vol.2. [16] X. Wang, X. Ma, and E. Grimson, 'Unsupervised activity perception by Hierarchical Bayesian Models,' in IEEE Conference on Computer Vision and Pattern Recognition (CVPR '07), 2007, pp. 1-8. [17] H. Zhong, Visontai, M., Shi, J., and J. S. a. M. V. H. Zhong, 'Detecting unusual activity in video,' in IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'04). vol. 2 Washington, DC, 2004, pp. 819-826. [18] S. Deerwester, S. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman, 'Indexing by latent semantic analysis,' Journal of the American Society for Information Science (JASIS), vol. 41, pp. 391-407, 1990. [19] D. M. Blei, A. Y. Ng, and M. I. Jordan, 'Latent dirichlet allocation,' Journal of Machine Learning Research, pp. 3:993-1022, 2003. [20] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei, 'Hierarchical dirichlet process,' Journal of the American Statistical Association, 2006. [21] F. B. Peter, V. d. Peter, L. M. Robert, J. D. P. Vincent, and C. L. Jenifer, 'Class-based n-gram models of natural language,' Comput. Linguist., vol. 18, pp. 467-479, 1992. [22] N. Ravi, N. Dandekar, P. Mysore, and M. L. Littman, 'Activity recognition from accelerometer data,' American Association for Artificial Intelligence, 2005. [23] C. Stauffer and W. E. L. Grimson, 'Learning patterns of activity using real-time tracking,' IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, pp. 747-757, 2000. [24] J. Lester, T. Choudhury, N. Kern, G. Borriello, and B. Hannaford, 'A hybrid discriminative/generative approach for modeling human activities,' in Proceedings of the Nineteenth International Joint Conference on Artificial Intelligence, Edinburgh, Scotland, 2005. [25] G. Salton, A. Wong, and C. S. Yang, 'A vector space model for automatic indexing,' Commun. ACM, vol. 18, pp. 613-620, 1975. [26] A. Dempster, N. Laird, and D. Rubin, 'Maximum likelihood from incomplete data via the EM algorithm,' Journal of the Royal Statistical Society, vol. 39, pp. 1-38, 1977. [27] S. Jianqiang and G. D. Thomas, 'Active EM to reduce noise in activity recognition,' in Proceedings of the 12th international conference on Intelligent user interfaces Honolulu, Hawaii, USA: ACM, 2007. [28] A. C. David, G. Zoubin, and I. J. Michael, 'Active learning with statistical models,' Massachusetts Institute of Technology 1995. [29] M. Andrew and N. Kamal, 'Employing EM and Pool-Based Active Learning for Text Classification,' in Proceedings of the Fifteenth International Conference on Machine Learning: Morgan Kaufmann Publishers Inc., 1998. [30] M. Ion, M. Steven, and A. K. Craig, 'Active + semi-supervised learning = robust multi-view learning,' in Proceedings of the Nineteenth International Conference on Machine Learning: Morgan Kaufmann Publishers Inc., 2002. [31] S. Tong and D. Koller., 'Active learning for parameter estimation in bayesian networks,' NIPS, pp. 647-653, 2000. [32] K. Murphy, 'Dynamic Bayesian Networks: Representation, Inference and Learning,' in Computer Science Division. vol. Ph.D.: University of California, Berkeley, 2002. [33] O. Pourret, P. Naim, and B. Marcot, Bayesian Networks: A Practical Guide to Applications. Chichester, UK: Wiley, 2008. [34] Z. Ghahramani and M. Jordan, 'Factorial hidden Markov models,' Machine Learning, vol. 29, pp. 245–273, 1997. [35] L. Saul and M. Jordan., 'Boltzmann chains and hidden Markov models,' NIPS-7, 1995. [36] S. Fine, Y. Singer, and N. Tishby., 'The hierarchical hidden Markov model: analysis and applications,' Machine Learning, vol. 32, 1998. [37] M. N. Radford and E. H. Geoffrey, 'A view of the EM algorithm that justifies incremental, sparse, and other variants,' in Learning in graphical models: MIT Press, 1999, pp. 355-368. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9533 | - |
| dc.description.abstract | 本論文提出在智慧環境中學習及便是人類日常生活的問題,先前大部分的方法先收集人類行為的資料並學出其模型,然後再使用學得的模型來辨識人的行為,然而,人的行為習慣及環境的佈置可能會隨著時間而發生改變,造成行為的模式發生改變,這時舊有的辨識用的行為模型便過時了,使辨識率降低,必須要重新學習新的行為模型,但是重新收集學習用的行為資料並給予對應的行為標籤是件非常煩人且容易出錯的工作,在這樣的情況下,在更新行為模型時能降低人為的指導工作份量是件非常重要的事,本論文提出一個可以自我調整行為模型的行為辨識方法,它可以在動態的環境下同時辨識多種行為,並以較少的人為指導來跟著環境變動調整行為模型。 | zh_TW |
| dc.description.abstract | This thesis addresses the problem of learning and recognizing human daily activities in smart environment. Most approaches offline learn the activity model and recognize the activity in an online phase. However, the activity models can be outdated when the human behavior and environment deployment change. It is a tedious and error-prone job to recollect data for retraining the activity models. In such case, it is important to adapt the learnt activity models under one context to another context without too much supervision. In this thesis, we present a self-reconfigurable approach for activity recognition can reconfigure a previously learned activity model to infer multiple activities under a dynamic environment meanwhile requiring minimal human supervision for labeling training data. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T20:27:17Z (GMT). No. of bitstreams: 1 ntu-97-R95922026-1.pdf: 2381189 bytes, checksum: e57cc72f354a496888d88b388b489247 (MD5) Previous issue date: 2008 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vii LIST OF TABLES x Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Challenges of Activity Recognition 3 1.3 Objectives 4 1.4 Related Work 6 1.5 Thesis Organization 8 Chapter 2 Preliminaries 10 2.1 Problem Statement 10 2.2 System Overview 11 2.3 Dynamic Bayesian Networks (DBNs) 14 2.3.1 DBNs: Representation 15 2.3.2 Inference in DBNs 17 2.3.3 DBNs: Learning 19 2.4 Sufficient Statistics 20 2.5 Semi-supervised Learning 20 2.5.1 Expectation-Maximization (EM) algorithm 21 2.6 Active Learning 22 2.7 Online Learning 23 Chapter 3 Activity Recognition System in a Static Environment 24 3.1 Overview 24 3.2 Environment Sensors and Interaction Detectors 27 3.2.1 Sensor Deployment 27 3.2.2 Interaction Detectors 30 3.3 Activity Modeling 32 3.3.1 Feature Generation 36 3.3.2 Activity Model 38 3.4 Model Learning 41 3.4.1 Feature Selection 42 3.4.2 Parameter Estimation 43 3.4.3 Used Sufficient Statistics in Learning Procedure 44 3.5 Activity Recognition 44 Chapter 4 Activity Recognition System in a Dynamic Environment 46 4.1 Overview 46 4.2 Self-reconfiguring 50 4.3 Active Learning for Activity Label Requirement 53 Chapter 5 System Evaluation 55 5.1 Experiment Environment 55 5.2 Evaluation Description 58 5.3 Evaluation Metric 59 5.4 Experimental Result and Discussion 62 5.5 Fall Detection Application 67 Chapter 6 Conclusion 69 6.1 Summary 69 6.2 Future Work 70 6.2.1 Improving Environment Sensors 70 6.2.2 Reducing the Learning Effort 71 6.2.3 Improving the Self-reconfigurable Activity Recognition System 71 REFERENCE 73 | |
| dc.language.iso | en | |
| dc.title | 動態環境下以主動式學習加強的自行重構之行為辨識 | zh_TW |
| dc.title | Active Learning Assisted Self-reconfigurable Activity Recognition in Dynamic Environment | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 96-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 朱浩華(Hao-Hua Chu),馮明惠,溫琇玲,馮燕(JOYCE YEN FENG) | |
| dc.subject.keyword | 行為辨識,機率推論,動態貝氏網路,主動式學習, | zh_TW |
| dc.subject.keyword | Activity Recognition,Probabilistic Reasoning,Dynamic Bayesian Network,Active Learning, | en |
| dc.relation.page | 75 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2008-08-18 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| Appears in Collections: | 資訊工程學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-97-1.pdf | 2.33 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
