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ABSTRACT

This thesis addresses the problem of learning and recognizing human daily
activities in smart environment. Most approaches offline learn the activity model and
recognize the activity in an online phase. However, the activity models can be outdated
when the human behavior and environment deployment change. It is a tedious and
error-prone job to recollect data for retraining the activity models. In such case, it is
important to adapt the learnt activity models under one context to another context
without too much supervision. In this thesis, we present a self-reconfigurable approach
for activity recognition can reconfigure a previously learned activity model to infer
multiple activities under a dynamic environme.nt meanwhile requiring minimal human

supervision for labeling training data.
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Chapter 1

Chapter 1

Introduction

1.1 Motivation

As the advancement of computer tech‘nplogy brings computer into human daily life,

N

developing various context-aware applicat“i.f;)--hs' IS agkey. issue to improve the quality of
life.
® Health Care

As the aging of population and the lacking of manpower, it is more and more
important to make elderly people be able to live independently. The system will firstly
monitor and gather the statistics of human daily behavior. Then, it will use the
information to give health promotions or to notify elderly people when they forget to
perform routine activities of daily living.
® Children Care

There are more and more double-income families, and the parents are suffering
from giving consideration to both work and children. The system can monitor the
children’s activities, and it will launch a warning immediately, when the children do

dangerous or inappropriate activities (referring to their ages). Moreover, it can record
1



Chapter 1

the children’s activities and report the information to their parents.
® Security and Surveillance

The system can build models of users’ behavior over time and detect unusual
events. Moreover, the system can differentiate users’ identity by matching the behavior
models.

(1.1)
® Home Automation

In order to make inhabitants feel more comfortable, the system will predict users’
activities and provide adequate services automatically (e.g. switching on a light when a
resident is studying and the environment is. dim).
® Human-computer Interface .

The smart environment systems /ave te-interact:with users. Real time activity
recognition can help the system to prese.nf.}iif':w"formation to the users at the right time, and
recognize user input. ‘ |

Recognizing human activities. is-a .key bart to facilitate the context-aware
applications. In general, an activity is a sequence of interactions between residents and
objects in the environment. Sensors are deployed in the environment to sense these
interactions such that the activity models can be learned by the activity recognition
system. The activity models, which represent the relationship between interactions and
activities, are further used to infer residents’ activities. In order to associate semantic
meaning with activities, we have to manually label the training data from sensor during
the learning stage. It is a tedious, interruptive and error-prone job for end users to label
the training data. Since we can not predefine the users’ environment, the system can not
be learned in advance. Instead, it needs to be learned under the users’ situation. Even

worse, the environment is usually dynamic in nature (e.g. adding or removing some
2



Chapter 1

objects, using objects with different purposes, etc.), which means that the relationship
between interactions and activities may change with time. In this condition, the activity
models need to be updated. In this thesis, we want to minimize the labeling effort from

the end users when the activity models need to be updated.

1.2 Challenges of Activity Recognition

To recognize activities, the activity models that capture the structure of activities
must be developed. However, the high variations in both human actions and the
environment make the structure of activities hard to predefine. There are many human
behavior and environment attributes that present-the challenges for activity recognition:
® Multiple residents |

When there are multiple residents m_the environment, the complexity of data
association makes it hard to track every res{aent at the same time.
® Multitasking

The resident often performs multiple activities simultaneously while some of them
only engage little attention.
® Periodic variations

Human behavior affects how they perform activities, and the behavior varies
periodically (days, weeks, months, and even seasons). For example, a resident may
wake up early on weekdays and late at the weekend.
® Time scale

Humans perform activities in a very wide range of time scale, and it may vary with
many reasons. It is impossible to know and consider all reasons.

® Incomplete activity
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One activities may be interrupted by another that has caught resident’s attention,
and it is hard to know whether he will come back to finish the original one.
® Environment variations

The development of the environment also affects the residents’ behavior. The high
variations of environment make humans have many ways to perform activities, and we
can not know every kind of variation in advance.
® Representation power and complexity

Different types of activities have different complexity. So many variables may
affect how an activity will be performed, such as sequential order, time, location, human
habit, etc. As we consider more variables, the representation ability of the activity
recognition system is higher, but_the compiexity 1S also higher and causes more
problems. Because we can not now'the users’ situation. in advance, the trade-off between

representation power and complexity is veﬁffhard to decide.
1.3 Objectives

The main goal of the activity recognition system in this thesis is: “On-line
recognizing and recording daily activities in the home setting.” To make the system
have the capability to recognize activities, we need to build activity models that
represent knowledge about the environment and the relationships between the
environment and human activities first. In addition, the activity models can be outdated
when the human behavior and environment deployment a change. In such case, it is
important to adjust the learnt activity models under one context to fit the new context
without too much supervision. We propose an activity recognition system which reaches

the following objectives:
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® To build a flexible activity model

Our system will gather two kinds of data: environment sensor data and activity
labels. We use these data to build models for the relationships between interactions and
activities. Our system can recognize activities based on the activity model. In addition,
the activity model needs to have high flexibility so that it can easily be updated.
® To on-line recognize activities in the environment

Some context-aware applications, such as home automation, security, and
human-computer interface, need real-time activity recognition. Thus, our system must
on-line recognize activities and provide the information to those applications.
® To self-reconfigure the activity model

In a real smart home, the environment.is dynamic in nature. Deployment of various

devices may change over time. These changes we categorized into wto groups:

1. Changes of sensor deployménfl;iifrhis will directly affect the measurement
space from sensors. For exampleféfter addinQ or removing some sensors, the
activity recognition system should propérly respond to such a change so that
the previously learned activity model can be adapted and then be applied to
the new environment (, which is similar to but not totally the same as the old
one).

2. Changes of object deployment: This affects users’ interactions with objects;
namely, the relationship between sensor measurements from the objects and
human activities may change. For example, after the contents of a cabinet are
changed, and then opening the same cabinet does not necessarily mean the
same purpose any longer.

In a dynamic environment, an activity model needs to be retrained each time when any

deployment changes. It becomes important for the system to keep as much knowledge
5



Chapter 1

from the old activity model as possible in response to the deployment change so that the
activity model can automatically adapt (hereafter called self-reconfigurable) to the
change. In addition, collecting training data and labeling them is a tedious and
error-prone job. This motivates us to minimize the number of labeled instances for
retraining.
® To interact with residents actively for improving the system performance

In order to further improve the performance of self-reconfiguring, the system
selects training data which are recognized with low confidence and actively request

correct labels from users. Meanwhile, it can reduce the overall retraining effort.

1.4 Related Work_

From our survey of prior approaché%@:_f_qr activity recognition, we roughly divide
them into two main categories. In the first éategory [1-8], they predefined what activity
classes they want to recognize, ande deéigned the activity models to capture the temporal
characteristics of activity from their prior knowledge of the environment and activity
definition. Most of previous approaches in this category were fundamentally
grammar-driven (see e.g. [1, 5, 6, 9] and the references therein). They explicitly
modeled activity structures followed by learning model parameters from training data,
or by mining from the Web or commonsense databases [10, 11]. However, the activity
structures were generally not known in advance (although [10, 11] automatically mining
activity structures from the Web, but the mined models were for general purpose, and
may not suit to all users’ situations), because we often cannot know the situation of the
environment beforehand, which makes it unlikely to design a generalized structure for
all environments. Therefore, it is more desirable to discover the activity structures from

6
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training data, not statically defined in advance. Moreover, if the environment changes, it
Is necessary for users to adapt to the change by re-labeling the data for training the
models. That is, each time any change in users’ behaviors or the environment, users
need to label new data for retraining the models. However, the change may exceed
developers’ prior expectations; for example, users may perform an activity in different
ways from time to time, which will cause bad performances of the static model.

In the second category[12-17], they automatically extracted activity structure from
training data by computing the local event statistics rather than by pre-defined (see e.g.
[16, 17] using Latent Semantic Analysis [18-20], [13, 14] using n-grams [21], and
[22-24]using Vector Space Model [25]). Because the resultant activity categories were
automatically mined from the data, these approéches did not know or may be not able to
label resultant activities with their corresponding semantic meaning. The representation
power of the feature spaces was Iimitea B%t’he ability to capture the characteristics of
activity structures only up to some fixed (gtr'bss-graineo.l) resolution. Furthermore, since
the representation power of the feature. is tHe order over event statistics, the
computational complexity would grow exponentially. Moreover, these approaches
entailed a unique feature space that computed from training data (not easy to change);
when the environment changes, the original feature space may not be appropriate for the
new environment; therefore, it needed to reconstruct a new feature space completely.

In order to address the challenges of the high variation of activity structures and
dynamic environment, we proposed an activity recognition approach that can be flexible
to adapt to different contexts. Our approach first generates various features with
different representation power. It will learn the corresponding meaning (activity) of the
each feature in learning stage and select features with high discriminative power that

further used in recognition stage. All kinds of features will be stored for training and
7
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dynamically used for recognition after training, thus they can be flexible to adapt to
different conditions. When the environment changes, we assume that the change
happens locally, not entirely covering the whole environment, therefor, we can apply
Expectation-Maximization (EM) [26] strategy to self-reconfigure the activity model. In
order to further improve the performance of self-reconfiguration from the EM strategy,
the system takes advantages of active learning [27-31] to select potentially good
training data for querying correct labels from users, thus reducing the overall retraining
effort. Finally, to sum up, this self reconfigurable approach for activity recognition can
reconfigure a previously learned activity model to infer multiple activities from multiple
residents under a dynamic environment meanwhile requiring minimal human

supervision for labeling training data.
1.5 Thesis Organization::

This thesis consists of six cﬁéptérs. The rest'of this thesis is organized as follow:
Chapter 2 presents the problem statement, system overview, and background knowledge
of this thesis, including Dynamic Bayesian Networks (DBNs), semi-supervised learning,
active learning, and incremental learning.

Chapter 3 explains how and why the components of the activity recognition system
are design and implemented.

Chapter 4 analyzes how the environment dynamics affect the activity recognition
system, and shows how the system self-reconfigure with less supervision.

In Chapter 5, the proposed activity recognition system is actually experimented
and evaluated in a real home environment.

Finally, Chapter 6 summarizes conclusions of this work, and offers some

8
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suggestions for improving the current system in the future.




Chapter 2

Chapter 2

Preliminaries

2.1 Problem Statement

In a dynamic environment ssuch as _homés and offices, there can be multiple

N

activities occurring simultaneously.=The problem of recognizing multiple activities can
be formulated as estimating P(4 | z,, M “)),, which denotes the probability distribution
of activity vector 4, attime ¢ given.the sensor observations z,, from time / to time ¢,
and the current activity model M™. To be more specific, 4, is an activity vector of N
activities that we want to recognize and is defined as 4, ={4', 4’,.., 4"}, z, arethe
measurements collected so far and can be expressed as z,, ={z,z,,..,z,} Where
z, ={z"™,z,..,z "} is the measurements of sensors at time ¢, and the number of

sensors E(z) will vary with time due to deployment change. M%) is indexed with &
(which is the times of the system reconfiguring) and models the relationship between
sensor measurements and activities. It can be updated from old model A “™ and the
previously collected training data set D).

10
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Fig. 2-1 System overview forthe proposéd self-reconfigurable activity recognition

Activity model M ® needs to be reconfigured as soon as possible in response to
any change of deployment. One of our goals is to minimize the labeling effort from end
users. Each time the activity model M ® is to be reconfigured, we want to select the
instances that can maximally reduce the expected error rate from the training data set D

to query the users about their corresponding labels.

2.2 System Overview

As show in Fig. 2-1, the purposed activity recognition system has three main

components, including sensing, model learning, and recognition. In the sensing

11
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component, sensors are installed on objects to sense the status of the objects. Sensor are
connected to a circuit board, which will preprocess the raw data into interactions by
interaction detectors (which are defined by the designer of the sensors) and then
wirelessly send the interaction information to the recognition system. An interaction is a
description about how the object is used; it is the basic element of an activity. The
recognition system collects the interactions from sensors around the environment and
then finds the relationships between interactions by feature generators. A feature is a
description about how multiple interactions are triggered.

In the model learning component, the recognition system correlates the observed
features and activity labels by learning the activity model from training data. The
training data collector continuously stores tHe observed features and then off-line
requests the activity labels fromithe users. The-model learner processes the training data
into sufficient statistics (which are thé bé"'élc elements used to construct the activity
model) and then stores them instead, of eﬁtire traininQ data into the database. After
processing the training data, the model Iearner.dynamically constructs the activity
model from the sufficient statistics in the database.

Finally, the recognition component infers on-going activities from current observed
features using the learned activity model and outputs the estimated belief of activities to
further activity-aware applications.

As show in Fig. 2-1, there are two types of causes that force the recognition system
to update its knowledge about activity: environment changes and system upgrading.
Environment changes will change the measurement space or affect the meaning of
sensor measurement. System upgrading can enhance the recognition system ability to
capture more complex characteristics of activities. It includes defining new types of

interactions and adding features with higher representation power to capture more
12
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complex relationships between interactions.

All those causes described above will increase the feature space or change the
meaning of the features, and thus the recognition system need to re-correlate the
observed features and activity labels by retraining the activity model from new collected
training data. As the red line in Fig. 2-1 indicates, the recognition system feeds the
output to the training data collector for further self-reconfiguring the activity model.
The model learner will self-reconfigure the activity model by fusing the new training
data and the old sufficient statistics in the database. In addition, users can correct the
training data for improving recognition performance. The recognition system will
actively request the activity labels of the training data instances which the system hard
to predict the activity labels. By doing this, wé can improve system performance with
less supervision.

The system self-reconfigures. the acﬁf/rty model every fixed period or after an
intentional trigger. The procedure_fo_f the seli‘:-'-reconfigure.ltion process is as follow:

1. Initially, there is an activity model A ., which is initialized by the system or

learned from a pilot training set under a given (and static) environment.

2. Ineachtime period k>1:

I. The system online recognizes activities using the activity model A ®
and outputs the results to the data collector and other applications.

ii. The training data set DY in the training data collector contains
observed features and corresponding activity belief collected during this
time period %, and the users can correct them from the active query if
necessary.

iii. At the end of this time period £, the system will reconfigure the activity

13
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model M to a new one M*™® using training data D* . The data

collection pool will be reset to empty, and & increases by one.

2.3 Dynamic Bayesian Networks (DBNSs)

Sequential data analysis arises in many areas of science and engineering. For
example, in robotics, one may be interested in estimating the location of the robot from
sequential sensor measurements; in speech recognition, one may be interested in
recognizing words from sequential audio input. In this thesis, we are interested in
knowing what people are doing in the environment from sequential sensor
measurements.

Dynamic Bayesian networks (DBNs) [32]"are approaches to analyze sequential
data, which extends the Bayesian netwdrkiE_EB_N) [33] to handle time series by modeling
sequences of variables. DBNSs assume| that %here is someé underlying hidden state of the
world that generates the observatiro.ns, énd the hidden state evolves in time. In this thesis,
the hidden states are activities we want to estimate, and observations are sensor
measurements. In online analysis, where the data arrives in real-time, one common task

Is to estimate the current hidden states X, , given all the observations up to the present
time, denoted as z,, ={z,,z,,...,z,}. More precisely, the goal is to compute P(X, |z,),

which is referred to as belief state.
In the following subsections, we will discuss how to represent DBNs, how to use
them to update the belief state and perform other related inference problems, and how to

learn such models from data.

14
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Fig. 2-2 An example of a DBN with first order Markov assumption

2.3.1 DBNSs: Representation

A DBN models probability distributions over semi-infinite collections of random

variable, V,,V,,---, where V,={U,, X,,Z} are input, hidden and output variables at
time ¢ of a dynamic system. ADBN is defined as;{B,, B}, where B, isa BN which

defines the prior P(V}), and B/ is a"'gv_\_/o-sli(_:é temporal Bayes net which defines the

e
=

temporal dependencies P(V,,|V,) by a dilije_bted_acyclic graph (DAG) as follows:
£ N B L) .
PV, ) =1} shparents(V?.,)) (2.1)
j=1

where V¥ is the ith node at time #, and parents(V') are the parents of V' in the

graph. The edges in the graph represent dependencies; and there are two kinds of
dependencies, namely, within a time slice and across the time slice, each of them
associated with a conditional probability distribution (CPD). We assume the parameters
of the CPDs are time-invariant, and thus a DBN can be defined by three types of
parameters, initial probabilities, transition probabilities (dependencies across the time
slice), and conditional probabilities within a time slice. The joint distribution of a DBN

with length 7"and with N random variable in each time slice is:

PO =TTT 1P, | parenss(71) 2.2)

=1 =l
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Fig. 2-2 is an example of a DBN with first order Markov assumption (which only
dependency is only on the last time slice). The parameters of this DBN are initial

probability P(X,), control probability P(X,|U,), observation probability P(Z,|X,),
and transition probability P(X,,,|X,). If we use this DBN to localize the location of a

robot, U

t

is the control input at time ¢, X

t

is the location of the robot at time ¢, and

Z_is the sensor measurement of the robot at time z. The joint distribution of the hidden

t

random variables given control input and sensor measurements is:

P(X,) = PX)P(Z, | X[ [ POX, | X0 U)P(Z, | X)) (2.3)

=2

Hidden Markov models (HMMs)yis'the basie type of DBNs. We can design various
types of DBNs by adding more random variablés or dependencies to the DBN to model
more complex dynamic system. For example; in activity recognition; we may consider
higher order of the dependencies, or join."[:!;éstimate location and activity [7], or use
multiple sensors [6]. There are. many types, ofi DBNs which have been proposed for
various purposes. Factorial HMMs [34] jointly-estimate more then one hidden variables
by assuming they are independent (for reducing the computational complexity).
Coupled HMMs [35] model the binary interactions between hidden variables.
Hierarchical HMMs [36] model domains with hierarchical structure and/or

dependencies at multiple time scales. Variable-duration (semi-Markov) HMMs [3]

model the duration as other arbitrary distribution rather than exponential one.
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Fig. 2-3 Four main kinds of inference in DBNs. The slash region is the interval we

have data, 7 is the current time_instant, 7' is the'sequence length, and the arrow is the

time step we want to estimate.

N

2.3.2 Inference in DBNs

As summarized in Fig. 2-3, there are four main kinds of inference problem:
® Filtering

This is the most common inference problem in online analysis. Given the
observations collected so far, we want to estimate current belief state of the hidden
variables, using Bayes’ filter:

P(X,|z,)oc P(z, | X,, 2, ,)P(X, | z,,,)
= P(Zt |X1)ZP(X1 |xt—1)P(xt—l | Zl:t—l)

X1

(2.4)

There are two assumptions (Makrov assumptions); replacing P(z,|X,,z,,) by

17
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P(z,| X,) by assuming current observations only depend on current hidden variable;
and decomposing P(X, |z, ,) by assuming current hidden variable only depend on

pervious one (order one Markov assumption). The filtering task can be decomposed into

two steps of recursive computation: prediction, which computes P(X, |z, ,), and
update, which computes P(X, |z,) .
® Prediction

Prediction is to predict the future state, i.e. compute P(X,,,|z,),where h>0 is
how far we want to look-ahead. We also can predict the future observations by

marginalizing out hidden variable X, , :

P(Zt+h =z | Zl_'t) - Z.P(ZH-h =Z l.XHh = X)P(Xt+h =X | Zl:z) (25)

® Smoothing .
Smoothing is to estimate.the state of‘_ln the "past-given all the observations, i.e.

compute P(X,|z,) forall 1</< T

® Viterbi decoding

Viterbi decoding is to compute the “most probable explanation”, i.e. to compute

the most likely sequence of hidden states given observations collected so far:

x;t = arg max P(xlit | Zl:l‘) (2'6)

By distributive law of multiplication and dynamic programming, we can compute the
Viterbi decoding using forward pass filtering (replace sum with max):

a,(j)=P(z, | X, = jymax P(X, = j| X,y =i)a,, (i) (2.7)

where

a,(j)=max P(X,, , =x,,, X, =jlz,) (2.8)

X1
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In activity recognition, these four kinds of inference mechanisms have their
corresponding meaning and applications. Filtering means online tracking human’s
current activity from sensor measurements; prediction means to predict human activity,
which can be used for automatically providing services; smoothing is important for
learning; Viterbi decoding is used to offline recognize human activity, and the output

can be used to gather the statistics of human activity.

2.3.3 DBNs: Learning

A DBN usually has some free parameters &, which are used to define initial

probability P(X,), transition probability P(X;|.X,,), and observation probability
P(Z,| X,). Learning is to estimate these parameters from training data. Suppose that we
have training data D:{D(”,D(z),...','DE%Q.}_., where. DY ={x_,,z,,} and all

]

sequences are iid, then maximum likelihood estimation (MLE) is to find parameters that

maximize the likelihood to observe.the training data;

0,,. =argmax P(D|8) = argmax log P(D | ) (2.9)
4 4
where the log likelihood of the training data is:
K K
log P(D|6) =log [ [ P(D®|6) = log P(D™ | 6) (2.10)
k=1 k=1

Another variation is maximum a posteriori (MAP) which includes a prior on the

parameters:

0,,,» =argmaxlog P(D | &) +log P(0) (2.11)
1

This may be useful when the number of free parameters is much greater than the size of

the training data set. The prior term acts like a regularization term to prevent
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over-fitting.
Those described above is the case with supervised learning. If the training data set

does not contain values of hidden variable X', then it is unsupervised learning case; if

the training data D™ arrives with time rather than altogether, it is on-line learning
case. In the following sections, we will describe more in detail about various learning

problems.

2.4 Sufficient Statistics

In the model learning problems, we want to estimate the free parameters of the
model from training data set by a criterion such-as MILE. The parameter estimation can
be derived from some statistics of the training“data; A statistic is a well-behaved
function of the data, which is what acfué}}y._ u'sed in: calculations or inferences, rather
than the full data set; for example, the sa?h'ple mean, the sample median, the sample
variance, etc. A statistic is suffici;\ﬁt if it.Is j_ust as Informative as the full data. Once we
have known the sufficient statistic, nothing else, not even the original data, it can tell us
anything more about the parameters. This means in parameter estimation, we can only
store the sufficient statistics rather than whole training data set. For example, if we use a
binomial distribution to model the flipping of a coin, for estimating the parameters of

the binomial distribution, we only need to know the total counts of heads and tails,

rather than the whole sequence of flipping.

2.5 Semi-supervised Learning

In here, we consider the MLE case as the learning goal, which is finding parameter
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values that maximize likelihood of the training data. Semi-supervised learning problem
Is that the training data set consists of labeled and unlabeled samples (or called partially
observed, means values of some random variables are missing). This learning problem
is useful in the case where getting label of the training sample is expensive (such as in
activity recognition, requesting users’ current activity is very annoying).

In the partially observed case, the log-likelihood of the training data is:

L(D|6) = ilog P(D™ |0)

k=1

- (2.12)
=>log> P(H =h,V =D"|6)
k=1 h

where we need to sum up the probability. of all kinds of assignments of the hidden

variable H, and ¥ = D™ means the values-of visible nodes are specified by D®.

Because the summation of hidden variable_s makes 'this equation unable to be

L

decomposed into a sum of local_terms:. In the foIIowmg, we will introduce the

expectation-maximization (EM) algorithm to find! the<local maximum of the likelihood.
2.5.1 Expectation-Maximization (EM) algorithm

The basic idea of EM algorithm is to apply Jensen’s inequality to get a lower
bound on the log-likelihood of the training data, and then to iteratively maximize this

lower bound:

L(D|6) = ZlogZP(H h, D" | 9)

K Do P(h,D™ | 6)
Z'ng q(h| D )—(th(k)) 019
7 oy P, DY [0) |
> Zh:q(th )IOQ—q(th("))

Mw M~ T

2_a(h| D) log P(h, D | ) —iZq(h | D®)log (k| DY)

k=1 h

=~
Il

1
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where g is a function such that » g(2|D®)=1 and 0<q(h|D™)<1. Maximizing
h

the lower bound with respect to ¢ gives:

q(h| D®Y = P(h| D™, 6) (2.14)
This is called E (Expectation) step, which means calculating the expectation value of the
hidden variable given observation and model parameters; and this makes the bound
tight. Maximizing the lower bound with respect to the free parameters & is equivalent

to maximizing the expected complete-data log-likelihood:

K

> > q(h| DV)log P(h, D" | 0) (2.15)

k=1 h
This is called M (Maximization) step. In"this step, the free parameters are calculated
from expected sufficient statistics (theaalues of hidden variables are expectation value).
The whole EM algorithm is iteratively caléulating the E-step and M-step until the
log-likelihood of the training data converé%(;j.to atlocal maximum. Because the initial

values of the free parameters.Wwill greatly. influence the convergence, we can try

different initial values of the free parameters to-find better local maximum.

2.6 Active Learning

In many machine learning applications, the most time-consuming and costly task is
the collection of a sufficiently large training data set. Active learning [28, 31] is a
learning mechanism to reduce the requirement of large number of training samples by
actively selecting potentially good samples from a pool under request. In here,
“potentially good” means it can reduce the most the expected error of the model after
training. Most of active learning approaches determine a training sample is good or not

by calculating the hardness to classify the sample, such as normalized entropy of the
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predicted label:

—> P(X|z)log B(X |z)

H(z)=—% g N ) (2.16)

where z is a piece of unlabeled data, P(X|z) is the distribution of the

corresponding predicted label which is calculated by a model we want to train, and

N(X) is number of possible states of the label X .

In this thesis, we apply active learning to semi-supervised learning, which selects
good training samples from the unlabeled data pool to request the label, thus reducing

the labeling effort from the users.

2.7 Online Learning

In many real applications; the trai.ni.f;;?g:";"data D={D® D@ .. D¥1} are received
with time, not received totally. at-once. Orf-iine Iearniﬁg Is a learning mechanism that
incrementally learns the model as the-new traiﬁing data are received. In here, we
consider the on-line learning in a semi-supervised learning case. In this case, the EM
algorithm computing the expected sufficient statistics (ESS) needed for the EM update
involve summing over all training cases. [37] modified the EM algorithm that updates
the parameters per little batch of the training data D" (called on-line or incremental
EM). In this thesis, because the training data are received continuously, stop less, we
modify the incremental EM to prevent the training data set gets too large that makes the

learning procedure very long.
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Chapter 3
Activity Recognition System

INn a Static Environment

In this chapter, we will detail' how the proposed'activity recognition system works

-

in a static environment, includingyhow éfq\d'why the_components are designed and
implemented. In a static environment; the recognition'system has to learn only once the
environment has been completely setup..In the next chapter, we will describe how the

proposed recognition system deals with the environment changes.

3.1 Overview

The design of the proposed activity recognition system considers the following two
objectives:
® Easy to install

Users may not have clues about how much information in the system they can
access, and the building blocks for the system may not be cost-effective enough to

manufacture, deploy, and maintain. We hope that the system can be easily installed to
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users’ existing environment and do not affect the users too much, thus making the
system widely acceptable to the public.
® Configurable to different environment settings

Because we can not know the users’ environment in advance, the recognition
system needs to have the ability to configure itself to various situations flexibly.

Fig. 3-1 shows the overview of the proposed activity recognition system for a static
environment (does not include the red dotted lines and the indistinct component). In
order to reach the objectives described above, the proposed recognition system contains
three major components:

1. The sensing component: The easily installed environment sensors are widely

Activity
' Models v
Feature H Model p I_ Act|V|j[y
| Learner 1 Recognizer
| 1
Feature | | Belief of
Generators | | Activity Vector
A
Interaction fik | = — —
| Training Data L » Syfficient ||
Interaction | Statistics - ||
Detectors Training | {
4 . Data MEEEEl e
Raw Data Collector Output
I t
Sensing Learning Recognition

User

Fig. 3-1 System overview of activity recognition system for static environment (does

not include the red dotted lines and the limpid part)
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deployed in the environment for collecting information about how the objects
are used in the environment.

2. The model learning component: The flexible and expansible activity
modeling strategy makes the system can adapt to different situation with less
human supervision.

3. The recognition component: The efficient on-line activity recognition
algorithm can be executed to estimate users’ on-going activities.

The sensing part includes multi-modal environment sensors that are deployed
around the environment to sense the status of the objects in the environment and
interaction detectors can detect the patterns of state change of the sensors. The feature
generators capture the relationships.among inté‘ractions. The model learning part learns
the correlations between the ‘observed- features and -activity labels from collected
training data. The recognition” part infe&';’dn-going activities from current observed
features using the learned activity-model an-:j'- outputs thé estimated belief of activities to
further activity-aware applications.

During the learning stage, the system collects a batch of observed features
calculated from the sensor measurements, and then it off-line requests the users to give
the activity labels. The model learner creates models of activities based on the
relationship between features and activity labels. In the recognition stage, the system
estimates the belief of activity status from observed features and learned activity models.
The following sections will explain the components of the recognition system in more

detail.
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3.2 Environment Sensors and Interaction

Detectors

We define activities as sequences of interactions between inhabitants and objects in
the environment where an interaction is a description of how the object is used and is a
basic component of an activity. We deploy various types of sensors around the
environment to sense the status of the objects. Sensors are mounted on the objects and
connected to a circuit board (hereafter called Taroko) which can preprocess the

measurement data and send the results wirelessly to a remote system.

3.2.1 Sensor Deployment

e

The goal of sensor system is to desighéu?i’téble Sensors for different types of objects,
to deploy a sufficient number of.sensors irithe environment, to left unattended, and to
collect synchronized data. In order to. achieve this goal, the sensor needs to have the
following characteristics:

1. Itis low-cost so that we can afford to deploy a sufficient number of sensors in
the environment.

2. In can send the measurement data wirelessly so that it can be deployed
everywhere.

3. Itssize is small so that it can be installed and hidden easily.

4. It has low power consumption so that it can be powered by a small battery and

left unattended for a long period.

5. It has high reliability.
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6. Its module can be replaced by various types of sensors so that it is easily to

customize.

Fig. 3-2 shows the circuit board of a Taroko and how various types of sensors
connect to it. The board can connect at most eight sensors and is powered through a
USB (Universal Serial Bus) interface (The USB can connect to a battery or a power
regulator). The board includes a microprocessor (along with a programmable flash
memory) that can samples and preprocesses the sensor measurement and sends the
information wirelessly. Various types of sensors can be directly powered from the board
and controlled by the microprocessor. In order to decrease the power consumption and

the network interference, the board sends

%E) ﬁjnformatlon in an event-based manner. Fig.

(a) (b)

Fig. 3-2 (a) The circuit board (Taroko) with a programmable microprocessor that can

control the sensors connected to it and preprocess the measurements of the sensors and
send the information wirelessly. (b) The circuit board module can connect various
types of sensors (at most eight sensors) and powered through USB interface (The USB

can connect to a battery or a socket).
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Fig. 3-3 Examples of how sensors and the corresponding circuit board deployed in the

environment.
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3.2.2 Interaction Detectors

An interaction is a description of how the object is used. The interaction detector is
a binary function where input is a sequence of measurement and where output is a
binary value that determines whether the specific interaction pattern happens or not. We
can define various types of interactions for each type of sensor based on domain
knowledge. For example, Fig. 3-4 illustrates the raw data of a pressure sensor and the
corresponding responses from interaction detectors. The pressure sensor can measure
how much force is on it, and we can use it to collect the location information of
inhabitants by the change of pressure value. The pressure sensors can be installed in the
floor, sofa, chair, bed, etc. Currently, we have defined two types of interactions on the

pressure sensor, “Pressing” and: “Pressing Still”,“which means there is a significant

N

]

Pressure
4
L I
o~ I s I
Time
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On
Pressing
off .
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off| .
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Fig. 3-4 An example of raw data from a pressure sensor and the corresponding

interaction detectors
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pressure on it (may can be interpreted as someone sitting on it) and there is a significant
pressure on it and no change for a while (may can be interpreted as someone sitting on it
without moving for a while) respectively. The interaction detector of “Pressing” is a
function that determines whether the filtered pressure measurement is greater than a
threshold or not. The interaction detector of “Pressing Still” is a function that
determines whether the filtered pressure measurement is greater than a threshold and the
variance is less than a threshold or not.

The functions of interaction detectors can be programmed and run in the
microprocessor on the circuit board. As the measurement data are received, the
interaction detectors will calculate the function described above, and the circuit board
will wirelessly output an event to the system 6nly when function output changes. The
event format is shown in Table:3-1" The-event-ID iS\a unique value. The interaction 1D
consists of the sensor ID and the intera;c.t%ﬁ'- type. For example, “P1_Pressing” means

the ”Pressing” interaction on. pressure sensor P1l, .and “Cl _Use” means the “Use”

Event ID Interaction ID State Time
1 P1 Pressing On 2008/05/21 19:18:26
2 C1_Use On 2008/05/21 19:18:39
3 P1_PressingStill On 2008/05/21 19:31:55
4 P1_PressingsStill Off 2008/05/21 20:22:47
5 C1_Use Off 2008/05/21 20:36:33

Table 3-1 An example of interaction detecting events
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interaction on current sensor C1 (current sensor is installed on the electrical appliance to
measure the current usage). The state attribute records whether the corresponding
interaction occurs or not (On/Off), and the time attribute records the time instant of the
occurrence of the event. Note that although detection of the interactions might have
some delay (caused by the processing data window), but the time attribute of the event
is not affected. For example, in Fig. 3-4, The “Pressing Still” interaction started at time

T, , but detection has some delay (detected at time 7;) cause by the data window of

determining whether the variance is less than a threshold or not, however, the time

attribute of the event which sent to recognition system is still 7.

Many types of interaction detectors'can bedefined for each kind of sensor based on
the domain knowledge. We assume.that thesdesigners of sensors are responsible

designing the corresponding interaction dgg_g_ctbré.

N

]

3.3 Activity Modeling =

The proposed environment sensing sub-system and interaction detectors provide
information about what happens in the environment. The goal of the activity recognition
system is to interpret the sequences of interactions into activity labels. In order to
accomplish this goal, we have to model the relationships between the interaction
sequences and activity labels, and to recognize the activities from newly incoming
interaction sequences.

The following reasons motivate the design of activity modeling in this work:
® Multitasking

It is natural that the resident often performs multiple activities simultaneously

although some of them only engage little attention. The recognition system must have
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the ability that recognizes multiple activities at the same time.
® Flexibility to control the complexity of the activity model

Different kinds of activity have different level of complexity. Even the same kind
of activity may have different characteristics with different levels of complexity under
different environments or associated with different behavior. If we use a complex model
to capture the characteristics of activities, although the model would have high
representation power and could recognize more complex activities, but it also needs a
large number of training data; or it may have bias, and the recognized activity may be
too specific. The high computational complexity may also cause the system bad
performance. On the other hand, if the model is too simple to capture the characteristics
of activities, then the system may not have en.ough ability to recognize some kinds of
activities. Because we can not:anticipate the-users* Situation, it is hard to decide the
complexity of the model in advance, Th{r"s it is very important for the recognition
system to be able to tune the (_;o_mplexit;' of activity models for different types of
activities flexibly under various situations from Iea.rning procedure.
® Semi-supervised learning

The environment and its furnishings have highly variable layouts, and individuals
can perform activities in many ways. It is impossible to know all kinds of situations in
advance and thus the system has to learn the activity models from residents’ daily life.
At the learning stage, the user has to give the desired output (activity labels) of the input
(detected interactions). However, labeling the training data for model learning is a
tedious and error-prone job. Semi-supervised learning is a learning mechanism that uses
labeled and unlabeled data simultaneously. It allows activities to be represented by
various interactions from different environments and individuals. Furthermore,

semi-supervised learning mechanism can train the model using a less number of labeled
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data and a large number of unlabeled data, and thus reducing the training effort from
end users.
® Probabilistic reasoning

Probability reasoning is a good way to deal with the uncertainty from the
ambiguous and noisy observations from multiple sensors. Furthermore, the probabilistic
representation of the recognition output can provide more information than yes/no to the
subsequent applications that need the activity information. It also provides a way to
estimate the expected error rate of recognition results.
® Model-based learning

Model-based learning uses the training data to construct models to represent the
distribution of data. Once the learning procé‘dure finishes, the training data can be
discarded. This can reduce the system memory-required.to store a large number of data
and also relieve the users’ privacy conce.rﬁé%'- :
® Real-time performance

Some subsequent applications. may: ‘need thé real-time activity information. This
requires a trade-off between models, features, and the computational complexity.
® Online learning

Because of the environment changes and other reasons (which will be discussed in
the next chapter), the recognition system needs to continuously update its knowledge
about the relationships between interactions and activities. In such a situation, the
training data is continuously received, and the learning algorithm needs to efficiently
fuse the old and new coming data to update the activity model, instead of totally

retraining the model.
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Activity

Feature

Interaction

(a) (b)

Fig. 3-5 Model (a) models the long-term dependencies in the model level, and model

(b) models the long-term dependencies in the feature level.

In order to recognize multi-tasking-activities, our.recognition system aims directly
at recognizing what activities are occur_ring in§ the énvirqnment by tracking the states of
activities (hereafter called activity vectdréi;';nis;téad of each individual. As shown in Fig.
3-5, model (a) models the depe’ndenc:iés iéfthe: madel tevel, if it need to be adjust to
different situation, the whole needé to be retrainle-d::' model (b) models the dependencies
in feature level, it can flexibly consider features with different level of dependency, thus
flexibly control the complexity of the model. The recognition system uses various types
of features instead of complex model to capture the different level of complexity of the
characteristics of the activity structure. By doing this, the recognition system can
flexibly control the complexity of the activity model by selecting suitable features with
different representation power in the learning stage rather than changing the entire
model. The recognition system uses Dynamic Bayesian Networks (DBNs) with an
efficient on-line and semi-supervised learning strategy to model the activity. Because

the recognition system selects only the features that have the most influence on the

recognition performance in the learning stage, so the system can on-line recognize
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multiple activities with less computational effort (and shorter delay caused by the data
window of the interaction detectors). The following two sub-sections will describe the

cooperation between feature generation and activity model in more detail.

3.3.1 Feature Generation

In order to make the recognition system able to control the complexity of the
activity model more flexibly, we propose to represent the model complexity in the
feature level instead of in the model level. We define features with various
representation powers and then select the appropriate features during learning. There are
three types of features:

® Single-interaction feature

On
Bed
off
Interaction Time
On
v
off| e
Time
Bed On and TV On
Bed On and TV Off
Feature
Bed Off and TV On —
Bed Off and TV Off [
Time

T T, T; T,

Fig. 3-6 An example of interactions and the corresponding multiple-interaction

feature
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It is the most basic type of feature, and captures the status of a single interaction.
® Multiple-interaction feature

In some cases, the occurrences of interactions are not independent. For example:
“lying on the bed” may mean “sleeping”, but “lying on the bed” and “turning on the
TV” may mean “watching TV”. This type of feature captures the relationships among
multiple interactions. Fig. 3-6 shows an example of a two-interaction feature.
® N-gram feature

One of the challenges of activity recognition that is discussed in Section 1.2 is to
capture the temporal information and encode it into the model. This type of feature
captures the temporal information among interactions, for example: “go out” and “come
back” may include the same interactions but With different orders. Fig. 3-7 shows an

example of bi-gram features.

Door

off

Interaction .
Time

On
Shoe Cabinet

off]

Time

On
Door —

Shoe Cabinet
off

Time
Bigram Feature

O
Shoe Cabinet "

—Door

o

Time

T, T, Ts 'y

Fig. 3-7 An example of interactions and the corresponding bi-gram features
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3.3.2 Activity Model

As the feature generation part generates various types of features that capture the
temporal characteristics of activity and the relationship among interactions, the activity
model correlate the features and activity labels. The activity model is depicted in Fig.
3-8 as a Dynamic Bayesian Network (DBN) with first order Markov chain assumption.

Each time instant # is the timing of the event that any feature state changed. As shown in
Fig. 3-8 (@), O, ={f™, ™ ,...,£™} is the state vector of all features at time ¢, which
is the observation of this model, 4, ={4/, 4%,..., A"} is the activity vector at time ¢ that
we want to estimate. At each time instant;‘the _activity vector 4, is estimated from the
observation O,, and the temporal 'dependency. (from "4, to A4 ,) is used to filter the
recognition result for reducing the effe(-:t-‘g_}_‘f= _hofse. Fig. 3-8 (b) shows that our activity
model selects useful features for every actI:SV.ity types. {0  ={f"™, =, £} is the
state vector of selected featuréé of activity. type’ 4', and hence O, cO,. For

simplification, we assume that the occurring of each type of activities is independent;

and thus the state transition probability distribution of each activity type is independent:

P(At+l| +1) HP( t+1 | A )P( +1| +1) (31)

Fig. 3-8 (c) shows the observation distribution of each type of activity. We assume each
observed feature f,’Df' of each activity type is independent, and thus the observation

distribution of ith type activity at time instant ¢ is defined as:

L(i)

P(410)= HP(A’ 1 £ (3.2)
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(a)

(©)

Fig. 3-8 Our activity model of a Dynamic Bayesian Network (DBN) with first order

Markov chain assumption. Each time instant ¢ is the timing of the event that any feature

state changed. (a) O, ={f,"*, £;",..., £} is the state vector of all features at time ¢,
A ={4,A°,.., 4"} is the activity vector at time ¢ that we want to estimate. (b)
O ={f™,f™,..., £} is the state vector of selected features of activity type A',

O c O, and we assume each type of activities are independent. (c) The observation

distribution of i’th type activity: we assume each observed feature f,’Df IS

independent.
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The advantages of this activity model are as follow:
® Probabilistic representation

The probabilistic representation has the ability to capture the uncertainty, and it can
be used to calculate expected error for making optimal decisions.
® Combines prior knowledge and observations

It combines the prior distribution (recognition result of last time instant) and the
observation distribution. This reduces the effect of observation noise.
® Simple recognition algorithm

The independent assumptions of the observation and long-term dependency (we
extract the dependency into feature level) greatly simplify the on-line recognition
procedure. This makes the system be applicablé‘ to real-time recognition.
® Online learning with fast:update

The model parameters can be on-Ii.né%pdated (just'accumulate the counting). This
offers a possibility for adapting thp_ activity -rzhodel to vafious variations over time.
® Multi-label classification

The recognition system tracks the state of each activity over time, and thus each
data instance can have multiple activity labels. This makes the system able to handle the
multitasking situation.
® Flexibly using features with different complexity

The system can use various features with different representation power to capture
the characteristic of an activity. This allows the recognition system to be able to flexibly
tune the complexity of the model for different types of activity under various situations

by only changing the connections of features, not the entire model.

40



Chapter 3

3.4 Model Learning

In this section, we will discuss how the system selects important features for each
type of activity and learns the parameters of activity model from labeled data. For
simplification, we assume that the user only can edit activity label at the time instant
when the event occurs, and the activity labels are unchanged during two successive
events (the same as our recognition system).

Fig. 3-9 shows the learning procedure of the activity model. First, in training data
collection, the system collects the observed features (preprocessed data) for a time
period, and then requests the correspondingactivity labels from the users. Second, the
system calculates the sufficient Statistics-of-the_collected training data which will de
used in feature selection and paramete:r__estimation. Third, the system constructs the
activity model by selecting useful featyrégféf: every ac_tivity types. Fourth, the system
estimates the parameters of the activity m;ael. In_ the following three subsections, we
will detail the three components of the learning procedure: feature selection, parameter
estimation, and the final one is how the sufficient statistics (which are used in feature

selection and parameter estimation) are calculated.

Observed Features

Activity Labels a

Fig. 3-9 The learning procedure of the activity model.

. L Feature Selecti L
Sufficient Statistics cature seiection Parameter Estimation
(Model Construction)
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3.4.1 Feature Selection

As the feature generators generate various features with different representation
power, the system selects the features that have the most influence on the recognition
performance during learning stage. In feature selection, the system selects useful
features for every activity type by computing the corresponding weight. Because each
state of a feature has different influence (for example, if we observe usage of the
microwave, we may believe there is a “preparing food” activity happening; however, if
we do not observe the usage of the microwave, because there exist other means for
“preparing food”, then this observation will not influence the belief for “preparing food”

activity), thus they have different'weights. First, we define the weight of a feature ;

with state f”/ to activity type i'.as folews: ~

Y
e
—_—

J £y — y | )i ’:=1 P(4'=d' ,F'=f") |
w(F' =f )—ZP(A _“’F-?-'f)'°gp(Af=af)p(Ff=ff)\ (3.3)
where the probabilities are calculated as follows:
i i iy S(Ai:ai:Fj:fj)
P(A'=a',F'=f") Z Std—a.F =) (3.4)
acd' feF’
i i :S(Ai:ai)
P(A'=a") —ZS(“) (3.5)
P(szfj)zw (3.6)
> S(f)
feF’

where the S function is the sufficient statistics calculated from training data set (we will

describe how the calculation is done in Subsection 3.4.3). This weight measures the

degree of dependency between F’ = f’/ and A', where greater value means greater
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dependency, and thus higher influence.
After computing the weights of every feature value on every activity type, the
system selects the useful features by clustering all the weights into two groups, selected

and non-selected.

3.4.2 Parameter Estimation

After feature selection, the structure of the activity model is constructed, and the
next step is to estimate the parameters. There are three types of parameters in the
activity model needed to be estimated: initial probability 7, transition probability «,
and observation probability 4. Wesuse" maximum likelihood estimation (MLE) to
estimate theses parameters: .

vEGH (AL
0 ={7, o ,B}:aré:?ﬁﬂaxP(Dm,a, 8) 37)

where G is structure of the activity modeljn@. is.the parameters we want to estimate,

and D is the training data set. The trai.ning data set D={0,,4}_,, consists of
observed feature O, and corresponding activity labels A4, at each event time instant ¢,
and T is the total length of the training data set D.

Given 7z ={r,,7,,..7m,}={P(4),P(4}),...,P(4")}; the MLE of the initial
probability distribution 7, = P(4;) of the ith activity type is calculated as follows:

S(A'=a")
D S(d'=a)

aed'

P(4i=d')= (3.8)

a:{al’aZ""’aN}:{P(Azl+l|Azl)’P(At2+l|At2)1"'!P(Aﬁl|AtN)} ; the MLE Of the
transition probability distribution «, = P(4/ ;| 4’) is calculated as follows:
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_ SUly=a'4 =a)
Z S(4,,=ad", 4 =a)

i i
a EAI+1

P(4,=a'| 4 =a) (3.9
B={B. By B}, B ={P(A|F™ = f™),..,P(A|F"0 = (10} where L(i) is
the total number of selected features of ith activity type. The MLE of the observation

probability distribution P(4'|F™ = ™) is calculated as follows:

S(At :ai’F[Dj :fID/)
>S4 =a,F"” = ")

aed'

P(A =d' |F™ = ) = (3.10)

3.4.3 Used Sufficient Statistics in Learning Procedure

In the feature selection and parameter estimation;.the probabilities are computed
from the sufficient statistics of training"data. In here, because our recognition system is
event based, except S(4',=a', 4h=a) is defineddas the frequency counting, others

are defined as the accumulatedtotal 'time,period. of the event rather than instance

number.

3.5 Activity Recognition

As shown in Fig. 3-10, in the recognition step, the system continuously calculates
the feature values, and then the recognition algorithm estimates the state of each activity
type using Bayes filter:

P(At = at | Ol:t)
=P(4,=0,10)- > {P(4,=a,|4,_,=d)P(4_,=d0,.)} (3.11)

a'eAd
Because we assume the occurrence of each activity type is independent, the

computation of each activity type can be separated. The computation of the ith type of
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activity is:

P(4] =a;|0;,)

=P(4=a/10))- 3 {P(4 =a/| 4, =d)- P(4; =a'|O.) (3.12)
L@ i i D, D; i i i i i

=[P4 =a/|F” =1") 3 P4 =a}| 4, =a) P4, = a'| OL,)

a'ed

Observed Features

Activity Model a
Fig. 3-10 The recognition procedurg-of the activity model.
& =
| >~

. . Recognition Result
Recognition Algorithm Ii:> (Belief of Activity Vector)
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Chapter 4
Activity Recognition System

In a Dynamic Environment

In Chapter 3, we detail how,the jproposed activity recognition system works in a

-

static environment. In this chapter; we \'/-v\ill'describe_ how the proposed recognition

system deals with the environment:changes.

4.1 Overview

In the real environment such as home, it is dynamic in nature. Deployment of
various devices may change over time, and we categorize them into the following:
® Changes of sensor deployment

Adding or removing objects/sensors in the environment will directly change the
measurement space from sensors, and thus affect the meaning of the corresponding
interactions and features. The activity recognition system should learn the knowledge
about the new sensors and the corresponding interactions and features, and remove the

influence of removed sensors and corresponding interactions and features. In addition,
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the events of adding/removing objects may cause changes of the inhabitant behavior to
perform activities. For example, after adding a TV in front of the bed, lying on the bed
may not just for resting, since it is possible for watching TV. The activity recognition
system needs to re-correlate the features and activities.

® Changes of Object deployment

This affects users’ interactions or behaviors with respect to objects; namely, the
relationship between sensor measurements from the objects and activities may change.
For example, moving a sofa in front of a TV from the living room to a study room, and
sitting on the same sofa does not necessarily mean watching TV any longer; or after the
contents of a cabinet are changed, opening the same cabinet does not necessarily mean
the same purpose any longer.

Because of the change of objects and sensors, how. an activity is performed in the
training phase may be significantly diff.eféﬁt-from that in the application phase after a
time period. For instance, a user uses a brogm to do cle;aning activity, and sensors sense
the interactions; however, after a few days, the uéer buys a new vacuum cleaner and
uses it to clean the house. The training data for the two cleaning activities will be very
different from each other. As a result, activity recognition based on a static activity
model may gradually become obsolete and inaccurate for a dynamically changed
environment. In addition, in order to recognize more complex activities, we can upgrade
the ability of the system to capture more complex characteristics of an activity:
® Define new types of interaction

In our activity recognition system, interaction is the basic element of an activity,
and it is based on a specific pattern of sensor measurements. We can define new types of
interaction based on an existing kind of sensor to capture another characteristic of an

activity. For example, we can mount an accelerometer sensor on an object to detect the
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movement of the object. In the beginning, we may only define an interaction based on
the accelerometer sensor as follows: whether the object is used or not can be detected by
telling whether the accumulation of acceleration is greater than a threshold or not.
Afterwards, we find that the accelerometer sensor can also be used to detect a specific
motion pattern of movement (such as shaking or falling) involved in other complex
activities (for example, the motion pattern of using a broom to sweep the floor), which
thus defines new types of interaction.

® Add features with higher representation power

The feature generators generate various features with different level of

SR | Activity

| System Models 1

. Upgrading | .

| PY g : Features Moge| pik | Activity
[ Add Features | | Fusion "| Recognizer
i with Higher || Feature Model 1

|| Representation|| || Generators Learning R [39_“9‘:/0‘c
| Power i Intera‘ctions Model lLearner ctivity Vector
[ Defi | ! Training

i D_?_flne Niw ' || Interaction Data

:L Interaction | ‘ Training Data | Statistics i1l
o Raw Data Collector

! . I <

i Crgmges of | o i Query Output

| ensor = ensors Selection

| Deployment | ! I

I ! _ | 4 Model B

i Changes of | Sensing  Query Learning Recognition
: Object Label

' | Deployment i I

i Deployment U

' Changes | ser

Fig. 4-1 System overview of self-reconfigurable activity recognition system

48



Chapter 4

representation power. However, the complexities of features are bounded within a
threshold (for examples, in multiple-interaction features, we may only consider the
number of level less than three; or in n-gram features, we may only consider bi-gram),
so that the ability of the recognition system to capture complex activity is bounded. We
can raise the complexity threshold to capture more complex characteristics of activities.

Each time after any deployment changes or system upgrades, the activity model
needs to be retrained from newly collected training data. However, collecting training
data and labeling them is a tedious and an error-prone job. This motivates us to
minimize the number of labeling instances for retraining; and therefore it becomes
important for the system to keep much knowledge from the prior activity model in
response to the deployment change. suchthat thé activity model can automatically adapt
(hereafter called self-reconfigurable) to-the change, rather than totally retrain the model.
By achieving this self-reconfigurable aig.c;‘ﬁthm, we_can reduce the training effort and
shorten the overall training” periods; |In -z;ddition, in. order to further improve the
performance of merely self-reconfiguring, the .system takes advantages of active
learning to select potentially good training data for querying correct labels from users,
thus reducing the overall retraining effort.

As show in Fig. 4-1, we keep the influence of the deployment changes and the
system upgrades in the sensing component. It only affects the meaning and space of the
observed features, not the entire model. The activity recognition system just needs to
update the feature selection and parameters of the activity model. The activity model is
updated from newly collected training data, includes observed features and the activity
labels. Because the originally collected training data are unlabeled, we estimate the
expected values of the labels using the previously learned activity model (the red line

which feeds the output of the recognition system to the input of the training data
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collector). Because the new incoming training data may not be rich enough, the
retrained activity model may have bias in such situation, and thus it is very important to
fuse global and local activity model. In here, “global model” means it is trained from all
training data (collected from beginning to present), and “local model” means it is
trained from newly collected training data. The system will store sufficient statistics of
the global activity model for the purpose of fusion. In addition, the recognition system
will select useful examples to query the user in order to labels instances with more
useful value, which will improve the training performance more efficiently (we will

describe in Section 4.3 ).

4.2 Self-reconfiguring

The goal of self-reconfiguring is tb"@;‘_!i__he update, the knowledge of activities in

f

Store & Update
% “Local” < -
Sufficient Statistics m
(k)
Slocal
Predicted Activity Labels
(Estimate from Pervious @

Learned Model)

Observed Features

Probabilities of Probabilities of
“Local” Model “Global” Model
P(k) P(k)

local i global

. Etimati Feature Selection Fusing Probabilities of

arameter Estimation (Model Construction) “Global” & “Local”
Model

Fig. 4-2 The learning procedure of reconfiguring the activity model.
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the activity model, including feature selection and model parameters. Fig. 4-2 shows the
learning procedure of reconfiguring the activity model. First, the system collects the
training data, including observed features and the corresponding predicted activity

labels (being estimated from the previously learned model). Second, the system

computes sufficient statistics S

local

which are computed from the newly collected

training data and will be used in model construction. Third, the system stores the new

into database and updates S%, | which is the

computed sufficient statistics S wlobal

local

sufficient statistics of the global model. Fourth, the system computes the probabilities of

the global model P}, and the local model RY) (the computation is the same as

those described in Subsections 3.4.1'and 3.4.2);-and then fuses them. Finally, the system
selects the useful features and éstimates the ‘model parameters using the fused
probabilities. [ ;=

At the kth time update of the acti'vity?‘:model by ‘the system, the training data set

o includes-observed features 0“ ={O{",0{",...,0%)} and

D% I{O(k),B(k)(A )}
the belief of the predicted activity vector B (4) ={B"(4,),B" (4,),....BY (4 .,)},

where 7% is the length of the training data set. The system computes the expected
value of the activity label from the previously learned activity model M*” using
Bayes filter:

BY(4)=P* (410}, M)
= P40, MUY (P 1AL, = MO )P (A = | 0 b)) B

a'ed
where B®(A4') is the state belief of ith type of activity at time instant # in the training

data set D,

The system computes the expected local sufficient statistics S  , which includes

local
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Sl(fﬁal(Ai:a[’Fj:fj)’ Sl(fial(A[:ai)! S(k)

local

(F'=f7), and S;), (4, =a" 4 =a), from

0% and B (4) by multiplying the belief of activity vector:

()

T
SW (A=d \F'=f7)=Y (B (A=d" )S® (4=a'\F/=f" )} (4.2)
t=1
T(k)
S (A'=a')=> {B¥(4=d" )SL) (4=d')} (4.3)
t=1
7k
SWFI=f)y=> 8% (F'=f) (4.4)
t=1
Tﬁh
SW (Al =a'\ 4 =a)=> {BY(4], ,=a)B” (4/=a)} (4.5)
t=1

Where the function S®

event

is defined as the time period of the event.

After computing the expected“local sufficient statistics, the system updates the

global sufficient statistics as follows: | [ =%

]

® | L ol |lo®
N) global | Sglobal 1S loeal

(4.6)

Then, the system computes the probabilities, %) <and P*)  for model construction

global local !
(the same as those described in Subsections 3.4.1 and 3.4.2), which are computed from
the “global” and “local” sufficient statistics respectively. Next, the system fuses the

probabilities of local and global models according to the following fprmula:

PO =w(T®)eP®) + 1= w(T™))ePE) 4.7)

local Ylobal
where w(T™®) is used to control the fused probabilities P* so that they can be
closer to local model’s or to global model’s, defined as:

w(T®)=1—¢""" (4.8)
where 7 is the learning rate. If 7% is longer, the value of w(T") is higher, and

thus the fused probabilities P*) are closer to local model’s. Finally, the system selects
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useful features and estimates the parameters from the fused probabilities P*) (the

computation is the same as those described in Subsections 3.4.1 and 3.4.2).

4.3 Active Learning for Activity Label

Requirement

As shown in Fig. 4-3, in the learning procedure of self-reconfiguring, the training

data set are unlabeled. The user can label the unlabeled training data for improving the

performance of the system (the label will directly change the activity belief). In here, we

employ an active learning strategy which will select training instances for requesting

labels with priority. The priority’ of'a training<example D* ={O® B®(4)} to

activity type A’ is:

Observed Features

Predicted Activity Labels
(Estimate from Pervious
Learned Model)

User Responded Activity
Labels
(Active Learning)

Activity Iabels/

(=

Parameter Estimation

Fig. 4-3 The

e
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“Local”
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“Local”

P(k)

local

Model

Feature Selection
(Model Construction)

self-reconfiguring  procedure

&=

with

Store & Update

N

i

£
<&

Probabilities of
“Global” Model

Fusing Probabilities of
“Global” & “Local”

Model

active

learning

(selecting

hard-to-predicted instances to request the corresponding activity labels).
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(k) 41 _ i (k)¢ qi _ i
k —’ZiB (4" =a")log B¥ (4" =a') O )
E. (Dt( )) —_a cA : + unknown (49)
: log N(4") IO0O)+IO(F

unknown )

where the first term of the equation is normalized entropy of the activity belief, and
N(4") is the number of states of activity type 4'; the second term of the equation is
the ratio of the number of selected features (i) to the number of unknown (never

seen) features L (F

unknown

). Higher value of E,(D"™) means the data may be more

uncertain. User can label the training data with priority, so that the label number can be

reduced effectively.

A )
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Chapter 5

System Evaluation

We have realized the proposed activity recognition system in a home environment,
and design some experiments, to evaluate-it._In_this chapter, we will introduce the
experiment environment, and“evaluation metric, and finally we will present the

-

experiment result and provide a discussions.

5.1 Experiment thv'ironme'nt

Fig. 5-1 is the overview of the experiment environment: NTU Attentive Home Lab,
and there are some photographs of the environment as demonstrated in Fig. 5-2 . The
properties of the deployed sensors are listed in Table 5-1. Note that the four cameras
deployed on the corners are used to collect ground-truth data. The evaluation data set is
collected in the Lab from several volunteers. One of the volunteers lives in the lab for
several days, and others are visitors. In most of the time, the first volunteer is alone in
the lab, and he can perform activities arbitrarily (arbitrary ordering, multitasking,
interrupted, even null activities). Sometimes, there are more than one resident in the

environment, and they also can perform activities arbitrarily.
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Sensor Type Value Type Purpose

Weight on it )
Pressure Mat . Location
(Positive real number)

Current usage

Current Sensor . Object usage
(Positive real number)
Weight on it )
Pressure Sensor . Location
(Positive real number)
) Open / Close )
Reed Switch Object usage

(Binary value)

) Only used to collect
Camera Pictures

ground-truth

J[ } {—a “ : Current Sensor
[ J
@ ? ¢j : Pressure Sensor
< \[UD < w : Reed Switch
Bedroom Kitchen D - Pressure Mat
< )
rre———y <
émiﬁi %
156 sq|
R T~

i ; a : Pan-tilt Camera

Fig. 5-1 Overview of the experiment environment: NTU Attentive Home Lab. There
are two environment changes, first, we add a TV in the bedroom (painted with green),

and second, we swap the chairs in the bedroom and study room (painted with yellow).
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Fig. 5-2 Some photographs of the experiment environment.
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In order to evaluate the abilities of the recognition system dealing with the
environment changes, we design two changes in the experiment environment. As shown
in Fig. 5-1, first, we add a TV in the bedroom (painted with green), and second, we
swap the chair in the bedroom with the one in the study room (painted with yellow).

In our activity recognition system, the output is the states of each type of activities.
Table 5-2 shows the list of nine types of activities aimed at in this experiment. At each
time instant, the recognition system outputs the status of these nine types of activities.
“On” means the activity is happening, “Off” means the activity is not happening, and

“Unfocused” means the activity is occurring but causes the user’s attention.

5.2 Evaluation Description

There are four stages in the evaluationg <

]

(1) Initial training stagée: We collected two days of training data D©® to train

Activity Status Activity Status
Watching TV in Watching TV in
o On / Off / Unfocused On / Off / Unfocused
the Living the Bedroom
Cleaning On / Off Studying On / Off
Preparing Food On / Off Working on PC | On/ Off / Unfocused
Go out On / Off Come back On / Off
Sleeping On/ Off Take a Drink On/ Off

Table 5-2 The list of types of activities aimed in this experiment. “On” means the
activity is happening, “Off” means the activity is not happening, and “Unfocused”

means the activity is occurring but cause the user’s attention.
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the initial activity model M ©.

(2) Before environment changes: We collected two days of testing data D® |
which the environment is the same as in the initial training stage, to
evaluate the performance of M ©.

(3) After environment changes: We collected 1.5 days of testing data D® |

which the environment is changed, to evaluate the performance of M.

(4) After reconfiguring the activity model: The system reconfigured the initial
activity model M@ to M® via dataset D® and D® . Then, we
collected two days of testing data D® in the changed environment to

evaluate the performance of ..M ..

5.3 Evaluation Metric)

]

To evaluate the result of the activity };cognition is very difficult. This is because
that the beginning and the end of activities are very fuzzy, so that the ground-truth
values are not very definite. The observers label the same activity may have large
variations. Even more, activities may occur sequentially, in parallel, alternate, and
overlapping.

We employ two methods to evaluate the accuracy of the activity recognition
system, which consider different features of the recognition system that could be
important for different applications:
® The percentages of time period that correctly classified

This criterion measures the amount of time that the state of activity is correctly
classified during the duration of the label. Fig. 5-3 shows an example and corresponding

confusion matrix to exemplify the evaluation using this method: (1) 20 % of time
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correctly classified as “Off”; (2) 9 % of time “On” but miss classified as “Off”; (3) 45 %
of time correctly classified as “On”; (4) 11 % of time “Off” but miss classified as “On”;
(5) 15 % of time correctly classified as “Off”.

There are two measures for evaluating the quality of the recognition results which
are defined as follows, recall:

True Positive

Recall = (5.1)
True Positive+False Negative

9% 11%

20% 45% 15%

Ground-truth

Label
Predicted
Label
Time
Ground-truth
) On Off
Predicted
On 45 % 11 %
Off 9 % 20% +15% =35%

Fig. 5-3 An example of the “The percentages of time period that correctly classified”
method used to evaluate the activity recognition system. This measures the amount of

time that the state of activity is correctly classified during the duration of the label.
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Precision:

. True Positive
Precision = — . (5.2)
True Positive+False Postive

® How many times that correctly classify the activities

This criterion measures the number of operations required to transform the
predicted label string into the ground-truth label string (matched if the labels have
overlap time period, ignore the time length, only care about counts). Fig. 5-4 shows
examples of the evaluation using this method: (1) the number of operation is zero; (2)
the number of operation is one, because the predicted result inserts an “Off” state
among the “On” state, needs one deletion operation; (3) the number of operation is two,
delete the “On” state among “Off’.and insert the On” state (because the “On” state in
the predicted result and the “On” stéte in the ground-truth do not have overlap, they are

treated as not matched).

=Nl

Edit Distance: 0 Edit Distance: 1 Edit Distance: 2
One Deletion One Deletion
One Insertion

Ground-truth
Label

Predicted
Label

»
»

Time

Fig. 5-4 Examples of “How many times that correctly classify the activities?” method
used to evaluate the activity recognition system. This measures the number of
operations required to transform the predicted label string into the ground-truth label

string (matched if the labels have overlap time period, ignore the time length, only care

about counts).
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The selected evaluation method depends on the applications that need the

recognition result. For example, “how many times that correctly classify the activities?”

method is more important to applications that intended to notify elderly people when

they forget to perform routine activities of daily living such as take the medicine.

Conversely, a system designed to detect abnormities of activities over time may require

statistics of how long activities occurred in a daily basis.

5.4 Experimental Result and Discussion

Table 5-3 shows the recognition performance before any environment changes.

“Watching TV in the bedroom” aetivity is not-available because there is no TV in the

bedroom yet. We list the discussion ef'each type ofactivities in follows:

(D

(2)

(3)

(4)

Watching TV: Itis difficult 'tofgi__s_tinguish “Qn and “Unfocused” because it
is hard to know the residents at;e really watching the TV or not. We do not
have sensors that proi/ide ;sufficient information to distinguish them clearly.
Cleaning: Because the tools for cleaning are in the same cabinet, and the
cabinet does not contain other things, each time between the users
successively open the cabinet must be doing this type of activity, thus the
recognition performance is very high.

Preparing food: The bad performance of recall measure is caused by the
reason that users do not continuously using tool for preparing food but
recorded as preparing food activity.

Go out / Come back: These two types of activities have similar interactions
but with different orders. They can be distinguished by the moving
direction of the residents (n-gram feature).
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(5) Sleeping: The pressure sensors measure the bed is used or not by the
pressure value. However, sometimes the distribution of the pressure is too
unbalanced and causes the false negative detection.

(6) Studying: Sometimes the resident may stand up for stretching the body

o o Edit
Activity Recall Precision )
Distance
Watching TV in 0.86/0.99 0.98/0.88 6 (11)
the Living (On / Unfocused) (On / Unfocused)
Watching TV in
N/A N/A N/A
the Bedroom =
Cleaning A _ \ 8 0(4)
Preparing Food 088 (| M | 0:95 6 (2)
Go Out Yoy - |5 1 0 (14)
Com Back 1 0.82 2 (14)
Sleeping 0.97 0.99 28 (6)
Studying 0.99 0.95 16 (22)
_ 0.99/0.97 0.96/0.99
Working on PC 14 (28)
(On / Unfocused) (On / Unfocused)

Table 5-3 The recognition performance before any environment changes. The length
of the data set is about two days.
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while studying for a long time, but not record in ground-truth. Thus causes
some false positive detection.

(7) Working on PC: Similar as “studying” activity, thus the “On” state and the
“Unfocussed” state are not very clear in ground-truth.

Some types of activities occur in very low frequency, and most of time their states
are “Off” (means not happen). The lack of training data may cause the biased activity
model; the lack of testing data may cause the high variance of measured performance.

Table 5-4 shows the recognition performance after environment changes: (1)
adding a TV in the bedroom (painted with green in Fig. 5-1), (2) swap the chairs in the
bedroom and study room (painted with_yellow in Fig. 5-1). The performance of
recognizing “sleeping” activity ' Is. decreased;' because after adding the TV in the
bedroom, lying on the bed not only‘means sleeping any.longer. The “watching TV in the
bedroom” activity is still not available.B;é:ﬁUSe the srecognition system does not have
any knowledge about it. Also thg_per_form-zs\'ﬁces of reéognizing “working on PC” and
“studying” activity are decreased after swapping fhe chair. Surprised, the performance
of recognizing “watching TV in the living room” also decreased; this is because the
resident changes his behavior: sitting on another chair for watching TV.

Table 5-5 shows the recognition performance after reconfiguration. The length of
training data set for reconfiguring is about 3.5 days (2 days of the beginning testing data
and 1.5 days of data recorded after environment changes). The length of testing data set
is about 2 days. The result shows that the system has recovered the outdated knowledge

of activity models.
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. . Edit
Activity Recall Precision Distance
the Living (On/ Unfocused) | (On/ Unfocused)
Watching TV in
the Bedroom 0 N/A 2(2)
Cleaning 0.20 1 2 (4)
Preparing Food 0.63 0.95 19 (7)
Go Out 079 (AL 1 2 (22)
e ]
. 1! :
Com Back X | | B y 0 (22)
3y i
Sleeping 0.98 0.84 46 (4)
Studying 0.23 0.33 84 (12)
_ 0.43/0.81 0.21/0.77
Working on PC 27 (60)
(On / Unfocused) (On / Unfocused)

Table 5-4 The recognition performance after environment changes: (1) adding a TV in

the bedroom (painted with green in Fig. 5-1), (2) swap the chairs in the bedroom and

study room (painted with yellow in Fig. 5-1). The length of this data set is about 1.5

days.
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. - Edit
Activity Recall Precision Distance
the Living (On / Unfocused) | (On/ Unfocused)
the Bedroom | (On/Unfocused) | (On/Unfocused)
Cleaning 0.56 1 4 (8)
Preparing Food 0.72 0.93 13 (12)
Go Out /81 (AL 0.87 4 (36)
== |
Com Back 092 | | 089 6 (36)
Sleeping 0.99 0.96 37 (8)
Studying 0.76 0.77 11 (15)
) 0.71/0.84 0.81/0.90
Working on PC 18 (56)
(On / Unfocused) (On / Unfocused)

Table 5-5 The recognition performance after reconfiguration. The length of training

data set for reconfiguring is about 3.5 days. The length of testing data set is about 2

days.
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5.5 Fall Detection Application

In this thesis, we focused on recognizing daily activities. However, there are some
types of abnormal activities such as fall also needed to be detected. Because the data
amounts of abnormal activities are very rare, it is impractical to train the corresponding
activity models. In this subsection, we predefine the activity model of fall based on our
knowledge, and use it to detect fall accidents.

Base on the deployment of the environment (show in Fig. 5-1), we use the cameras
and pressure sensors in the floor to detect fall accidents. The basic idea is:

1. The camera detects is there a person-lying on the floor.

2. The pressure sensors in-the-floor. measure the pressure values of the
corresponding area that camer_a_~d_etect‘ed. If there is a person on the floor, the
mean of the pressure values wilﬁiéhigh; If _the person is lying on the floor,
the variance of the pressure .valué; will be fow (because the center of gravity

is more stable when lying). Therefore, if the mean of the pressure values is

high and the variance is low, then it is very possible a fall.

Fall Detection Recall Precision
Using camera only 0.88 0.65
Using floor only 0.94 0.92
Using camera and floor 0.92 0.93

Table 5-6 The recognition performance of the fall detection
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3. Combining the result from camera and floor to decrease the false positive
detection.

Table 5-6 shows the recognition performance of the fall detection. The false

positive rate is decreased (or precision is increased) after combining the detecting result

of camera and floor.

= | .'-““ I?
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Chapter 6

Conclusion

6.1 Summary

This work shows that how to recognize daily ‘activities in the home sitting via

N

ubiquitous sensors, and how to adapt the“Ea.;(-:-t'i'viw model to deal with the environment
changes via an active learning assisted'semi-supervised learning strategy.

A flexible activity modeling .approach has been proposed for making the
recognition system can easily adapt to different situations. This approach flexibly
incorporates various features with different level of representation power. This makes
the recognition system can automatically tune the trade-off between complexity and
representation power by selecting good features that best classifying the training data.

Unlike prior work that assume the environment is static, which the recognition
system has to learn only once; in this thesis, we consider the situation when
environment changes, making the proposed recognition system capable of
self-reconfiguring to various situations. In addition, the active learning strategy help the
recognition system requesting activity labels only when real need, and thus reducing the

training effort for users.
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Although the preliminary results were based on small datasets collected over
several-days period of time under a multi-resident environment, techniques have been

developed that could be applied to various environment to study human behavior.

6.2 Future Work

6.2.1 Improving Environment Sensors

® Capable for identifying residents

If the sensor can distinguish the user identification who activating it, the
complexity of data association problem in_the multi-resident environment could be
reduced. This makes the recognition system cabable for dealing with the multi-resident

problem and modeling the interactions between-residents for recognizing more complex

N

activities.
® Incorporating more rich types of seri;ors

The most important informatien for recogniiing activities are location and object
usage and different types of objects may need different types of sensors to get these two
kinds of information (for example, we can not use a pressure sensor or a switch sensor
to detect a object is moved or not). It is important to design various types of sensors that
can tape on various types of objects to sense various characteristics of these two kinds
of information.
® Making the whole sensor module more compact and in a single-component

In order to making the installation of the sensors easier and non-intrusive (do not
influence the use of the object), it is important to making the whole sensor module in a

single-component (do not have any out connected part or wires). Accelerometer sensor

is a good option.
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6.2.2 Reducing the Learning Effort

® Reducing the initial training effort

In our activity recognition system, it needs complete training data for training the
initial activity model. If the recognition system rudimentary clusters the initial training
data set and then requests the label of each cluster, it would greatly reduce the number
of labels of the initial training data set.
® Designing more rich types of queries

In our activity recognition system, a request for labeling data is like “Are you
sleeping during time a to time b?” or “What are you doing during time a to time b?”, it
is limited. If the recognition system_allows maore rich types of queries appropriately, the
user can label the data more flexible‘and cxloser to the ground-truth.
® Requesting the label at the right tlm’e- :

In order to avoid the interruption of.'.QUSer perforfning activities, our recognition
system offline requests label rathér than-on-line. However, the user may not remember
the answer very clear (in our system, we assume the user gives labels are correct). If the
system can request the activity label at the right time such as when user just finish an
activity (determine from the activity recognition result), then we can online request the

activity label with less interruption.

6.2.3 Improving the Self-reconfigurable Activity Recognition
System

® Incorporating probabilities representation into interaction and feature

In our activity modeling, we use various features with different representation
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power to flexibly control the model complexity. However, the drawback is making the
activity model not robust to the sensor noise (because the state of feature is binary, this
makes the system does not model the uncertainty of sensor noisy, only models the
uncertainty of ambiguity in model level). We can incorporate probabilities
representation into interaction and feature, thus modeling the uncertainty of sensor
noisy.

® Fusing more models which learned from various interval of training data

As mentioned in Section 1.2 , one of the challenges of activity recognition is
periodic variations. In our recognition system, we only fuse two kinds of periods of
models, local and global (more detail in Section 4.2 ). If we fuse more models which
learned from various types of periods of data, .the system may be able to deal with the
periodic variation problem.
® Self discovering complex features. "'

In our recognition system, th_,e_ feature éénerators e*haustively generate all kinds of
features; however, their representation” power .is bounded in a threshold. If the
recognition system can self discovering complex features from statistics (such as in [14])
rather than exhaustively generate, we may release this limitation.
® Considering the noise of activity label

In our recognition system, we assume that the user response activity labels are
correct; however, in real scenario, the users may report incorrect labels. If the
recognition system considers the noise of the user reported labels (such as in [27]), it

will more robust in real applications.
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