

國立臺灣大學電機資訊學院資訊工程學研究所

碩士論文

Graduate Institute of Computer Science and Information Engineering

College of Electrical Engineering ＆ Computer Science

National Taiwan University

Master Thesis

動態環境下以主動式學習加強的自行重構之行為辨識

Active Learning Assisted Self-reconfigurable Activity Recognition

in Dynamic Environment

何育誠

Yu-Chen Ho

指導教授：傅立成 博士

Advisor: Li-Chen Fu, Ph.D.

中華民國 97 年 7 月

July, 2008

 i

誌謝

 時光飛逝，兩年的研究生活轉眼間就過了，在這段時而有趣時而苦悶的過程

中，首先要感謝的是指導教授傅立成老師，不管多忙碌、多累，傅老師總是會撥

出時間給予我細心的指導與教誨，在研究上，也提供了我一個很自由的環境，讓

我能無顧慮的在自己有興趣的領域發揮。另外，我要感謝四位口試委員，臺大資

工所朱浩華教授，文化大學建築系溫琇玲教授，臺大社工系馮燕教授及資策會網

多所馮明惠主任，對於我論文上提供了許多寶貴的建議，使得本篇論文更加完善。

 除此之外，也要感謝實驗室的夥伴們。尤其是小陸學長及黃老學長，能夠不

辭辛勞的聽我講述自己不完善的想法並引導我，兆麟學長及峻鋒學長也在智慧家

庭組上給予我很多指引和鼓勵，對於我的論文研究上提供了許多的建議與方向，

讓我受益匪淺。也感謝一同奮鬥的同學們，佳委、振勛、嘉銘、禹安與一航，謝

謝你們陪我走過這段求學歷程。還有學弟意函，在我的論文實做上幫了我不少忙，

讓我減輕了不少負擔。還有實驗室的其他成員，宗哲學長、恩偉學長、益銘學長、

士桓學長、亞文、忞蔚、思穎、擂茶、macaca 與學謙，陪我在實驗室生活。還有

其他系上的同學，brooky、salt、家俊、文芝、祖佑、atwood、188、啟嘉、栗子，

陪我一起討論、玩樂。

 最後，我要感謝我的家人，尤其是我的父母，有您們全力的支持與鼓勵，我

才能無後顧之憂的完成學業。

 ii

中文摘要

 本論文提出在智慧環境中學習及便是人類日常生活的問題，先前大部分的方

法先收集人類行為的資料並學出其模型，然後再使用學得的模型來辨識人的行

為，然而，人的行為習慣及環境的佈置可能會隨著時間而發生改變，造成行為的

模式發生改變，這時舊有的辨識用的行為模型便過時了，使辨識率降低，必須要

重新學習新的行為模型，但是重新收集學習用的行為資料並給予對應的行為標籤

是件非常煩人且容易出錯的工作，在這樣的情況下，在更新行為模型時能降低人

為的指導工作份量是件非常重要的事，本論文提出一個可以自我調整行為模型的

行為辨識方法，它可以在動態的環境下同時辨識多種行為，並以較少的人為指導

來跟著環境變動調整行為模型。

 關鍵字: 行為辨識、機率推論、動態貝氏網路、主動式學習

 iii

ABSTRACT

 This thesis addresses the problem of learning and recognizing human daily

activities in smart environment. Most approaches offline learn the activity model and

recognize the activity in an online phase. However, the activity models can be outdated

when the human behavior and environment deployment change. It is a tedious and

error-prone job to recollect data for retraining the activity models. In such case, it is

important to adapt the learnt activity models under one context to another context

without too much supervision. In this thesis, we present a self-reconfigurable approach

for activity recognition can reconfigure a previously learned activity model to infer

multiple activities under a dynamic environment meanwhile requiring minimal human

supervision for labeling training data.

 Keyword: Activity Recognition, Probabilistic Reasoning, Dynamic Bayesian

Network, Active Learning

 iv

CONTENTS

口試委員會審定書 ...#

誌謝 ..i

中文摘要 .. ii

ABSTRACT .. iii

CONTENTS ...iv

LIST OF FIGURES.. vii

LIST OF TABLES...x

Chapter 1 Introduction..1

1.1 Motivation ..1

1.2 Challenges of Activity Recognition..3

1.3 Objectives ...4

1.4 Related Work ..6

1.5 Thesis Organization ..8

Chapter 2 Preliminaries ..10

2.1 Problem Statement..10

2.2 System Overview..11

2.3 Dynamic Bayesian Networks (DBNs)..14

2.3.1 DBNs: Representation...15

2.3.2 Inference in DBNs...17

2.3.3 DBNs: Learning ..19

2.4 Sufficient Statistics ...20

2.5 Semi-supervised Learning ..20

 v

2.5.1 Expectation-Maximization (EM) algorithm..21

2.6 Active Learning ..22

2.7 Online Learning..23

Chapter 3 Activity Recognition System in a Static Environment.....................24

3.1 Overview ..24

3.2 Environment Sensors and Interaction Detectors ..27

3.2.1 Sensor Deployment ...27

3.2.2 Interaction Detectors ...30

3.3 Activity Modeling...32

3.3.1 Feature Generation ..36

3.3.2 Activity Model ..38

3.4 Model Learning ..41

3.4.1 Feature Selection...42

3.4.2 Parameter Estimation ..43

3.4.3 Used Sufficient Statistics in Learning Procedure................................44

3.5 Activity Recognition...44

Chapter 4 Activity Recognition System in a Dynamic Environment46

4.1 Overview ..46

4.2 Self-reconfiguring...50

4.3 Active Learning for Activity Label Requirement...53

Chapter 5 System Evaluation..55

5.1 Experiment Environment..55

5.2 Evaluation Description ...58

5.3 Evaluation Metric ...59

5.4 Experimental Result and Discussion ..62

 vi

5.5 Fall Detection Application..67

Chapter 6 Conclusion ..69

6.1 Summary...69

6.2 Future Work ..70

6.2.1 Improving Environment Sensors...70

6.2.2 Reducing the Learning Effort..71

6.2.3 Improving the Self-reconfigurable Activity Recognition System.......71

REFERENCE ..73

 vii

LIST OF FIGURES

Fig. 2-1 System overview for the proposed self-reconfigurable activity recognition11

Fig. 2-2 An example of a DBN with first order Markov assumption15

Fig. 2-3 Four main kinds of inference in DBNs. The slash region is the interval we

have data, t is the current time instant, T is the sequence length, and the

arrow is the time step we want to estimate. ..17

Fig. 3-1 System overview of activity recognition system for static environment (does

not include the red dotted lines and the limpid part)25

Fig. 3-2 (a) The circuit board (Taroko) with a programmable microprocessor that can

control the sensors connected to it and preprocess the measurements of the

sensors and send the information wirelessly. (b) The circuit board module

can connect various types of sensors (at most eight sensors) and powered

through USB interface (The USB can connect to a battery or a socket).28

Fig. 3-3 Examples of how sensors and the corresponding circuit board deployed in

the environment. ...29

Fig. 3-4 An example of raw data from a pressure sensor and the corresponding

interaction detectors..30

Fig. 3-5 Model (a) models the long-term dependencies in the model level, and model

(b) models the long-term dependencies in the feature level.35

Fig. 3-6 An example of interactions and the corresponding multiple-interaction

feature ...36

Fig. 3-7 An example of interactions and the corresponding bi-gram features37

Fig. 3-8 Our activity model of a Dynamic Bayesian Network (DBN) with first order

 viii

Markov chain assumption. Each time instant t is the timing of the event that

any feature state changed. (a) 1 2{ , ,..., }LID ID ID
t t t tO f f f= is the state vector

of all features at time t, 1 2{ , ,..., }N
t t t tA A A A= is the activity vector at time t

that we want to estimate. (b) ()1 2{ , ,..., }L iIDID IDi
t t t tO f f f= is the state vector

of selected features of activity type iA , i
t tO O⊆ , and we assume each type

of activities are independent. (c) The observation distribution of i’th type

activity: we assume each observed feature jID
tf is independent.39

Fig. 3-9 The learning procedure of the activity model...41

Fig. 3-10 The recognition procedure of the activity model..45

Fig. 4-1 System overview of self-reconfigurable activity recognition system...........48

Fig. 4-2 The learning procedure of reconfiguring the activity model.50

Fig. 4-3 The self-reconfiguring procedure with active learning (selecting

hard-to-predicted instances to request the corresponding activity labels)....53

Fig. 5-1 Overview of the experiment environment: NTU Attentive Home Lab. There

are two environment changes, first, we add a TV in the bedroom (painted

with green), and second, we swap the chairs in the bedroom and study room

(painted with yellow)..56

Fig. 5-2 Some photographs of the experiment environment.57

Fig. 5-3 An example of the “The percentages of time period that correctly classified”

method used to evaluate the activity recognition system. This measures the

amount of time that the state of activity is correctly classified during the

duration of the label. ...60

Fig. 5-4 Examples of “How many times that correctly classify the activities?”

method used to evaluate the activity recognition system. This measures the

 ix

number of operations required to transform the predicted label string into

the ground-truth label string (matched if the labels have overlap time period,

ignore the time length, only care about counts). ...61

 x

LIST OF TABLES

Table 3-1 An example of interaction detecting events ...31

Table 5-1 Properties of sensors deployed in the NTU Attentive Home Lab56

Table 5-2 The list of types of activities aimed in this experiment. “On” means the

activity is happening, “Off” means the activity is not happening, and

“Unfocused” means the activity is occurring but cause the user’s attention.58

Table 5-3 The recognition performance before any environment changes. The length

of the data set is about two days. ..63

Table 5-4 The recognition performance after environment changes: (1) adding a TV

in the bedroom (painted with green in Fig. 5-1), (2) swap the chairs in the

bedroom and study room (painted with yellow in Fig. 5-1). The length of

this data set is about 1.5 days. ..65

Table 5-5 The recognition performance after reconfiguration. The length of training

data set for reconfiguring is about 3.5 days. The length of testing data set is

about 2 days. ...66

Table 5-6 The recognition performance of the fall detection67

Chapter 1

 1

Chapter 1

Introduction

1.1 Motivation

 As the advancement of computer technology brings computer into human daily life,

developing various context-aware applications is a key issue to improve the quality of

life.

 Health Care

 As the aging of population and the lacking of manpower, it is more and more

important to make elderly people be able to live independently. The system will firstly

monitor and gather the statistics of human daily behavior. Then, it will use the

information to give health promotions or to notify elderly people when they forget to

perform routine activities of daily living.

 Children Care

 There are more and more double-income families, and the parents are suffering

from giving consideration to both work and children. The system can monitor the

children’s activities, and it will launch a warning immediately, when the children do

dangerous or inappropriate activities (referring to their ages). Moreover, it can record

Chapter 1

 2

the children’s activities and report the information to their parents.

 Security and Surveillance

 The system can build models of users’ behavior over time and detect unusual

events. Moreover, the system can differentiate users’ identity by matching the behavior

models.

 (1.1)

 Home Automation

 In order to make inhabitants feel more comfortable, the system will predict users’

activities and provide adequate services automatically (e.g. switching on a light when a

resident is studying and the environment is dim).

 Human-computer Interface

 The smart environment systems have to interact with users. Real time activity

recognition can help the system to present information to the users at the right time, and

recognize user input.

 Recognizing human activities is a key part to facilitate the context-aware

applications. In general, an activity is a sequence of interactions between residents and

objects in the environment. Sensors are deployed in the environment to sense these

interactions such that the activity models can be learned by the activity recognition

system. The activity models, which represent the relationship between interactions and

activities, are further used to infer residents’ activities. In order to associate semantic

meaning with activities, we have to manually label the training data from sensor during

the learning stage. It is a tedious, interruptive and error-prone job for end users to label

the training data. Since we can not predefine the users’ environment, the system can not

be learned in advance. Instead, it needs to be learned under the users’ situation. Even

worse, the environment is usually dynamic in nature (e.g. adding or removing some

Chapter 1

 3

objects, using objects with different purposes, etc.), which means that the relationship

between interactions and activities may change with time. In this condition, the activity

models need to be updated. In this thesis, we want to minimize the labeling effort from

the end users when the activity models need to be updated.

1.2 Challenges of Activity Recognition

 To recognize activities, the activity models that capture the structure of activities

must be developed. However, the high variations in both human actions and the

environment make the structure of activities hard to predefine. There are many human

behavior and environment attributes that present the challenges for activity recognition:

 Multiple residents

 When there are multiple residents in the environment, the complexity of data

association makes it hard to track every resident at the same time.

 Multitasking

 The resident often performs multiple activities simultaneously while some of them

only engage little attention.

 Periodic variations

 Human behavior affects how they perform activities, and the behavior varies

periodically (days, weeks, months, and even seasons). For example, a resident may

wake up early on weekdays and late at the weekend.

 Time scale

 Humans perform activities in a very wide range of time scale, and it may vary with

many reasons. It is impossible to know and consider all reasons.

 Incomplete activity

Chapter 1

 4

 One activities may be interrupted by another that has caught resident’s attention,

and it is hard to know whether he will come back to finish the original one.

 Environment variations

 The development of the environment also affects the residents’ behavior. The high

variations of environment make humans have many ways to perform activities, and we

can not know every kind of variation in advance.

 Representation power and complexity

 Different types of activities have different complexity. So many variables may

affect how an activity will be performed, such as sequential order, time, location, human

habit, etc. As we consider more variables, the representation ability of the activity

recognition system is higher, but the complexity is also higher and causes more

problems. Because we can not now the users’ situation in advance, the trade-off between

representation power and complexity is very hard to decide.

1.3 Objectives

 The main goal of the activity recognition system in this thesis is: “On-line

recognizing and recording daily activities in the home setting.” To make the system

have the capability to recognize activities, we need to build activity models that

represent knowledge about the environment and the relationships between the

environment and human activities first. In addition, the activity models can be outdated

when the human behavior and environment deployment a change. In such case, it is

important to adjust the learnt activity models under one context to fit the new context

without too much supervision. We propose an activity recognition system which reaches

the following objectives:

Chapter 1

 5

 To build a flexible activity model

 Our system will gather two kinds of data: environment sensor data and activity

labels. We use these data to build models for the relationships between interactions and

activities. Our system can recognize activities based on the activity model. In addition,

the activity model needs to have high flexibility so that it can easily be updated.

 To on-line recognize activities in the environment

 Some context-aware applications, such as home automation, security, and

human-computer interface, need real-time activity recognition. Thus, our system must

on-line recognize activities and provide the information to those applications.

 To self-reconfigure the activity model

 In a real smart home, the environment is dynamic in nature. Deployment of various

devices may change over time. These changes we categorized into wto groups:

1. Changes of sensor deployment: This will directly affect the measurement

space from sensors. For example, after adding or removing some sensors, the

activity recognition system should properly respond to such a change so that

the previously learned activity model can be adapted and then be applied to

the new environment (, which is similar to but not totally the same as the old

one).

2. Changes of object deployment: This affects users’ interactions with objects;

namely, the relationship between sensor measurements from the objects and

human activities may change. For example, after the contents of a cabinet are

changed, and then opening the same cabinet does not necessarily mean the

same purpose any longer.

In a dynamic environment, an activity model needs to be retrained each time when any

deployment changes. It becomes important for the system to keep as much knowledge

Chapter 1

 6

from the old activity model as possible in response to the deployment change so that the

activity model can automatically adapt (hereafter called self-reconfigurable) to the

change. In addition, collecting training data and labeling them is a tedious and

error-prone job. This motivates us to minimize the number of labeled instances for

retraining.

 To interact with residents actively for improving the system performance

 In order to further improve the performance of self-reconfiguring, the system

selects training data which are recognized with low confidence and actively request

correct labels from users. Meanwhile, it can reduce the overall retraining effort.

1.4 Related Work

 From our survey of prior approaches for activity recognition, we roughly divide

them into two main categories. In the first category [1-8], they predefined what activity

classes they want to recognize, and designed the activity models to capture the temporal

characteristics of activity from their prior knowledge of the environment and activity

definition. Most of previous approaches in this category were fundamentally

grammar-driven (see e.g. [1, 5, 6, 9] and the references therein). They explicitly

modeled activity structures followed by learning model parameters from training data,

or by mining from the Web or commonsense databases [10, 11]. However, the activity

structures were generally not known in advance (although [10, 11] automatically mining

activity structures from the Web, but the mined models were for general purpose, and

may not suit to all users’ situations), because we often cannot know the situation of the

environment beforehand, which makes it unlikely to design a generalized structure for

all environments. Therefore, it is more desirable to discover the activity structures from

Chapter 1

 7

training data, not statically defined in advance. Moreover, if the environment changes, it

is necessary for users to adapt to the change by re-labeling the data for training the

models. That is, each time any change in users’ behaviors or the environment, users

need to label new data for retraining the models. However, the change may exceed

developers’ prior expectations; for example, users may perform an activity in different

ways from time to time, which will cause bad performances of the static model.

 In the second category[12-17], they automatically extracted activity structure from

training data by computing the local event statistics rather than by pre-defined (see e.g.

[16, 17] using Latent Semantic Analysis [18-20], [13, 14] using n-grams [21], and

[22-24]using Vector Space Model [25]). Because the resultant activity categories were

automatically mined from the data, these approaches did not know or may be not able to

label resultant activities with their corresponding semantic meaning. The representation

power of the feature spaces was limited by the ability to capture the characteristics of

activity structures only up to some fixed (gross-grained) resolution. Furthermore, since

the representation power of the feature is the order over event statistics, the

computational complexity would grow exponentially. Moreover, these approaches

entailed a unique feature space that computed from training data (not easy to change);

when the environment changes, the original feature space may not be appropriate for the

new environment; therefore, it needed to reconstruct a new feature space completely.

 In order to address the challenges of the high variation of activity structures and

dynamic environment, we proposed an activity recognition approach that can be flexible

to adapt to different contexts. Our approach first generates various features with

different representation power. It will learn the corresponding meaning (activity) of the

each feature in learning stage and select features with high discriminative power that

further used in recognition stage. All kinds of features will be stored for training and

Chapter 1

 8

dynamically used for recognition after training, thus they can be flexible to adapt to

different conditions. When the environment changes, we assume that the change

happens locally, not entirely covering the whole environment, therefor, we can apply

Expectation-Maximization (EM) [26] strategy to self-reconfigure the activity model. In

order to further improve the performance of self-reconfiguration from the EM strategy,

the system takes advantages of active learning [27-31] to select potentially good

training data for querying correct labels from users, thus reducing the overall retraining

effort. Finally, to sum up, this self reconfigurable approach for activity recognition can

reconfigure a previously learned activity model to infer multiple activities from multiple

residents under a dynamic environment meanwhile requiring minimal human

supervision for labeling training data.

1.5 Thesis Organization

 This thesis consists of six chapters. The rest of this thesis is organized as follow:

Chapter 2 presents the problem statement, system overview, and background knowledge

of this thesis, including Dynamic Bayesian Networks (DBNs), semi-supervised learning,

active learning, and incremental learning.

 Chapter 3 explains how and why the components of the activity recognition system

are design and implemented.

 Chapter 4 analyzes how the environment dynamics affect the activity recognition

system, and shows how the system self-reconfigure with less supervision.

 In Chapter 5, the proposed activity recognition system is actually experimented

and evaluated in a real home environment.

 Finally, Chapter 6 summarizes conclusions of this work, and offers some

Chapter 1

 9

suggestions for improving the current system in the future.

Chapter 2

 10

Chapter 2

Preliminaries

2.1 Problem Statement

 In a dynamic environment such as homes and offices, there can be multiple

activities occurring simultaneously. The problem of recognizing multiple activities can

be formulated as estimating ()
1:(| ,)k

t tP A z M , which denotes the probability distribution

of activity vector tA at time t given the sensor observations 1:tz from time 1 to time t,

and the current activity model M(k). To be more specific, tA is an activity vector of N

activities that we want to recognize and is defined as 1 2{ , ,..., }N
t t t tA A A A= , 1:tz are the

measurements collected so far and can be expressed as 1: 1 2{ , ,..., }t tz z z z= where

()1 2{ , ,..., }E tIDID ID
t t t tz z z z= is the measurements of sensors at time t, and the number of

sensors ()E t will vary with time due to deployment change. ()kM is indexed with k

(which is the times of the system reconfiguring) and models the relationship between

sensor measurements and activities. It can be updated from old model (1)kM − and the

previously collected training data set ()kD .

Chapter 2

 11

 Activity model ()kM needs to be reconfigured as soon as possible in response to

any change of deployment. One of our goals is to minimize the labeling effort from end

users. Each time the activity model ()kM is to be reconfigured, we want to select the

instances that can maximally reduce the expected error rate from the training data set D(k)

to query the users about their corresponding labels.

2.2 System Overview

 As show in Fig. 2-1, the purposed activity recognition system has three main

components, including sensing, model learning, and recognition. In the sensing

Deployment
Changes

Sensing

Sensors

Interaction
Detectors

Training
Data

Collector

Model
Learner

Activity
Recognizer

Raw Data

Query

Training Data

Interaction

Label

Output

Model
Learning Recognition

Sufficient
Statistics

Activity
Models

Feature
Generators

Feature

User

Belief of
Activity Vector

Changes of
Sensor

Deployment

Changes of
Object

Deployment

System
Upgrading

Define New
Types of

Interaction

Add Features
with Higher

Representation
Power

Fig. 2-1 System overview for the proposed self-reconfigurable activity recognition

Chapter 2

 12

component, sensors are installed on objects to sense the status of the objects. Sensor are

connected to a circuit board, which will preprocess the raw data into interactions by

interaction detectors (which are defined by the designer of the sensors) and then

wirelessly send the interaction information to the recognition system. An interaction is a

description about how the object is used; it is the basic element of an activity. The

recognition system collects the interactions from sensors around the environment and

then finds the relationships between interactions by feature generators. A feature is a

description about how multiple interactions are triggered.

 In the model learning component, the recognition system correlates the observed

features and activity labels by learning the activity model from training data. The

training data collector continuously stores the observed features and then off-line

requests the activity labels from the users. The model learner processes the training data

into sufficient statistics (which are the basic elements used to construct the activity

model) and then stores them instead of entire training data into the database. After

processing the training data, the model learner dynamically constructs the activity

model from the sufficient statistics in the database.

 Finally, the recognition component infers on-going activities from current observed

features using the learned activity model and outputs the estimated belief of activities to

further activity-aware applications.

 As show in Fig. 2-1, there are two types of causes that force the recognition system

to update its knowledge about activity: environment changes and system upgrading.

Environment changes will change the measurement space or affect the meaning of

sensor measurement. System upgrading can enhance the recognition system ability to

capture more complex characteristics of activities. It includes defining new types of

interactions and adding features with higher representation power to capture more

Chapter 2

 13

complex relationships between interactions.

 All those causes described above will increase the feature space or change the

meaning of the features, and thus the recognition system need to re-correlate the

observed features and activity labels by retraining the activity model from new collected

training data. As the red line in Fig. 2-1 indicates, the recognition system feeds the

output to the training data collector for further self-reconfiguring the activity model.

The model learner will self-reconfigure the activity model by fusing the new training

data and the old sufficient statistics in the database. In addition, users can correct the

training data for improving recognition performance. The recognition system will

actively request the activity labels of the training data instances which the system hard

to predict the activity labels. By doing this, we can improve system performance with

less supervision.

 The system self-reconfigures the activity model every fixed period or after an

intentional trigger. The procedure of the self-reconfiguration process is as follow:

1. Initially, there is an activity model (0)M , which is initialized by the system or

learned from a pilot training set under a given (and static) environment.

2. In each time period 1k ≥ :

i. The system online recognizes activities using the activity model ()kM

and outputs the results to the data collector and other applications.

ii. The training data set ()kD in the training data collector contains

observed features and corresponding activity belief collected during this

time period k , and the users can correct them from the active query if

necessary.

iii. At the end of this time period k , the system will reconfigure the activity

Chapter 2

 14

model ()kM to a new one (1)kM + using training data ()kD . The data

collection pool will be reset to empty, and k increases by one.

2.3 Dynamic Bayesian Networks (DBNs)

 Sequential data analysis arises in many areas of science and engineering. For

example, in robotics, one may be interested in estimating the location of the robot from

sequential sensor measurements; in speech recognition, one may be interested in

recognizing words from sequential audio input. In this thesis, we are interested in

knowing what people are doing in the environment from sequential sensor

measurements.

 Dynamic Bayesian networks (DBNs) [32] are approaches to analyze sequential

data, which extends the Bayesian network (BN) [33] to handle time series by modeling

sequences of variables. DBNs assume that there is some underlying hidden state of the

world that generates the observations, and the hidden state evolves in time. In this thesis,

the hidden states are activities we want to estimate, and observations are sensor

measurements. In online analysis, where the data arrives in real-time, one common task

is to estimate the current hidden states tX , given all the observations up to the present

time, denoted as 1: 1 2{ , ,..., }t tz z z z= . More precisely, the goal is to compute 1:(|)t tP X z ,

which is referred to as belief state.

 In the following subsections, we will discuss how to represent DBNs, how to use

them to update the belief state and perform other related inference problems, and how to

learn such models from data.

Chapter 2

 15

2.3.1 DBNs: Representation

 A DBN models probability distributions over semi-infinite collections of random

variable, 1 2, ,V V ", where { , , }t t t tV U X Z= are input, hidden and output variables at

time t of a dynamic system. A DBN is defined as 1{ , }B B→ , where 1B is a BN which

defines the prior 1()P V , and B→ is a two-slice temporal Bayes net which defines the

temporal dependencies 1(|)t tP V V+ by a directed acyclic graph (DAG) as follows:

 1 1 1
1

(|) (| ())
N

i i
t t t t

i

P V V P V parents V+ + +
=

=∏ (2.1)

where i
tV is the ith node at time t, and ()i

tparents V are the parents of i
tV in the

graph. The edges in the graph represent dependencies; and there are two kinds of

dependencies, namely, within a time slice and across the time slice, each of them

associated with a conditional probability distribution (CPD). We assume the parameters

of the CPDs are time-invariant, and thus a DBN can be defined by three types of

parameters, initial probabilities, transition probabilities (dependencies across the time

slice), and conditional probabilities within a time slice. The joint distribution of a DBN

with length T and with N random variable in each time slice is:

 1:
1 1

() (| ())
T N

i i
T t t

t i

P V P V parents V
= =

=∏∏ (2.2)

tX

tZ

1tX +

1tZ +

-1tX

-1tZ

-1tU tU 1tU +

Fig. 2-2 An example of a DBN with first order Markov assumption

Chapter 2

 16

 Fig. 2-2 is an example of a DBN with first order Markov assumption (which only

dependency is only on the last time slice). The parameters of this DBN are initial

probability 1()P X , control probability (|)t tP X U , observation probability (|)t tP Z X ,

and transition probability 1(|)t tP X X+ . If we use this DBN to localize the location of a

robot, tU is the control input at time t, tX is the location of the robot at time t, and

tZ is the sensor measurement of the robot at time t. The joint distribution of the hidden

random variables given control input and sensor measurements is:

 1: 1 1 1 1
2

() () (|) (| ,) (|)
T

T t t t t t
t

P X P X P Z X P X X U P Z X−
=

= ∏ (2.3)

 Hidden Markov models (HMMs) is the basic type of DBNs. We can design various

types of DBNs by adding more random variables or dependencies to the DBN to model

more complex dynamic system. For example, in activity recognition; we may consider

higher order of the dependencies, or jointly estimate location and activity [7], or use

multiple sensors [6]. There are many types of DBNs which have been proposed for

various purposes. Factorial HMMs [34] jointly estimate more then one hidden variables

by assuming they are independent (for reducing the computational complexity).

Coupled HMMs [35] model the binary interactions between hidden variables.

Hierarchical HMMs [36] model domains with hierarchical structure and/or

dependencies at multiple time scales. Variable-duration (semi-Markov) HMMs [3]

model the duration as other arbitrary distribution rather than exponential one.

Chapter 2

 17

2.3.2 Inference in DBNs

 As summarized in Fig. 2-3, there are four main kinds of inference problem:

 Filtering

 This is the most common inference problem in online analysis. Given the

observations collected so far, we want to estimate current belief state of the hidden

variables, using Bayes’ filter:

1

1: 1: 1 1: 1

1 1 1: 1

(|) (| ,) (|)
(|) (|) (|)

t

t t t t t t t

t t t t t t
x

P X z P z X z P X z
 P z X P X x P x z

−

− −

− − −

∝

= ∑ (2.4)

There are two assumptions (Makrov assumptions); replacing 1: 1(| ,)t t tP z X z − by

Fig. 2-3 Four main kinds of inference in DBNs. The slash region is the interval we

have data, t is the current time instant, T is the sequence length, and the arrow is the

time step we want to estimate.

Chapter 2

 18

(|)t tP z X by assuming current observations only depend on current hidden variable;

and decomposing 1: 1(|)t tP X z − by assuming current hidden variable only depend on

pervious one (order one Markov assumption). The filtering task can be decomposed into

two steps of recursive computation: prediction, which computes 1: 1(|)t tP X z − , and

update, which computes 1:(|)t tP X z .

 Prediction

 Prediction is to predict the future state, i.e. compute 1:(|)t h tP X z+ , where 0h > is

how far we want to look-ahead. We also can predict the future observations by

marginalizing out hidden variable t hX + :

 1: 1:(|) (|) (|)t h t t h t h t h t
x

P Z z z P Z z X x P X x z+ + + += = = = =∑ (2.5)

 Smoothing

 Smoothing is to estimate the state of in the past given all the observations, i.e.

compute 1:(|)t TP X z for all 1 t T≤ ≤ .

 Viterbi decoding

 Viterbi decoding is to compute the “most probable explanation”, i.e. to compute

the most likely sequence of hidden states given observations collected so far:

1:

*
1: 1: 1:arg max (|)

t

t t t
x

x P x z= (2.6)

By distributive law of multiplication and dynamic programming, we can compute the

Viterbi decoding using forward pass filtering (replace sum with max):

 1 1() (|) max (|) ()t t t t t ti
j P z X j P X j X i iα α− −= = = = (2.7)

where

1: 1

1: 1 1: 1 1:() max (, |)
t

t t t t tx
j P X x X j zα

−
− −= = = (2.8)

Chapter 2

 19

 In activity recognition, these four kinds of inference mechanisms have their

corresponding meaning and applications. Filtering means online tracking human’s

current activity from sensor measurements; prediction means to predict human activity,

which can be used for automatically providing services; smoothing is important for

learning; Viterbi decoding is used to offline recognize human activity, and the output

can be used to gather the statistics of human activity.

2.3.3 DBNs: Learning

 A DBN usually has some free parameters θ , which are used to define initial

probability 1()P X , transition probability 1(|)t tP X X − , and observation probability

(|)t tP Z X . Learning is to estimate these parameters from training data. Suppose that we

have training data (1) (2) (){ , ,..., }KD D D D= , where () ()
()

1: 1:
{ , }k k

k
T T

D x z= and all

sequences are iid, then maximum likelihood estimation (MLE) is to find parameters that

maximize the likelihood to observe the training data:

 * arg max (|) arg max log (|)MLE P D P D
θ θ

θ θ θ= = (2.9)

where the log likelihood of the training data is:

 () ()

11

log (|) log (|) log (|)
K K

k k

kk

P D P D P Dθ θ θ
==

= =∑∏ (2.10)

Another variation is maximum a posteriori (MAP) which includes a prior on the

parameters:

 * arg max log (|) log ()MAP P D P
θ

θ θ θ= + (2.11)

This may be useful when the number of free parameters is much greater than the size of

the training data set. The prior term acts like a regularization term to prevent

Chapter 2

 20

over-fitting.

 Those described above is the case with supervised learning. If the training data set

does not contain values of hidden variable X , then it is unsupervised learning case; if

the training data ()kD arrives with time rather than altogether, it is on-line learning

case. In the following sections, we will describe more in detail about various learning

problems.

2.4 Sufficient Statistics

 In the model learning problems, we want to estimate the free parameters of the

model from training data set by a criterion such as MLE. The parameter estimation can

be derived from some statistics of the training data. A statistic is a well-behaved

function of the data, which is what actually used in calculations or inferences, rather

than the full data set; for example, the sample mean, the sample median, the sample

variance, etc. A statistic is sufficient if it is just as informative as the full data. Once we

have known the sufficient statistic, nothing else, not even the original data, it can tell us

anything more about the parameters. This means in parameter estimation, we can only

store the sufficient statistics rather than whole training data set. For example, if we use a

binomial distribution to model the flipping of a coin, for estimating the parameters of

the binomial distribution, we only need to know the total counts of heads and tails,

rather than the whole sequence of flipping.

2.5 Semi-supervised Learning

 In here, we consider the MLE case as the learning goal, which is finding parameter

Chapter 2

 21

values that maximize likelihood of the training data. Semi-supervised learning problem

is that the training data set consists of labeled and unlabeled samples (or called partially

observed, means values of some random variables are missing). This learning problem

is useful in the case where getting label of the training sample is expensive (such as in

activity recognition, requesting users’ current activity is very annoying).

 In the partially observed case, the log-likelihood of the training data is:

()

1

()

1

(|) log (|)

log (, |)

K
k

k
K

k

k h

L D P D

 P H h V D

θ θ

θ

=

=

=

= = =

∑

∑ ∑
 (2.12)

where we need to sum up the probability of all kinds of assignments of the hidden

variable H, and ()kV D= means the values of visible nodes are specified by ()kD .

Because the summation of hidden variables makes this equation unable to be

decomposed into a sum of local terms. In the following, we will introduce the

expectation-maximization (EM) algorithm to find the local maximum of the likelihood.

2.5.1 Expectation-Maximization (EM) algorithm

 The basic idea of EM algorithm is to apply Jensen’s inequality to get a lower

bound on the log-likelihood of the training data, and then to iteratively maximize this

lower bound:

()

1
()

()
()

1

()
()

()
1

() () () (

1

(|) log (, |)

(, |)log (|)
(|)

(, |)(|) log
(|)

(|) log (, |) (|) log (|

K
k

k h
kK

k
k

k h

kK
k

k
k h

K
k k k k

k h

L D P H h D

P h D q h D
q h D

P h D q h D
q h D

 q h D P h D q h D q h D

θ θ

θ

θ

θ

=

=

=

=

= =

=

≥

= −

∑ ∑

∑ ∑

∑∑

∑∑)

1
)

K

k h=
∑∑

 (2.13)

Chapter 2

 22

where q is a function such that ()(|) 1k

h
q h D =∑ and ()0 (|) 1kq h D≤ ≤ . Maximizing

the lower bound with respect to q gives:

 () ()(|) (| ,)k kq h D P h D θ= (2.14)

This is called E (Expectation) step, which means calculating the expectation value of the

hidden variable given observation and model parameters; and this makes the bound

tight. Maximizing the lower bound with respect to the free parameters θ is equivalent

to maximizing the expected complete-data log-likelihood:

 () ()

1
(|) log (, |)

K
k k

k h
q h D P h D θ

=
∑∑ (2.15)

This is called M (Maximization) step. In this step, the free parameters are calculated

from expected sufficient statistics (the values of hidden variables are expectation value).

 The whole EM algorithm is iteratively calculating the E-step and M-step until the

log-likelihood of the training data converging to a local maximum. Because the initial

values of the free parameters will greatly influence the convergence, we can try

different initial values of the free parameters to find better local maximum.

2.6 Active Learning

 In many machine learning applications, the most time-consuming and costly task is

the collection of a sufficiently large training data set. Active learning [28, 31] is a

learning mechanism to reduce the requirement of large number of training samples by

actively selecting potentially good samples from a pool under request. In here,

“potentially good” means it can reduce the most the expected error of the model after

training. Most of active learning approaches determine a training sample is good or not

by calculating the hardness to classify the sample, such as normalized entropy of the

Chapter 2

 23

predicted label:

(|) log (|)

()
log ()

X
P X z B X z

H z
N X

−
=
∑

 (2.16)

where z is a piece of unlabeled data, (|)P X z is the distribution of the

corresponding predicted label which is calculated by a model we want to train, and

()N X is number of possible states of the label X .

 In this thesis, we apply active learning to semi-supervised learning, which selects

good training samples from the unlabeled data pool to request the label, thus reducing

the labeling effort from the users.

2.7 Online Learning

 In many real applications, the training data (1) (2) (){ , ,..., }KD D D D= are received

with time, not received totally at once. On-line learning is a learning mechanism that

incrementally learns the model as the new training data are received. In here, we

consider the on-line learning in a semi-supervised learning case. In this case, the EM

algorithm computing the expected sufficient statistics (ESS) needed for the EM update

involve summing over all training cases. [37] modified the EM algorithm that updates

the parameters per little batch of the training data ()kD (called on-line or incremental

EM). In this thesis, because the training data are received continuously, stop less, we

modify the incremental EM to prevent the training data set gets too large that makes the

learning procedure very long.

Chapter 3

 24

Chapter 3

Activity Recognition System

in a Static Environment

 In this chapter, we will detail how the proposed activity recognition system works

in a static environment, including how and why the components are designed and

implemented. In a static environment, the recognition system has to learn only once the

environment has been completely setup. In the next chapter, we will describe how the

proposed recognition system deals with the environment changes.

3.1 Overview

 The design of the proposed activity recognition system considers the following two

objectives:

 Easy to install

 Users may not have clues about how much information in the system they can

access, and the building blocks for the system may not be cost-effective enough to

manufacture, deploy, and maintain. We hope that the system can be easily installed to

Chapter 3

 25

users’ existing environment and do not affect the users too much, thus making the

system widely acceptable to the public.

 Configurable to different environment settings

 Because we can not know the users’ environment in advance, the recognition

system needs to have the ability to configure itself to various situations flexibly.

 Fig. 3-1 shows the overview of the proposed activity recognition system for a static

environment (does not include the red dotted lines and the indistinct component). In

order to reach the objectives described above, the proposed recognition system contains

three major components:

1. The sensing component: The easily installed environment sensors are widely

Sensing

Sensors

Interaction
Detectors Training

Data
Collector

Model
Learner

Activity
Recognizer

Raw Data

Query

Training Data
Interaction

Label

Output

Model
Learning Recognition

Activity
Models

Feature
Generators

Feature

User

Belief of
Activity Vector

Fig. 3-1 System overview of activity recognition system for static environment (does

not include the red dotted lines and the limpid part)

Chapter 3

 26

deployed in the environment for collecting information about how the objects

are used in the environment.

2. The model learning component: The flexible and expansible activity

modeling strategy makes the system can adapt to different situation with less

human supervision.

3. The recognition component: The efficient on-line activity recognition

algorithm can be executed to estimate users’ on-going activities.

 The sensing part includes multi-modal environment sensors that are deployed

around the environment to sense the status of the objects in the environment and

interaction detectors can detect the patterns of state change of the sensors. The feature

generators capture the relationships among interactions. The model learning part learns

the correlations between the observed features and activity labels from collected

training data. The recognition part infers on-going activities from current observed

features using the learned activity model and outputs the estimated belief of activities to

further activity-aware applications.

 During the learning stage, the system collects a batch of observed features

calculated from the sensor measurements, and then it off-line requests the users to give

the activity labels. The model learner creates models of activities based on the

relationship between features and activity labels. In the recognition stage, the system

estimates the belief of activity status from observed features and learned activity models.

The following sections will explain the components of the recognition system in more

detail.

Chapter 3

 27

3.2 Environment Sensors and Interaction

Detectors

 We define activities as sequences of interactions between inhabitants and objects in

the environment where an interaction is a description of how the object is used and is a

basic component of an activity. We deploy various types of sensors around the

environment to sense the status of the objects. Sensors are mounted on the objects and

connected to a circuit board (hereafter called Taroko) which can preprocess the

measurement data and send the results wirelessly to a remote system.

3.2.1 Sensor Deployment

 The goal of sensor system is to design suitable sensors for different types of objects,

to deploy a sufficient number of sensors in the environment, to left unattended, and to

collect synchronized data. In order to achieve this goal, the sensor needs to have the

following characteristics:

1. It is low-cost so that we can afford to deploy a sufficient number of sensors in

the environment.

2. In can send the measurement data wirelessly so that it can be deployed

everywhere.

3. Its size is small so that it can be installed and hidden easily.

4. It has low power consumption so that it can be powered by a small battery and

left unattended for a long period.

5. It has high reliability.

Chapter 3

 28

6. Its module can be replaced by various types of sensors so that it is easily to

customize.

 Fig. 3-2 shows the circuit board of a Taroko and how various types of sensors

connect to it. The board can connect at most eight sensors and is powered through a

USB (Universal Serial Bus) interface (The USB can connect to a battery or a power

regulator). The board includes a microprocessor (along with a programmable flash

memory) that can samples and preprocesses the sensor measurement and sends the

information wirelessly. Various types of sensors can be directly powered from the board

and controlled by the microprocessor. In order to decrease the power consumption and

the network interference, the board sends the information in an event-based manner. Fig.

3-3 is examples of how sensors and the corresponding circuit board deployed in the

environment.

 (a) (b)

Fig. 3-2 (a) The circuit board (Taroko) with a programmable microprocessor that can

control the sensors connected to it and preprocess the measurements of the sensors and

send the information wirelessly. (b) The circuit board module can connect various

types of sensors (at most eight sensors) and powered through USB interface (The USB

can connect to a battery or a socket).

Chapter 3

 29

Fig. 3-3 Examples of how sensors and the corresponding circuit board deployed in the

environment.

Chapter 3

 30

3.2.2 Interaction Detectors

 An interaction is a description of how the object is used. The interaction detector is

a binary function where input is a sequence of measurement and where output is a

binary value that determines whether the specific interaction pattern happens or not. We

can define various types of interactions for each type of sensor based on domain

knowledge. For example, Fig. 3-4 illustrates the raw data of a pressure sensor and the

corresponding responses from interaction detectors. The pressure sensor can measure

how much force is on it, and we can use it to collect the location information of

inhabitants by the change of pressure value. The pressure sensors can be installed in the

floor, sofa, chair, bed, etc. Currently, we have defined two types of interactions on the

pressure sensor, “Pressing” and “Pressing Still”, which means there is a significant

Fig. 3-4 An example of raw data from a pressure sensor and the corresponding

interaction detectors

Chapter 3

 31

pressure on it (may can be interpreted as someone sitting on it) and there is a significant

pressure on it and no change for a while (may can be interpreted as someone sitting on it

without moving for a while) respectively. The interaction detector of “Pressing” is a

function that determines whether the filtered pressure measurement is greater than a

threshold or not. The interaction detector of “Pressing Still” is a function that

determines whether the filtered pressure measurement is greater than a threshold and the

variance is less than a threshold or not.

 The functions of interaction detectors can be programmed and run in the

microprocessor on the circuit board. As the measurement data are received, the

interaction detectors will calculate the function described above, and the circuit board

will wirelessly output an event to the system only when function output changes. The

event format is shown in Table 3-1. The event ID is a unique value. The interaction ID

consists of the sensor ID and the interaction type. For example, “P1_Pressing” means

the ”Pressing” interaction on pressure sensor P1, and “C1_Use” means the “Use”

Event ID Interaction ID State Time

1 P1_Pressing On 2008/05/21 19:18:26

2 C1_Use On 2008/05/21 19:18:39

3 P1_PressingStill On 2008/05/21 19:31:55

4 P1_PressingStill Off 2008/05/21 20:22:47

5 C1_Use Off 2008/05/21 20:36:33

Table 3-1 An example of interaction detecting events

Chapter 3

 32

interaction on current sensor C1 (current sensor is installed on the electrical appliance to

measure the current usage). The state attribute records whether the corresponding

interaction occurs or not (On/Off), and the time attribute records the time instant of the

occurrence of the event. Note that although detection of the interactions might have

some delay (caused by the processing data window), but the time attribute of the event

is not affected. For example, in Fig. 3-4, The “Pressing Still” interaction started at time

2T , but detection has some delay (detected at time 3T) cause by the data window of

determining whether the variance is less than a threshold or not, however, the time

attribute of the event which sent to recognition system is still 2T .

 Many types of interaction detectors can be defined for each kind of sensor based on

the domain knowledge. We assume that the designers of sensors are responsible

designing the corresponding interaction detectors.

3.3 Activity Modeling

 The proposed environment sensing sub-system and interaction detectors provide

information about what happens in the environment. The goal of the activity recognition

system is to interpret the sequences of interactions into activity labels. In order to

accomplish this goal, we have to model the relationships between the interaction

sequences and activity labels, and to recognize the activities from newly incoming

interaction sequences.

 The following reasons motivate the design of activity modeling in this work:

 Multitasking

 It is natural that the resident often performs multiple activities simultaneously

although some of them only engage little attention. The recognition system must have

Chapter 3

 33

the ability that recognizes multiple activities at the same time.

 Flexibility to control the complexity of the activity model

 Different kinds of activity have different level of complexity. Even the same kind

of activity may have different characteristics with different levels of complexity under

different environments or associated with different behavior. If we use a complex model

to capture the characteristics of activities, although the model would have high

representation power and could recognize more complex activities, but it also needs a

large number of training data; or it may have bias, and the recognized activity may be

too specific. The high computational complexity may also cause the system bad

performance. On the other hand, if the model is too simple to capture the characteristics

of activities, then the system may not have enough ability to recognize some kinds of

activities. Because we can not anticipate the users’ situation, it is hard to decide the

complexity of the model in advance. Thus, it is very important for the recognition

system to be able to tune the complexity of activity models for different types of

activities flexibly under various situations from learning procedure.

 Semi-supervised learning

 The environment and its furnishings have highly variable layouts, and individuals

can perform activities in many ways. It is impossible to know all kinds of situations in

advance and thus the system has to learn the activity models from residents’ daily life.

At the learning stage, the user has to give the desired output (activity labels) of the input

(detected interactions). However, labeling the training data for model learning is a

tedious and error-prone job. Semi-supervised learning is a learning mechanism that uses

labeled and unlabeled data simultaneously. It allows activities to be represented by

various interactions from different environments and individuals. Furthermore,

semi-supervised learning mechanism can train the model using a less number of labeled

Chapter 3

 34

data and a large number of unlabeled data, and thus reducing the training effort from

end users.

 Probabilistic reasoning

 Probability reasoning is a good way to deal with the uncertainty from the

ambiguous and noisy observations from multiple sensors. Furthermore, the probabilistic

representation of the recognition output can provide more information than yes/no to the

subsequent applications that need the activity information. It also provides a way to

estimate the expected error rate of recognition results.

 Model-based learning

 Model-based learning uses the training data to construct models to represent the

distribution of data. Once the learning procedure finishes, the training data can be

discarded. This can reduce the system memory required to store a large number of data

and also relieve the users’ privacy concerns.

 Real-time performance

 Some subsequent applications may need the real-time activity information. This

requires a trade-off between models, features, and the computational complexity.

 Online learning

 Because of the environment changes and other reasons (which will be discussed in

the next chapter), the recognition system needs to continuously update its knowledge

about the relationships between interactions and activities. In such a situation, the

training data is continuously received, and the learning algorithm needs to efficiently

fuse the old and new coming data to update the activity model, instead of totally

retraining the model.

Chapter 3

 35

 In order to recognize multi-tasking activities, our recognition system aims directly

at recognizing what activities are occurring in the environment by tracking the states of

activities (hereafter called activity vectors) instead of each individual. As shown in Fig.

3-5, model (a) models the dependencies in the model level, if it need to be adjust to

different situation, the whole needs to be retrained; model (b) models the dependencies

in feature level, it can flexibly consider features with different level of dependency, thus

flexibly control the complexity of the model. The recognition system uses various types

of features instead of complex model to capture the different level of complexity of the

characteristics of the activity structure. By doing this, the recognition system can

flexibly control the complexity of the activity model by selecting suitable features with

different representation power in the learning stage rather than changing the entire

model. The recognition system uses Dynamic Bayesian Networks (DBNs) with an

efficient on-line and semi-supervised learning strategy to model the activity. Because

the recognition system selects only the features that have the most influence on the

recognition performance in the learning stage, so the system can on-line recognize

At-1

It-1

At

It

At-2

It-2

At-3

It-3

At-1

It-1

At

It

At-2

It-2

At-3

It-3

V.S.

At

It-1 ItIt-2It-3

4
tF 3

tF 2
tF 1

tF

At

It-1 ItIt-2It-3

4
tF 3

tF 2
tF 1

tF

Activity

Feature

Interaction

 (a) (b)

Fig. 3-5 Model (a) models the long-term dependencies in the model level, and model

(b) models the long-term dependencies in the feature level.

Chapter 3

 36

multiple activities with less computational effort (and shorter delay caused by the data

window of the interaction detectors). The following two sub-sections will describe the

cooperation between feature generation and activity model in more detail.

3.3.1 Feature Generation

 In order to make the recognition system able to control the complexity of the

activity model more flexibly, we propose to represent the model complexity in the

feature level instead of in the model level. We define features with various

representation powers and then select the appropriate features during learning. There are

three types of features:

 Single-interaction feature

Time

Time

Bed
On

Off

TV
On

Off

Time

Bed Off and TV Off

Bed Off and TV On

Bed On and TV Off

Bed On and TV On

Feature

Interaction

T1 T2
T3 T4

Fig. 3-6 An example of interactions and the corresponding multiple-interaction

feature

Chapter 3

 37

 It is the most basic type of feature, and captures the status of a single interaction.

 Multiple-interaction feature

 In some cases, the occurrences of interactions are not independent. For example:

“lying on the bed” may mean “sleeping”, but “lying on the bed” and “turning on the

TV” may mean “watching TV”. This type of feature captures the relationships among

multiple interactions. Fig. 3-6 shows an example of a two-interaction feature.

 N-gram feature

 One of the challenges of activity recognition that is discussed in Section 1.2 is to

capture the temporal information and encode it into the model. This type of feature

captures the temporal information among interactions, for example: “go out” and “come

back” may include the same interactions but with different orders. Fig. 3-7 shows an

example of bi-gram features.

Time

Time

Door
On

Off

Shoe Cabinet
On

Off

Time

Door →

Shoe Cabinet

Bigram Feature

Interaction

On

Off

Time

Shoe Cabinet

→Door

On

Off

T1 T2 T3 T4

Fig. 3-7 An example of interactions and the corresponding bi-gram features

Chapter 3

 38

3.3.2 Activity Model

 As the feature generation part generates various types of features that capture the

temporal characteristics of activity and the relationship among interactions, the activity

model correlate the features and activity labels. The activity model is depicted in Fig.

3-8 as a Dynamic Bayesian Network (DBN) with first order Markov chain assumption.

Each time instant t is the timing of the event that any feature state changed. As shown in

Fig. 3-8 (a), 1 2{ , ,..., }LID ID ID
t t t tO f f f= is the state vector of all features at time t, which

is the observation of this model, 1 2{ , ,..., }N
t t t tA A A A= is the activity vector at time t that

we want to estimate. At each time instant, the activity vector tA is estimated from the

observation tO , and the temporal dependency (from tA to 1tA +) is used to filter the

recognition result for reducing the effect of noise. Fig. 3-8 (b) shows that our activity

model selects useful features for every activity types. ()1 2{ , ,..., }L iIDID IDi
t t t tO f f f= is the

state vector of selected features of activity type iA , and hence i
t tO O⊆ . For

simplification, we assume that the occurring of each type of activities is independent;

and thus the state transition probability distribution of each activity type is independent:

 1 1 1 1 1
1

(| ,) (|) (|)
N

i i i i
t t t t t t t

i

P A A O P A A P A O+ + + + +
=

=∏ (3.1)

Fig. 3-8 (c) shows the observation distribution of each type of activity. We assume each

observed feature jID
tf of each activity type is independent, and thus the observation

distribution of ith type activity at time instant t is defined as:

()

1

(|) (|)j
L i

IDi i i
t t t t

j

P A O P A f
=

=∏ (3.2)

Chapter 3

 39

1tO −

1tA −

tO

tA

1tO +

1tA +

(a)

2
1tA −

2
-1tO

1
N
tA −

-1
N
tO

1tO −

1
1tA −

1
-1tO

2
tA

2
tO

N
tA

N
tO

tO

1
tA

1
tO

2
tA

2
1tO +

N
tA

1
N
tO +

t+1O

1
tA

1
1tO +

(b)

1
i
tA −

i
tA 1

i
tA +

1
1

ID
tf −

2
1

ID
tf −

()
1

L iID
tf −

1ID
tf 2ID

tf ()L iID
tf 1

1
ID

tf +
2

1
ID

tf +
()

1
L iID

tf +

(c)

Fig. 3-8 Our activity model of a Dynamic Bayesian Network (DBN) with first order

Markov chain assumption. Each time instant t is the timing of the event that any feature

state changed. (a) 1 2{ , ,..., }LID ID ID
t t t tO f f f= is the state vector of all features at time t,

1 2{ , ,..., }N
t t t tA A A A= is the activity vector at time t that we want to estimate. (b)

()1 2{ , ,..., }L iIDID IDi
t t t tO f f f= is the state vector of selected features of activity type iA ,

i
t tO O⊆ , and we assume each type of activities are independent. (c) The observation

distribution of i’th type activity: we assume each observed feature jID
tf is

independent.

Chapter 3

 40

 The advantages of this activity model are as follow:

 Probabilistic representation

 The probabilistic representation has the ability to capture the uncertainty, and it can

be used to calculate expected error for making optimal decisions.

 Combines prior knowledge and observations

 It combines the prior distribution (recognition result of last time instant) and the

observation distribution. This reduces the effect of observation noise.

 Simple recognition algorithm

 The independent assumptions of the observation and long-term dependency (we

extract the dependency into feature level) greatly simplify the on-line recognition

procedure. This makes the system be applicable to real-time recognition.

 Online learning with fast update

 The model parameters can be on-line updated (just accumulate the counting). This

offers a possibility for adapting the activity model to various variations over time.

 Multi-label classification

 The recognition system tracks the state of each activity over time, and thus each

data instance can have multiple activity labels. This makes the system able to handle the

multitasking situation.

 Flexibly using features with different complexity

 The system can use various features with different representation power to capture

the characteristic of an activity. This allows the recognition system to be able to flexibly

tune the complexity of the model for different types of activity under various situations

by only changing the connections of features, not the entire model.

Chapter 3

 41

3.4 Model Learning

 In this section, we will discuss how the system selects important features for each

type of activity and learns the parameters of activity model from labeled data. For

simplification, we assume that the user only can edit activity label at the time instant

when the event occurs, and the activity labels are unchanged during two successive

events (the same as our recognition system).

 Fig. 3-9 shows the learning procedure of the activity model. First, in training data

collection, the system collects the observed features (preprocessed data) for a time

period, and then requests the corresponding activity labels from the users. Second, the

system calculates the sufficient statistics of the collected training data which will de

used in feature selection and parameter estimation. Third, the system constructs the

activity model by selecting useful features of every activity types. Fourth, the system

estimates the parameters of the activity model. In the following three subsections, we

will detail the three components of the learning procedure: feature selection, parameter

estimation, and the final one is how the sufficient statistics (which are used in feature

selection and parameter estimation) are calculated.

Fig. 3-9 The learning procedure of the activity model.

Chapter 3

 42

3.4.1 Feature Selection

 As the feature generators generate various features with different representation

power, the system selects the features that have the most influence on the recognition

performance during learning stage. In feature selection, the system selects useful

features for every activity type by computing the corresponding weight. Because each

state of a feature has different influence (for example, if we observe usage of the

microwave, we may believe there is a “preparing food” activity happening; however, if

we do not observe the usage of the microwave, because there exist other means for

“preparing food”, then this observation will not influence the belief for “preparing food”

activity), thus they have different weights. First, we define the weight of a feature j

with state jf to activity type i as follows:

 (,)() (,) log
() ()i i

i i j j
j j i i j j

i i i j j
a A

P A =a F =fw F f P A =a F =f
P A =a P F =f∈

= = ∑ (3.3)

where the probabilities are calculated as follows:

 ,(,)
,

i j

i i j j
i i j j

i j

a A ,f F

S(A =a F =f)P A =a F =f =
S(A =a F =f)

∈ ∈
∑

 (3.4)

 ()
i

i i
i i

a A

S(A =a)P A =a =
S(a)

∈
∑

 (3.5)

 ()()
()

j

j j
j j

f F

S F =fP F =f =
S f

∈
∑

 (3.6)

where the S function is the sufficient statistics calculated from training data set (we will

describe how the calculation is done in Subsection 3.4.3). This weight measures the

degree of dependency between j jF f= and iA , where greater value means greater

Chapter 3

 43

dependency, and thus higher influence.

 After computing the weights of every feature value on every activity type, the

system selects the useful features by clustering all the weights into two groups, selected

and non-selected.

3.4.2 Parameter Estimation

 After feature selection, the structure of the activity model is constructed, and the

next step is to estimate the parameters. There are three types of parameters in the

activity model needed to be estimated: initial probability π , transition probability α ,

and observation probability β . We use maximum likelihood estimation (MLE) to

estimate theses parameters:

, ,

{ , }
{ , , } arg max (| , ,)

M G
P D

π α β

θ
θ π α β π α β

=
= = (3.7)

where G is structure of the activity model, θ is the parameters we want to estimate,

and D is the training data set. The training data set 1:{ , }t t t TD O A == consists of

observed feature tO and corresponding activity labels tA at each event time instant t ,

and T is the total length of the training data set D .

 Given 1 2
1 2 1 1 1{ , ,..., } { (), (),..., ()}N

N P A P A P Aπ π π π= = ; the MLE of the initial

probability distribution 1()i
i P Aπ = of the ith activity type is calculated as follows:

 1()
i

i i
i i

i

a A

S(A =a)P A =a =
S(A =a)

∈
∑

 (3.8)

1 1 2 2
1 2 1 1 1{ , ,..., } { (|), (|),..., (|)}N N

N t t t t t tP A A P A A P A Aα α α α + + += = ; the MLE of the

transition probability distribution 1(|)i i
i t tP A Aα += is calculated as follows:

Chapter 3

 44

1

1
1

1

(',)(' |)
(,)

i i
t

i i
i i t t
t t i i i

t t
a A

S A a A aP A a A a
S A a A a

+

+
+

+
∈

= =
= = =

= =∑
 (3.9)

1 2{ , ,..., }Nβ β β β= , () ()1 1{ (|),..., (|)}L i L iID IDID IDi i
i P A F f P A F fβ = = = , where ()L i is

the total number of selected features of ith activity type. The MLE of the observation

probability distribution (|)j jID IDiP A F f= is calculated as follows:

 (,)(|)
(,)

j j
j j

j j

i

ID IDi i
ID IDi i

ID IDi

a A

S A a F fP A a F f
S A a F f

∈

= =
= = =

= =∑
 (3.10)

3.4.3 Used Sufficient Statistics in Learning Procedure

 In the feature selection and parameter estimation, the probabilities are computed

from the sufficient statistics of training data. In here, because our recognition system is

event based, except 1(',)i i
t tS A a A a+ = = is defined as the frequency counting, others

are defined as the accumulated total time period of the event rather than instance

number.

3.5 Activity Recognition

 As shown in Fig. 3-10, in the recognition step, the system continuously calculates

the feature values, and then the recognition algorithm estimates the state of each activity

type using Bayes filter:

 { }
1:

1 1 1: 1
'

(|)
(|) (|) (|)
t t t

t t t t t t t t
a A

P A a O
P A a O P A a A a P A a O− − −

∈

=

′ ′= = ⋅ = = ⋅ =∑ (3.11)

Because we assume the occurrence of each activity type is independent, the

computation of each activity type can be separated. The computation of the ith type of

Chapter 3

 45

activity is:

 { }

{ }

1:

1 1 1
'

()

1 1 1
1 '

(|)

(|) (|) (|)

(|) (|) (|)

i

j j

i

i i i
t t t

i i i i i i i i
t t t t t t t t

a A
L i

ID IDi i i i i i i
t t t t t t t t t

j a A

P A a O

P A a O P A a A a P A a O

P A a F f P A a A a P A a O

− − −
∈

− − −
= ∈

=

′ ′= = ⋅ = = ⋅ =

′ ′= = = ⋅ = = ⋅ =

∑

∑∏

 (3.12)

Fig. 3-10 The recognition procedure of the activity model.

Chapter 4

 46

Chapter 4

Activity Recognition System

in a Dynamic Environment

 In Chapter 3, we detail how the proposed activity recognition system works in a

static environment. In this chapter, we will describe how the proposed recognition

system deals with the environment changes.

4.1 Overview

 In the real environment such as home, it is dynamic in nature. Deployment of

various devices may change over time, and we categorize them into the following:

 Changes of sensor deployment

 Adding or removing objects/sensors in the environment will directly change the

measurement space from sensors, and thus affect the meaning of the corresponding

interactions and features. The activity recognition system should learn the knowledge

about the new sensors and the corresponding interactions and features, and remove the

influence of removed sensors and corresponding interactions and features. In addition,

Chapter 4

 47

the events of adding/removing objects may cause changes of the inhabitant behavior to

perform activities. For example, after adding a TV in front of the bed, lying on the bed

may not just for resting, since it is possible for watching TV. The activity recognition

system needs to re-correlate the features and activities.

 Changes of Object deployment

 This affects users’ interactions or behaviors with respect to objects; namely, the

relationship between sensor measurements from the objects and activities may change.

For example, moving a sofa in front of a TV from the living room to a study room, and

sitting on the same sofa does not necessarily mean watching TV any longer; or after the

contents of a cabinet are changed, opening the same cabinet does not necessarily mean

the same purpose any longer.

 Because of the change of objects and sensors, how an activity is performed in the

training phase may be significantly different from that in the application phase after a

time period. For instance, a user uses a broom to do cleaning activity, and sensors sense

the interactions; however, after a few days, the user buys a new vacuum cleaner and

uses it to clean the house. The training data for the two cleaning activities will be very

different from each other. As a result, activity recognition based on a static activity

model may gradually become obsolete and inaccurate for a dynamically changed

environment. In addition, in order to recognize more complex activities, we can upgrade

the ability of the system to capture more complex characteristics of an activity:

 Define new types of interaction

 In our activity recognition system, interaction is the basic element of an activity,

and it is based on a specific pattern of sensor measurements. We can define new types of

interaction based on an existing kind of sensor to capture another characteristic of an

activity. For example, we can mount an accelerometer sensor on an object to detect the

Chapter 4

 48

movement of the object. In the beginning, we may only define an interaction based on

the accelerometer sensor as follows: whether the object is used or not can be detected by

telling whether the accumulation of acceleration is greater than a threshold or not.

Afterwards, we find that the accelerometer sensor can also be used to detect a specific

motion pattern of movement (such as shaking or falling) involved in other complex

activities (for example, the motion pattern of using a broom to sweep the floor), which

thus defines new types of interaction.

 Add features with higher representation power

 The feature generators generate various features with different level of

System
Upgrading

Deployment
Changes

Sensing

Sensors

Interaction
Detectors

Training Data
Collector

Model Learner

Activity
Recognizer

Raw Data

Query

Training
Data

Interactions

Label

Output

Model
Learning Recognition

Sufficient
Statistics

Activity
Models

Feature
Generators

Features

User

Belief of
Activity Vector

Changes of
Sensor

Deployment

Changes of
Object

Deployment

Define New
Types of

Interaction

Add Features
with Higher

Representation
Power

Model
Learning

Model
Fusion

Query
Selection

Fig. 4-1 System overview of self-reconfigurable activity recognition system

Chapter 4

 49

representation power. However, the complexities of features are bounded within a

threshold (for examples, in multiple-interaction features, we may only consider the

number of level less than three; or in n-gram features, we may only consider bi-gram),

so that the ability of the recognition system to capture complex activity is bounded. We

can raise the complexity threshold to capture more complex characteristics of activities.

 Each time after any deployment changes or system upgrades, the activity model

needs to be retrained from newly collected training data. However, collecting training

data and labeling them is a tedious and an error-prone job. This motivates us to

minimize the number of labeling instances for retraining; and therefore it becomes

important for the system to keep much knowledge from the prior activity model in

response to the deployment change such that the activity model can automatically adapt

(hereafter called self-reconfigurable) to the change, rather than totally retrain the model.

By achieving this self-reconfigurable algorithm, we can reduce the training effort and

shorten the overall training periods. In addition, in order to further improve the

performance of merely self-reconfiguring, the system takes advantages of active

learning to select potentially good training data for querying correct labels from users,

thus reducing the overall retraining effort.

 As show in Fig. 4-1, we keep the influence of the deployment changes and the

system upgrades in the sensing component. It only affects the meaning and space of the

observed features, not the entire model. The activity recognition system just needs to

update the feature selection and parameters of the activity model. The activity model is

updated from newly collected training data, includes observed features and the activity

labels. Because the originally collected training data are unlabeled, we estimate the

expected values of the labels using the previously learned activity model (the red line

which feeds the output of the recognition system to the input of the training data

Chapter 4

 50

collector). Because the new incoming training data may not be rich enough, the

retrained activity model may have bias in such situation, and thus it is very important to

fuse global and local activity model. In here, “global model” means it is trained from all

training data (collected from beginning to present), and “local model” means it is

trained from newly collected training data. The system will store sufficient statistics of

the global activity model for the purpose of fusion. In addition, the recognition system

will select useful examples to query the user in order to labels instances with more

useful value, which will improve the training performance more efficiently (we will

describe in Section 4.3).

4.2 Self-reconfiguring

 The goal of self-reconfiguring is to on-line update the knowledge of activities in

Observed Features

Predicted Activity Labels
(Estimate from Pervious

Learned Model)

“Local＂
Sufficient Statistics

Feature Selection
(Model Construction)Parameter Estimation

Store & Update

Sufficient
Statistics

Probabilities of
“Global＂ Model

Probabilities of
“Local＂ Model

Fusing Probabilities of
“Global＂& “Local＂

Model

()k
localS

()k
localP ()k

globalP

Fig. 4-2 The learning procedure of reconfiguring the activity model.

Chapter 4

 51

the activity model, including feature selection and model parameters. Fig. 4-2 shows the

learning procedure of reconfiguring the activity model. First, the system collects the

training data, including observed features and the corresponding predicted activity

labels (being estimated from the previously learned model). Second, the system

computes sufficient statistics ()k
localS , which are computed from the newly collected

training data and will be used in model construction. Third, the system stores the new

computed sufficient statistics ()k
localS into database and updates ()k

globalS , which is the

sufficient statistics of the global model. Fourth, the system computes the probabilities of

the global model ()k
globalP and the local model ()k

localP (the computation is the same as

those described in Subsections 3.4.1 and 3.4.2), and then fuses them. Finally, the system

selects the useful features and estimates the model parameters using the fused

probabilities.

 At the kth time update of the activity model by the system, the training data set

()
() ()

1:
{ , ()} k

(k) k k
t t t T

D O B A
=

= includes observed features ()
() () () ()

1 2{ , ,..., }k
k k k k

T
O O O O= and

the belief of the predicted activity vector ()
() () () ()

1 2() { (), (),..., ()}k
k k k k

T
B A B A B A B A= ,

where (k)T is the length of the training data set. The system computes the expected

value of the activity label from the previously learned activity model (k-1)M using

Bayes filter:

 { }
() (1)

1:

(1) (1) (1)
1 1 1: 1

() (| ,)

(| ,) (| ,) (| ,)
i

k i (k) i i k
t t t

(k) i i k (k) i i k (k) i i k
t t t t t t

a A

B A =P A O M

P A O M P A A a M P A a O M

−

− − −
− − −

′∈

′ ′= = =∑ (4.1)

where () ()k i
tB A is the state belief of ith type of activity at time instant t in the training

data set (k)D .

 The system computes the expected local sufficient statistics (k)
localS , which includes

Chapter 4

 52

,(k) i i j j
localS (A =a F =f) , (k) i i

localS (A =a) , () ()k j j
localS F =f , and ()

1(',)k i i
local t tS A a A a+ = = , from

()kO and () ()kB A by multiplying the belief of activity vector:

 (),
(k)T

(k) i i j j (k) i i k i i j j
local t event t t

t=1
S (A =a F =f)= {B (A =a)S (A =a ,F =f)}∑ (4.2)

 ()
(k)T

(k) i i (k) i i k i i
local t event t

t=1
S (A =a)= {B (A =a)S (A =a)}∑ (4.3)

 () ()()
(k)T

k j j k j j
local event t

t=1
S F =f S (F =f)=∑ (4.4)

 ()
1(',)

(k)T
k i i (k) i (k) i

local t t t+1 t
t=1

S A a A a {B (A =a') B (A =a)}+ = = =∑ i (4.5)

Where the function ()k
eventS is defined as the time period of the event.

 After computing the expected local sufficient statistics, the system updates the

global sufficient statistics as follows:

 () (1) ()k k k
global global localS S S−= + (4.6)

Then, the system computes the probabilities, ()k
globalP and ()k

localP , for model construction

(the same as those described in Subsections 3.4.1 and 3.4.2), which are computed from

the “global” and “local” sufficient statistics respectively. Next, the system fuses the

probabilities of local and global models according to the following fprmula:

 () () () () ()() (1 ())k k k k k
local globalP w T P w T P= + −i i (4.7)

where ()()kw T is used to control the fused probabilities ()kP so that they can be

closer to local model’s or to global model’s, defined as:

()()() 1
kk Tw T e η−= − (4.8)

where η is the learning rate. If ()kT is longer, the value of ()()kw T is higher, and

thus the fused probabilities ()kP are closer to local model’s. Finally, the system selects

Chapter 4

 53

useful features and estimates the parameters from the fused probabilities ()kP (the

computation is the same as those described in Subsections 3.4.1 and 3.4.2).

4.3 Active Learning for Activity Label

Requirement

 As shown in Fig. 4-3, in the learning procedure of self-reconfiguring, the training

data set are unlabeled. The user can label the unlabeled training data for improving the

performance of the system (the label will directly change the activity belief). In here, we

employ an active learning strategy which will select training instances for requesting

labels with priority. The priority of a training example () () (){ , ()}k k k
t t tD O B A= to

activity type iA is:

Activity labels

User Responded Activity
Labels

(Active Learning)

Observed Features

Predicted Activity Labels
(Estimate from Pervious

Learned Model)

“Local＂
Sufficient Statistics

Feature Selection
(Model Construction)Parameter Estimation

Store & Update

Sufficient
Statistics

Probabilities of
“Global＂ Model

Probabilities of
“Local＂ Model

Fusing Probabilities of
“Global＂& “Local＂

Model

()k
localS

()k
localP ()k

globalP

Fig. 4-3 The self-reconfiguring procedure with active learning (selecting

hard-to-predicted instances to request the corresponding activity labels).

Chapter 4

 54

() ()
()

()
() ()

() log ()
()()

log () () ()
i i

k i i k i i
t t k

k a A unknown
i t i k k

unknown

B A a B A a
L FE D

N A L i L F
∈

− = =
= +

+

∑
 (4.9)

where the first term of the equation is normalized entropy of the activity belief, and

()iN A is the number of states of activity type iA ; the second term of the equation is

the ratio of the number of selected features () ()kL i to the number of unknown (never

seen) features () ()k
unknownL F . Higher value of ()()k

i tE D means the data may be more

uncertain. User can label the training data with priority, so that the label number can be

reduced effectively.

Chapter 5

 55

Chapter 5

System Evaluation

 We have realized the proposed activity recognition system in a home environment,

and design some experiments to evaluate it. In this chapter, we will introduce the

experiment environment, and evaluation metric, and finally we will present the

experiment result and provide a discussion.

5.1 Experiment Environment

 Fig. 5-1 is the overview of the experiment environment: NTU Attentive Home Lab,

and there are some photographs of the environment as demonstrated in Fig. 5-2 . The

properties of the deployed sensors are listed in Table 5-1. Note that the four cameras

deployed on the corners are used to collect ground-truth data. The evaluation data set is

collected in the Lab from several volunteers. One of the volunteers lives in the lab for

several days, and others are visitors. In most of the time, the first volunteer is alone in

the lab, and he can perform activities arbitrarily (arbitrary ordering, multitasking,

interrupted, even null activities). Sometimes, there are more than one resident in the

environment, and they also can perform activities arbitrarily.

Chapter 5

 56

Sensor Type Value Type Purpose

Pressure Mat
Weight on it

(Positive real number)
Location

Current Sensor
Current usage

(Positive real number)
Object usage

Pressure Sensor
Weight on it

(Positive real number)
Location

Reed Switch
Open / Close

(Binary value)
Object usage

Camera Pictures
Only used to collect

ground-truth

Table 5-1 Properties of sensors deployed in the NTU Attentive Home Lab

Fig. 5-1 Overview of the experiment environment: NTU Attentive Home Lab. There

are two environment changes, first, we add a TV in the bedroom (painted with green),

and second, we swap the chairs in the bedroom and study room (painted with yellow).

Chapter 5

 57

Fig. 5-2 Some photographs of the experiment environment.

Chapter 5

 58

 In order to evaluate the abilities of the recognition system dealing with the

environment changes, we design two changes in the experiment environment. As shown

in Fig. 5-1, first, we add a TV in the bedroom (painted with green), and second, we

swap the chair in the bedroom with the one in the study room (painted with yellow).

 In our activity recognition system, the output is the states of each type of activities.

Table 5-2 shows the list of nine types of activities aimed at in this experiment. At each

time instant, the recognition system outputs the status of these nine types of activities.

“On” means the activity is happening, “Off” means the activity is not happening, and

“Unfocused” means the activity is occurring but causes the user’s attention.

5.2 Evaluation Description

 There are four stages in the evaluation:

（1） Initial training stage: We collected two days of training data (0)D to train

Activity Status Activity Status

Watching TV in

the Living
On / Off / Unfocused

Watching TV in

the Bedroom
On / Off / Unfocused

Cleaning On / Off Studying On / Off

Preparing Food On / Off Working on PC On / Off / Unfocused

Go out On / Off Come back On / Off

Sleeping On / Off Take a Drink On / Off

Table 5-2 The list of types of activities aimed in this experiment. “On” means the

activity is happening, “Off” means the activity is not happening, and “Unfocused”

means the activity is occurring but cause the user’s attention.

Chapter 5

 59

the initial activity model (0)M .

（2） Before environment changes: We collected two days of testing data (1)D ,

which the environment is the same as in the initial training stage, to

evaluate the performance of (0)M .

（3） After environment changes: We collected 1.5 days of testing data (2)D ,

which the environment is changed, to evaluate the performance of (0)M .

（4） After reconfiguring the activity model: The system reconfigured the initial

activity model (0)M to (1)M via dataset (1)D and (2)D . Then, we

collected two days of testing data (3)D in the changed environment to

evaluate the performance of (1)M .

5.3 Evaluation Metric

 To evaluate the result of the activity recognition is very difficult. This is because

that the beginning and the end of activities are very fuzzy, so that the ground-truth

values are not very definite. The observers label the same activity may have large

variations. Even more, activities may occur sequentially, in parallel, alternate, and

overlapping.

 We employ two methods to evaluate the accuracy of the activity recognition

system, which consider different features of the recognition system that could be

important for different applications:

 The percentages of time period that correctly classified

 This criterion measures the amount of time that the state of activity is correctly

classified during the duration of the label. Fig. 5-3 shows an example and corresponding

confusion matrix to exemplify the evaluation using this method: (1) 20 % of time

Chapter 5

 60

correctly classified as “Off”; (2) 9 % of time “On” but miss classified as “Off”; (3) 45 %

of time correctly classified as “On”; (4) 11 % of time “Off” but miss classified as “On”;

(5) 15 % of time correctly classified as “Off”.

 There are two measures for evaluating the quality of the recognition results which

are defined as follows, recall:

 True PositiveRecall
True Positive+False Negative

= (5.1)

Time

Ground-truth
Label

Predicted
Label

Off On Off

Off On Off

20%

9%

45%

11%

15%

 Ground-truth

Predicted
On Off

On 45 % 11 %

Off 9 % 20 % + 15 % = 35 %

Fig. 5-3 An example of the “The percentages of time period that correctly classified”

method used to evaluate the activity recognition system. This measures the amount of

time that the state of activity is correctly classified during the duration of the label.

Chapter 5

 61

Precision:

 True PositivePrecision
True Positive+False Postive

= (5.2)

 How many times that correctly classify the activities

 This criterion measures the number of operations required to transform the

predicted label string into the ground-truth label string (matched if the labels have

overlap time period, ignore the time length, only care about counts). Fig. 5-4 shows

examples of the evaluation using this method: (1) the number of operation is zero; (2)

the number of operation is one, because the predicted result inserts an “Off” state

among the “On” state, needs one deletion operation; (3) the number of operation is two,

delete the “On” state among “Off” and insert the ”On” state (because the “On” state in

the predicted result and the “On” state in the ground-truth do not have overlap, they are

treated as not matched).

Off

Time

Ground-truth
Label

Predicted
Label

Off On Off

Off On Off

Off On Off

Off Off

Off On Off

Off On

Edit Distance: 0 Edit Distance: 1
One Deletion

Edit Distance: 2
One Deletion
One Insertion

Fig. 5-4 Examples of “How many times that correctly classify the activities?” method

used to evaluate the activity recognition system. This measures the number of

operations required to transform the predicted label string into the ground-truth label

string (matched if the labels have overlap time period, ignore the time length, only care

about counts).

Chapter 5

 62

 The selected evaluation method depends on the applications that need the

recognition result. For example, “how many times that correctly classify the activities?”

method is more important to applications that intended to notify elderly people when

they forget to perform routine activities of daily living such as take the medicine.

Conversely, a system designed to detect abnormities of activities over time may require

statistics of how long activities occurred in a daily basis.

5.4 Experimental Result and Discussion

 Table 5-3 shows the recognition performance before any environment changes.

“Watching TV in the bedroom” activity is not available because there is no TV in the

bedroom yet. We list the discussion of each type of activities in follows:

（1） Watching TV: It is difficult to distinguish “On” and “Unfocused” because it

is hard to know the residents are really watching the TV or not. We do not

have sensors that provide sufficient information to distinguish them clearly.

（2） Cleaning: Because the tools for cleaning are in the same cabinet, and the

cabinet does not contain other things, each time between the users

successively open the cabinet must be doing this type of activity, thus the

recognition performance is very high.

（3） Preparing food: The bad performance of recall measure is caused by the

reason that users do not continuously using tool for preparing food but

recorded as preparing food activity.

（4） Go out / Come back: These two types of activities have similar interactions

but with different orders. They can be distinguished by the moving

direction of the residents (n-gram feature).

Chapter 5

 63

（5） Sleeping: The pressure sensors measure the bed is used or not by the

pressure value. However, sometimes the distribution of the pressure is too

unbalanced and causes the false negative detection.

（6） Studying: Sometimes the resident may stand up for stretching the body

Activity Recall Precision
Edit

Distance

Watching TV in

the Living

0.86 / 0.99

(On / Unfocused)

0.98 / 0.88

(On / Unfocused)
6 (11)

Watching TV in

the Bedroom
N/A N/A N/A

Cleaning 1 1 0 (4)

Preparing Food 0.65 0.95 6 (2)

Go Out 1 1 0 (14)

Com Back 1 0.82 2 (14)

Sleeping 0.97 0.99 28 (6)

Studying 0.99 0.95 16 (22)

Working on PC
0.99 / 0.97

(On / Unfocused)

0.96 / 0.99

(On / Unfocused)
14 (28)

Table 5-3 The recognition performance before any environment changes. The length

of the data set is about two days.

Chapter 5

 64

while studying for a long time, but not record in ground-truth. Thus causes

some false positive detection.

（7） Working on PC: Similar as “studying” activity, thus the “On” state and the

“Unfocussed” state are not very clear in ground-truth.

 Some types of activities occur in very low frequency, and most of time their states

are “Off” (means not happen). The lack of training data may cause the biased activity

model; the lack of testing data may cause the high variance of measured performance.

 Table 5-4 shows the recognition performance after environment changes: (1)

adding a TV in the bedroom (painted with green in Fig. 5-1), (2) swap the chairs in the

bedroom and study room (painted with yellow in Fig. 5-1). The performance of

recognizing “sleeping” activity is decreased, because after adding the TV in the

bedroom, lying on the bed not only means sleeping any longer. The “watching TV in the

bedroom” activity is still not available because the recognition system does not have

any knowledge about it. Also the performances of recognizing “working on PC” and

“studying” activity are decreased after swapping the chair. Surprised, the performance

of recognizing “watching TV in the living room” also decreased; this is because the

resident changes his behavior: sitting on another chair for watching TV.

 Table 5-5 shows the recognition performance after reconfiguration. The length of

training data set for reconfiguring is about 3.5 days (2 days of the beginning testing data

and 1.5 days of data recorded after environment changes). The length of testing data set

is about 2 days. The result shows that the system has recovered the outdated knowledge

of activity models.

Chapter 5

 65

Activity Recall Precision Edit
Distance

Watching TV in
the Living

0.74 / 0.98

(On / Unfocused)

0.98 / 0.77

(On / Unfocused)
7 (17)

Watching TV in
the Bedroom 0 N/A 2 (2)

Cleaning 0.20 1 2 (4)

Preparing Food 0.63 0.95 19 (7)

Go Out 0.79 1 2 (22)

Com Back 1 1 0 (22)

Sleeping 0.98 0.84 46 (4)

Studying 0.23 0.33 84 (12)

Working on PC
0.43 / 0.81

(On / Unfocused)

 0.21 / 0.77

(On / Unfocused)
27 (60)

Table 5-4 The recognition performance after environment changes: (1) adding a TV in

the bedroom (painted with green in Fig. 5-1), (2) swap the chairs in the bedroom and

study room (painted with yellow in Fig. 5-1). The length of this data set is about 1.5

days.

Chapter 5

 66

Activity Recall Precision Edit
Distance

Watching TV in
the Living

0.88 / 0.98

(On / Unfocused)

0.98 / 0.87

(On / Unfocused)
9 (21)

Watching TV in
the Bedroom

0.72 / 0.97

(On / Unfocused)

0.73 / 0.86

(On / Unfocused)
 4 (13)

Cleaning 0.56 1 4 (8)

Preparing Food 0.72 0.93 13 (12)

Go Out 0.81 0.87 4 (36)

Com Back 0.92 0.89 6 (36)

Sleeping 0.99 0.96 37 (8)

Studying 0.76 0.77 11 (15)

Working on PC
0.71 / 0.84

(On / Unfocused)

 0.81 / 0.90

(On / Unfocused)
18 (56)

Table 5-5 The recognition performance after reconfiguration. The length of training

data set for reconfiguring is about 3.5 days. The length of testing data set is about 2

days.

Chapter 5

 67

5.5 Fall Detection Application

 In this thesis, we focused on recognizing daily activities. However, there are some

types of abnormal activities such as fall also needed to be detected. Because the data

amounts of abnormal activities are very rare, it is impractical to train the corresponding

activity models. In this subsection, we predefine the activity model of fall based on our

knowledge, and use it to detect fall accidents.

 Base on the deployment of the environment (show in Fig. 5-1), we use the cameras

and pressure sensors in the floor to detect fall accidents. The basic idea is:

1. The camera detects is there a person lying on the floor.

2. The pressure sensors in the floor measure the pressure values of the

corresponding area that camera detected. If there is a person on the floor, the

mean of the pressure values will be high; If the person is lying on the floor,

the variance of the pressure values will be low (because the center of gravity

is more stable when lying). Therefore, if the mean of the pressure values is

high and the variance is low, then it is very possible a fall.

Fall Detection Recall Precision

Using camera only 0.88 0.65

Using floor only 0.94 0.92

Using camera and floor 0.92 0.93

Table 5-6 The recognition performance of the fall detection

Chapter 5

 68

3. Combining the result from camera and floor to decrease the false positive

detection.

 Table 5-6 shows the recognition performance of the fall detection. The false

positive rate is decreased (or precision is increased) after combining the detecting result

of camera and floor.

Chapter 6

 69

Chapter 6

Conclusion

6.1 Summary

 This work shows that how to recognize daily activities in the home sitting via

ubiquitous sensors, and how to adapt the activity model to deal with the environment

changes via an active learning assisted semi-supervised learning strategy.

 A flexible activity modeling approach has been proposed for making the

recognition system can easily adapt to different situations. This approach flexibly

incorporates various features with different level of representation power. This makes

the recognition system can automatically tune the trade-off between complexity and

representation power by selecting good features that best classifying the training data.

 Unlike prior work that assume the environment is static, which the recognition

system has to learn only once; in this thesis, we consider the situation when

environment changes, making the proposed recognition system capable of

self-reconfiguring to various situations. In addition, the active learning strategy help the

recognition system requesting activity labels only when real need, and thus reducing the

training effort for users.

Chapter 6

 70

 Although the preliminary results were based on small datasets collected over

several-days period of time under a multi-resident environment, techniques have been

developed that could be applied to various environment to study human behavior.

6.2 Future Work

6.2.1 Improving Environment Sensors

 Capable for identifying residents

 If the sensor can distinguish the user identification who activating it, the

complexity of data association problem in the multi-resident environment could be

reduced. This makes the recognition system capable for dealing with the multi-resident

problem and modeling the interactions between residents for recognizing more complex

activities.

 Incorporating more rich types of sensors

 The most important information for recognizing activities are location and object

usage and different types of objects may need different types of sensors to get these two

kinds of information (for example, we can not use a pressure sensor or a switch sensor

to detect a object is moved or not). It is important to design various types of sensors that

can tape on various types of objects to sense various characteristics of these two kinds

of information.

 Making the whole sensor module more compact and in a single-component

 In order to making the installation of the sensors easier and non-intrusive (do not

influence the use of the object), it is important to making the whole sensor module in a

single-component (do not have any out connected part or wires). Accelerometer sensor

is a good option.

Chapter 6

 71

6.2.2 Reducing the Learning Effort

 Reducing the initial training effort

 In our activity recognition system, it needs complete training data for training the

initial activity model. If the recognition system rudimentary clusters the initial training

data set and then requests the label of each cluster, it would greatly reduce the number

of labels of the initial training data set.

 Designing more rich types of queries

 In our activity recognition system, a request for labeling data is like “Are you

sleeping during time a to time b?” or “What are you doing during time a to time b?”, it

is limited. If the recognition system allows more rich types of queries appropriately, the

user can label the data more flexible and closer to the ground-truth.

 Requesting the label at the right time

 In order to avoid the interruption of user performing activities, our recognition

system offline requests label rather than on-line. However, the user may not remember

the answer very clear (in our system, we assume the user gives labels are correct). If the

system can request the activity label at the right time such as when user just finish an

activity (determine from the activity recognition result), then we can online request the

activity label with less interruption.

6.2.3 Improving the Self-reconfigurable Activity Recognition

System

 Incorporating probabilities representation into interaction and feature

 In our activity modeling, we use various features with different representation

Chapter 6

 72

power to flexibly control the model complexity. However, the drawback is making the

activity model not robust to the sensor noise (because the state of feature is binary, this

makes the system does not model the uncertainty of sensor noisy, only models the

uncertainty of ambiguity in model level). We can incorporate probabilities

representation into interaction and feature, thus modeling the uncertainty of sensor

noisy.

 Fusing more models which learned from various interval of training data

 As mentioned in Section 1.2 , one of the challenges of activity recognition is

periodic variations. In our recognition system, we only fuse two kinds of periods of

models, local and global (more detail in Section 4.2). If we fuse more models which

learned from various types of periods of data, the system may be able to deal with the

periodic variation problem.

 Self discovering complex features

 In our recognition system, the feature generators exhaustively generate all kinds of

features; however, their representation power is bounded in a threshold. If the

recognition system can self discovering complex features from statistics (such as in [14])

rather than exhaustively generate, we may release this limitation.

 Considering the noise of activity label

 In our recognition system, we assume that the user response activity labels are

correct; however, in real scenario, the users may report incorrect labels. If the

recognition system considers the noise of the user reported labels (such as in [27]), it

will more robust in real applications.

REFERENCE

 73

REFERENCE

[1] H. H. Bui, Venkatesh, S., West, G, "Policy recognition in the abstract hidden
Markov model," Journal of Artificial Intelligence Research 17, pp. 451 - 499,
2002.

[2] H. H. Bui, "A general model for online probabilistic plan recognition," in
International Joint Conferences on Artificial Intelligence, 2003, pp. 1309-1318.

[3] T. V. Duong, T. V. Duong, H. H. Bui, D. Q. Phung, and S. A. V. S. Venkatesh,
"Activity recognition and abnormality detection with the switching hidden
semi-Markov model," in IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, (CVPR'05), 2005, pp. 838-845 vol. 1.

[4] S. V. H. H. Bui, and G. West "Layered dynamic probabilistic networks for
spatio-temporal modelling," Intelligent Data Analysis, vol. 3(5), pp. 339-361,
1999.

[5] D. F. L. Liao, and H. Kautz., "Learning and inferring transportation routines," in
Proceedings of the National Conference on Artificial Intelligence (AAAI), 2004.

[6] D. J. Patterson, D. J. Patterson, D. Fox, H. Kautz, and M. A. P. M. Philipose,
"Fine-grained activity recognition by aggregating abstract object usage," in
Proceedings of Ninth IEEE International Symposium on Wearable Computers,
2005. , 2005, pp. 44-51.

[7] D. Wilson, "Simultaneous tracking & activity recognition (STAR) using many
anonymous, binary sensors," in Proceedings of The 3rd International
Conference on Pervasive Computing (Pervasive 05), Munich, Germany, 2005.

[8] N. T. Nguyen, N. T. Nguyen, D. Q. Phung, S. Venkatesh, and H. A. B. H. Bui,
"Learning and detecting activities from movement trajectories using the
hierarchical hidden Markov model," in IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, (CVPR'05), 2005, pp. 955-960 vol. 2.

[9] J. Wu, J. Wu, A. Osuntogun, T. Choudhury, M. A. P. M. Philipose, and J. M. A.
R. J. M. Rehg, "A scalable approach to activity recognition based on object use,"
in IEEE 11th International Conference on Computer Vision (ICCV), 2007, pp.
1-8.

[10] P. William, P. Matthai, B. J. A., and H. A. Kautz, "Learning large scale common
sense models of everyday life," in Proceedings of the Twenty-Second AAAI
Conference on Artificial Intelligence, 2007, pp. 465-470.

[11] M. Perkowitz, M. Philipose, D. J. Patterson, and K. P. Fishkin, "Mining models
of human activities from the web," in Proceedings of the Thirteenth
International World Wide Web Conference (WWW 2004), 2004, pp. 573-582.

REFERENCE

 74

[12] T. X. a. S. Gong., "Beyond tracking: modelling activity and understanding
behaviour," International Journal of Computer Vision (IJCV), vol. 67(1), pp.
21-51, 2006.

[13] R. Hamid, R. Hamid, A. Johnson, S. Batta, A. A. B. A. Bobick, C. A. I. C. Isbell,
and G. A. C. G. Coleman, "Detection and explanation of anomalous activities:
representing activities as bags of event n-grams," in IEEE Computer Society
Conference on Computer Vision and Pattern Recognition 2005, pp. 1031-1038
vol. 1.

[14] R. Hamid, R. Hamid, S. Maddi, A. Bobick, and I. A. E. I. Essa, "Structure from
statistics - unsupervised activity analysis using Suffix Trees," in IEEE 11th
International Conference on Computer Vision, 2007, pp. 1-8.

[15] G. Shaogang and X. Tao, "Recognition of group activities using dynamic
probabilistic networks," in Proceedings of the Ninth IEEE International
Conference on Computer Vision, 2003, pp. 742-749 vol.2.

[16] X. Wang, X. Ma, and E. Grimson, "Unsupervised activity perception by
Hierarchical Bayesian Models," in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR '07), 2007, pp. 1-8.

[17] H. Zhong, Visontai, M., Shi, J., and J. S. a. M. V. H. Zhong, "Detecting
unusual activity in video," in IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR'04). vol. 2 Washington, DC, 2004, pp.
819-826.

[18] S. Deerwester, S. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman,
"Indexing by latent semantic analysis," Journal of the American Society for
Information Science (JASIS), vol. 41, pp. 391-407, 1990.

[19] D. M. Blei, A. Y. Ng, and M. I. Jordan, "Latent dirichlet allocation," Journal of
Machine Learning Research, pp. 3:993-1022, 2003.

[20] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei, "Hierarchical dirichlet
process," Journal of the American Statistical Association, 2006.

[21] F. B. Peter, V. d. Peter, L. M. Robert, J. D. P. Vincent, and C. L. Jenifer,
"Class-based n-gram models of natural language," Comput. Linguist., vol. 18, pp.
467-479, 1992.

[22] N. Ravi, N. Dandekar, P. Mysore, and M. L. Littman, "Activity recognition from
accelerometer data," American Association for Artificial Intelligence, 2005.

[23] C. Stauffer and W. E. L. Grimson, "Learning patterns of activity using real-time
tracking," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.
22, pp. 747-757, 2000.

[24] J. Lester, T. Choudhury, N. Kern, G. Borriello, and B. Hannaford, "A hybrid
discriminative/generative approach for modeling human activities," in
Proceedings of the Nineteenth International Joint Conference on Artificial

REFERENCE

 75

Intelligence, Edinburgh, Scotland, 2005.

[25] G. Salton, A. Wong, and C. S. Yang, "A vector space model for automatic
indexing," Commun. ACM, vol. 18, pp. 613-620, 1975.

[26] A. Dempster, N. Laird, and D. Rubin, "Maximum likelihood from incomplete
data via the EM algorithm," Journal of the Royal Statistical Society, vol. 39, pp.
1-38, 1977.

[27] S. Jianqiang and G. D. Thomas, "Active EM to reduce noise in activity
recognition," in Proceedings of the 12th international conference on Intelligent
user interfaces Honolulu, Hawaii, USA: ACM, 2007.

[28] A. C. David, G. Zoubin, and I. J. Michael, "Active learning with statistical
models," Massachusetts Institute of Technology 1995.

[29] M. Andrew and N. Kamal, "Employing EM and Pool-Based Active Learning for
Text Classification," in Proceedings of the Fifteenth International Conference on
Machine Learning: Morgan Kaufmann Publishers Inc., 1998.

[30] M. Ion, M. Steven, and A. K. Craig, "Active + semi-supervised learning = robust
multi-view learning," in Proceedings of the Nineteenth International Conference
on Machine Learning: Morgan Kaufmann Publishers Inc., 2002.

[31] S. Tong and D. Koller., "Active learning for parameter estimation in bayesian
networks," NIPS, pp. 647-653, 2000.

[32] K. Murphy, "Dynamic Bayesian Networks: Representation, Inference and
Learning," in Computer Science Division. vol. Ph.D.: University of California,
Berkeley, 2002.

[33] O. Pourret, P. Naim, and B. Marcot, Bayesian Networks: A Practical Guide to
Applications. Chichester, UK: Wiley, 2008.

[34] Z. Ghahramani and M. Jordan, "Factorial hidden Markov models," Machine
Learning, vol. 29, pp. 245–273, 1997.

[35] L. Saul and M. Jordan., "Boltzmann chains and hidden Markov models," NIPS-7,
1995.

[36] S. Fine, Y. Singer, and N. Tishby., "The hierarchical hidden Markov model:
analysis and applications," Machine Learning, vol. 32, 1998.

[37] M. N. Radford and E. H. Geoffrey, "A view of the EM algorithm that justifies
incremental, sparse, and other variants," in Learning in graphical models: MIT
Press, 1999, pp. 355-368.

