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中文摘要  

 

 本論文提出在智慧環境中學習及便是人類日常生活的問題，先前大部分的方

法先收集人類行為的資料並學出其模型，然後再使用學得的模型來辨識人的行

為，然而，人的行為習慣及環境的佈置可能會隨著時間而發生改變，造成行為的

模式發生改變，這時舊有的辨識用的行為模型便過時了，使辨識率降低，必須要

重新學習新的行為模型，但是重新收集學習用的行為資料並給予對應的行為標籤

是件非常煩人且容易出錯的工作，在這樣的情況下，在更新行為模型時能降低人

為的指導工作份量是件非常重要的事，本論文提出一個可以自我調整行為模型的

行為辨識方法，它可以在動態的環境下同時辨識多種行為，並以較少的人為指導

來跟著環境變動調整行為模型。 

 關鍵字: 行為辨識、機率推論、動態貝氏網路、主動式學習 
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ABSTRACT 

 

 This thesis addresses the problem of learning and recognizing human daily 

activities in smart environment. Most approaches offline learn the activity model and 

recognize the activity in an online phase. However, the activity models can be outdated 

when the human behavior and environment deployment change. It is a tedious and 

error-prone job to recollect data for retraining the activity models. In such case, it is 

important to adapt the learnt activity models under one context to another context 

without too much supervision. In this thesis, we present a self-reconfigurable approach 

for activity recognition can reconfigure a previously learned activity model to infer 

multiple activities under a dynamic environment meanwhile requiring minimal human 

supervision for labeling training data. 

 Keyword: Activity Recognition, Probabilistic Reasoning, Dynamic Bayesian 

Network, Active Learning 
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Chapter 1  

Introduction 

1.1  Motivation 

 As the advancement of computer technology brings computer into human daily life, 

developing various context-aware applications is a key issue to improve the quality of 

life.  

 Health Care  

 As the aging of population and the lacking of manpower, it is more and more 

important to make elderly people be able to live independently. The system will firstly 

monitor and gather the statistics of human daily behavior. Then, it will use the 

information to give health promotions or to notify elderly people when they forget to 

perform routine activities of daily living.  

 Children Care  

 There are more and more double-income families, and the parents are suffering 

from giving consideration to both work and children. The system can monitor the 

children’s activities, and it will launch a warning immediately, when the children do 

dangerous or inappropriate activities (referring to their ages). Moreover, it can record 
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the children’s activities and report the information to their parents. 

 Security and Surveillance 

 The system can build models of users’ behavior over time and detect unusual 

events. Moreover, the system can differentiate users’ identity by matching the behavior 

models. 

   (1.1) 

 Home Automation  

 In order to make inhabitants feel more comfortable, the system will predict users’ 

activities and provide adequate services automatically (e.g. switching on a light when a 

resident is studying and the environment is dim).  

 Human-computer Interface 

 The smart environment systems have to interact with users. Real time activity 

recognition can help the system to present information to the users at the right time, and 

recognize user input. 

 Recognizing human activities is a key part to facilitate the context-aware 

applications. In general, an activity is a sequence of interactions between residents and 

objects in the environment. Sensors are deployed in the environment to sense these 

interactions such that the activity models can be learned by the activity recognition 

system. The activity models, which represent the relationship between interactions and 

activities, are further used to infer residents’ activities. In order to associate semantic 

meaning with activities, we have to manually label the training data from sensor during 

the learning stage. It is a tedious, interruptive and error-prone job for end users to label 

the training data. Since we can not predefine the users’ environment, the system can not 

be learned in advance. Instead, it needs to be learned under the users’ situation. Even 

worse, the environment is usually dynamic in nature (e.g. adding or removing some 
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objects, using objects with different purposes, etc.), which means that the relationship 

between interactions and activities may change with time. In this condition, the activity 

models need to be updated. In this thesis, we want to minimize the labeling effort from 

the end users when the activity models need to be updated. 

1.2  Challenges of Activity Recognition 

 To recognize activities, the activity models that capture the structure of activities 

must be developed. However, the high variations in both human actions and the 

environment make the structure of activities hard to predefine. There are many human 

behavior and environment attributes that present the challenges for activity recognition: 

 Multiple residents 

 When there are multiple residents in the environment, the complexity of data 

association makes it hard to track every resident at the same time. 

 Multitasking 

 The resident often performs multiple activities simultaneously while some of them 

only engage little attention. 

 Periodic variations 

 Human behavior affects how they perform activities, and the behavior varies 

periodically (days, weeks, months, and even seasons). For example, a resident may 

wake up early on weekdays and late at the weekend. 

 Time scale 

 Humans perform activities in a very wide range of time scale, and it may vary with 

many reasons. It is impossible to know and consider all reasons. 

 Incomplete activity 
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 One activities may be interrupted by another that has caught resident’s attention, 

and it is hard to know whether he will come back to finish the original one. 

 Environment variations 

 The development of the environment also affects the residents’ behavior. The high 

variations of environment make humans have many ways to perform activities, and we 

can not know every kind of variation in advance. 

 Representation power and complexity 

 Different types of activities have different complexity. So many variables may 

affect how an activity will be performed, such as sequential order, time, location, human 

habit, etc. As we consider more variables, the representation ability of the activity 

recognition system is higher, but the complexity is also higher and causes more 

problems. Because we can not now the users’ situation in advance, the trade-off between 

representation power and complexity is very hard to decide. 

1.3  Objectives 

 The main goal of the activity recognition system in this thesis is: “On-line 

recognizing and recording daily activities in the home setting.” To make the system 

have the capability to recognize activities, we need to build activity models that 

represent knowledge about the environment and the relationships between the 

environment and human activities first. In addition, the activity models can be outdated 

when the human behavior and environment deployment a change. In such case, it is 

important to adjust the learnt activity models under one context to fit the new context 

without too much supervision. We propose an activity recognition system which reaches 

the following objectives: 
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 To build a flexible activity model 

 Our system will gather two kinds of data: environment sensor data and activity 

labels. We use these data to build models for the relationships between interactions and 

activities. Our system can recognize activities based on the activity model. In addition, 

the activity model needs to have high flexibility so that it can easily be updated. 

 To on-line recognize activities in the environment 

 Some context-aware applications, such as home automation, security, and 

human-computer interface, need real-time activity recognition. Thus, our system must 

on-line recognize activities and provide the information to those applications. 

 To self-reconfigure the activity model 

 In a real smart home, the environment is dynamic in nature. Deployment of various 

devices may change over time. These changes we categorized into wto groups: 

1. Changes of sensor deployment: This will directly affect the measurement 

space from sensors. For example, after adding or removing some sensors, the 

activity recognition system should properly respond to such a change so that 

the previously learned activity model can be adapted and then be applied to 

the new environment (, which is similar to but not totally the same as the old 

one). 

2. Changes of object deployment: This affects users’ interactions with objects; 

namely, the relationship between sensor measurements from the objects and 

human activities may change. For example, after the contents of a cabinet are 

changed, and then opening the same cabinet does not necessarily mean the 

same purpose any longer. 

In a dynamic environment, an activity model needs to be retrained each time when any 

deployment changes. It becomes important for the system to keep as much knowledge 
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from the old activity model as possible in response to the deployment change so that the 

activity model can automatically adapt (hereafter called self-reconfigurable) to the 

change. In addition, collecting training data and labeling them is a tedious and 

error-prone job. This motivates us to minimize the number of labeled instances for 

retraining. 

 To interact with residents actively for improving the system performance 

 In order to further improve the performance of self-reconfiguring, the system 

selects training data which are recognized with low confidence and actively request 

correct labels from users. Meanwhile, it can reduce the overall retraining effort. 

1.4  Related Work 

 From our survey of prior approaches for activity recognition, we roughly divide 

them into two main categories. In the first category [1-8], they predefined what activity 

classes they want to recognize, and designed the activity models to capture the temporal 

characteristics of activity from their prior knowledge of the environment and activity 

definition. Most of previous approaches in this category were fundamentally 

grammar-driven (see e.g. [1, 5, 6, 9] and the references therein). They explicitly 

modeled activity structures followed by learning model parameters from training data, 

or by mining from the Web or commonsense databases [10, 11]. However, the activity 

structures were generally not known in advance (although [10, 11] automatically mining 

activity structures from the Web, but the mined models were for general purpose, and 

may not suit to all users’ situations), because we often cannot know the situation of the 

environment beforehand, which makes it unlikely to design a generalized structure for 

all environments. Therefore, it is more desirable to discover the activity structures from 
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training data, not statically defined in advance. Moreover, if the environment changes, it 

is necessary for users to adapt to the change by re-labeling the data for training the 

models. That is, each time any change in users’ behaviors or the environment, users 

need to label new data for retraining the models. However, the change may exceed 

developers’ prior expectations; for example, users may perform an activity in different 

ways from time to time, which will cause bad performances of the static model. 

 In the second category[12-17], they automatically extracted activity structure from 

training data by computing the local event statistics rather than by pre-defined (see e.g. 

[16, 17] using Latent Semantic Analysis [18-20], [13, 14] using n-grams [21], and 

[22-24]using Vector Space Model [25]). Because the resultant activity categories were 

automatically mined from the data, these approaches did not know or may be not able to 

label resultant activities with their corresponding semantic meaning. The representation 

power of the feature spaces was limited by the ability to capture the characteristics of 

activity structures only up to some fixed (gross-grained) resolution. Furthermore, since 

the representation power of the feature is the order over event statistics, the 

computational complexity would grow exponentially. Moreover, these approaches 

entailed a unique feature space that computed from training data (not easy to change); 

when the environment changes, the original feature space may not be appropriate for the 

new environment; therefore, it needed to reconstruct a new feature space completely.  

 In order to address the challenges of the high variation of activity structures and 

dynamic environment, we proposed an activity recognition approach that can be flexible 

to adapt to different contexts. Our approach first generates various features with 

different representation power. It will learn the corresponding meaning (activity) of the 

each feature in learning stage and select features with high discriminative power that 

further used in recognition stage. All kinds of features will be stored for training and 
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dynamically used for recognition after training, thus they can be flexible to adapt to 

different conditions. When the environment changes, we assume that the change 

happens locally, not entirely covering the whole environment, therefor, we can apply 

Expectation-Maximization (EM) [26] strategy to self-reconfigure the activity model. In 

order to further improve the performance of self-reconfiguration from the EM strategy, 

the system takes advantages of active learning [27-31] to select potentially good 

training data for querying correct labels from users, thus reducing the overall retraining 

effort. Finally, to sum up, this self reconfigurable approach for activity recognition can 

reconfigure a previously learned activity model to infer multiple activities from multiple 

residents under a dynamic environment meanwhile requiring minimal human 

supervision for labeling training data. 

1.5  Thesis Organization 

 This thesis consists of six chapters. The rest of this thesis is organized as follow: 

Chapter 2 presents the problem statement, system overview, and background knowledge 

of this thesis, including Dynamic Bayesian Networks (DBNs), semi-supervised learning, 

active learning, and incremental learning. 

 Chapter 3 explains how and why the components of the activity recognition system 

are design and implemented. 

 Chapter 4 analyzes how the environment dynamics affect the activity recognition 

system, and shows how the system self-reconfigure with less supervision. 

 In Chapter 5, the proposed activity recognition system is actually experimented 

and evaluated in a real home environment. 

 Finally, Chapter 6 summarizes conclusions of this work, and offers some 
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suggestions for improving the current system in the future. 
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Chapter 2  

Preliminaries 

2.1  Problem Statement 

 In a dynamic environment such as homes and offices, there can be multiple 

activities occurring simultaneously. The problem of recognizing multiple activities can 

be formulated as estimating ( )
1:( | , )k

t tP A z M , which denotes the probability distribution 

of activity vector tA  at time t given the sensor observations 1:tz  from time 1 to time t, 

and the current activity model M(k). To be more specific, tA  is an activity vector of N 

activities that we want to recognize and is defined as 1 2{ , ,..., }N
t t t tA A A A= , 1:tz  are the 

measurements collected so far and can be expressed as 1: 1 2{ , ,..., }t tz z z z=  where 

( )1 2{ , ,..., }E tIDID ID
t t t tz z z z=  is the measurements of sensors at time t, and the number of 

sensors ( )E t  will vary with time due to deployment change. ( )kM  is indexed with k 

(which is the times of the system reconfiguring) and models the relationship between 

sensor measurements and activities. It can be updated from old model ( 1)kM −  and the 

previously collected training data set ( )kD . 
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 Activity model ( )kM  needs to be reconfigured as soon as possible in response to 

any change of deployment. One of our goals is to minimize the labeling effort from end 

users. Each time the activity model ( )kM  is to be reconfigured, we want to select the 

instances that can maximally reduce the expected error rate from the training data set D(k) 

to query the users about their corresponding labels. 

2.2  System Overview 

 As show in Fig. 2-1, the purposed activity recognition system has three main 

components, including sensing, model learning, and recognition. In the sensing 
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Fig. 2-1 System overview for the proposed self-reconfigurable activity recognition 
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component, sensors are installed on objects to sense the status of the objects. Sensor are 

connected to a circuit board, which will preprocess the raw data into interactions by 

interaction detectors (which are defined by the designer of the sensors) and then 

wirelessly send the interaction information to the recognition system. An interaction is a 

description about how the object is used; it is the basic element of an activity. The 

recognition system collects the interactions from sensors around the environment and 

then finds the relationships between interactions by feature generators. A feature is a 

description about how multiple interactions are triggered.  

 In the model learning component, the recognition system correlates the observed 

features and activity labels by learning the activity model from training data. The 

training data collector continuously stores the observed features and then off-line 

requests the activity labels from the users. The model learner processes the training data 

into sufficient statistics (which are the basic elements used to construct the activity 

model) and then stores them instead of entire training data into the database. After 

processing the training data, the model learner dynamically constructs the activity 

model from the sufficient statistics in the database. 

 Finally, the recognition component infers on-going activities from current observed 

features using the learned activity model and outputs the estimated belief of activities to 

further activity-aware applications. 

 As show in Fig. 2-1, there are two types of causes that force the recognition system 

to update its knowledge about activity: environment changes and system upgrading. 

Environment changes will change the measurement space or affect the meaning of 

sensor measurement. System upgrading can enhance the recognition system ability to 

capture more complex characteristics of activities. It includes defining new types of 

interactions and adding features with higher representation power to capture more 
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complex relationships between interactions.  

 All those causes described above will increase the feature space or change the 

meaning of the features, and thus the recognition system need to re-correlate the 

observed features and activity labels by retraining the activity model from new collected 

training data. As the red line in Fig. 2-1 indicates, the recognition system feeds the 

output to the training data collector for further self-reconfiguring the activity model. 

The model learner will self-reconfigure the activity model by fusing the new training 

data and the old sufficient statistics in the database. In addition, users can correct the 

training data for improving recognition performance. The recognition system will 

actively request the activity labels of the training data instances which the system hard 

to predict the activity labels. By doing this, we can improve system performance with 

less supervision. 

 The system self-reconfigures the activity model every fixed period or after an 

intentional trigger. The procedure of the self-reconfiguration process is as follow: 

1. Initially, there is an activity model (0)M , which is initialized by the system or 

learned from a pilot training set under a given (and static) environment. 

2. In each time period 1k ≥ :  

i. The system online recognizes activities using the activity model ( )kM  

and outputs the results to the data collector and other applications. 

ii. The training data set ( )kD  in the training data collector contains 

observed features and corresponding activity belief collected during this 

time period k , and the users can correct them from the active query if 

necessary. 

iii. At the end of this time period k , the system will reconfigure the activity 
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model ( )kM  to a new one ( 1)kM +  using training data ( )kD . The data 

collection pool will be reset to empty, and k  increases by one. 

2.3  Dynamic Bayesian Networks (DBNs) 

 Sequential data analysis arises in many areas of science and engineering. For 

example, in robotics, one may be interested in estimating the location of the robot from 

sequential sensor measurements; in speech recognition, one may be interested in 

recognizing words from sequential audio input. In this thesis, we are interested in 

knowing what people are doing in the environment from sequential sensor 

measurements. 

 Dynamic Bayesian networks (DBNs) [32] are approaches to analyze sequential 

data, which extends the Bayesian network (BN) [33] to handle time series by modeling 

sequences of variables. DBNs assume that there is some underlying hidden state of the 

world that generates the observations, and the hidden state evolves in time. In this thesis, 

the hidden states are activities we want to estimate, and observations are sensor 

measurements. In online analysis, where the data arrives in real-time, one common task 

is to estimate the current hidden states tX , given all the observations up to the present 

time, denoted as 1: 1 2{ , ,..., }t tz z z z= . More precisely, the goal is to compute 1:( | )t tP X z , 

which is referred to as belief state. 

 In the following subsections, we will discuss how to represent DBNs, how to use 

them to update the belief state and perform other related inference problems, and how to 

learn such models from data. 
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2.3.1 DBNs: Representation 

 A DBN models probability distributions over semi-infinite collections of random 

variable, 1 2, ,V V ", where { , , }t t t tV U X Z=  are input, hidden and output variables at 

time t  of a dynamic system. A DBN is defined as 1{ , }B B→ , where 1B  is a BN which 

defines the prior 1( )P V , and B→  is a two-slice temporal Bayes net which defines the 

temporal dependencies 1( | )t tP V V+  by a directed acyclic graph (DAG) as follows: 

 1 1 1
1

( | ) ( | ( ))
N

i i
t t t t

i

P V V P V parents V+ + +
=

=∏  (2.1) 

where i
tV  is the ith node at time t, and ( )i

tparents V  are the parents of i
tV  in the 

graph. The edges in the graph represent dependencies; and there are two kinds of 

dependencies, namely, within a time slice and across the time slice, each of them 

associated with a conditional probability distribution (CPD). We assume the parameters 

of the CPDs are time-invariant, and thus a DBN can be defined by three types of 

parameters, initial probabilities, transition probabilities (dependencies across the time 

slice), and conditional probabilities within a time slice. The joint distribution of a DBN 

with length T and with N random variable in each time slice is: 

 1:
1 1

( ) ( | ( ))
T N

i i
T t t

t i

P V P V parents V
= =

=∏∏   (2.2) 

  

tX

tZ

1tX +

1tZ +

-1tX

-1tZ

-1tU tU 1tU +

 

Fig. 2-2 An example of a DBN with first order Markov assumption 
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 Fig. 2-2 is an example of a DBN with first order Markov assumption (which only 

dependency is only on the last time slice). The parameters of this DBN are initial 

probability 1( )P X , control probability ( | )t tP X U , observation probability ( | )t tP Z X , 

and transition probability 1( | )t tP X X+ . If we use this DBN to localize the location of a 

robot, tU  is the control input at time t, tX  is the location of the robot at time t, and 

tZ  is the sensor measurement of the robot at time t. The joint distribution of the hidden 

random variables given control input and sensor measurements is: 

 1: 1 1 1 1
2

( ) ( ) ( | ) ( | , ) ( | )
T

T t t t t t
t

P X P X P Z X P X X U P Z X−
=

= ∏  (2.3) 

 Hidden Markov models (HMMs) is the basic type of DBNs. We can design various 

types of DBNs by adding more random variables or dependencies to the DBN to model 

more complex dynamic system. For example, in activity recognition; we may consider 

higher order of the dependencies, or jointly estimate location and activity [7], or use 

multiple sensors [6]. There are many types of DBNs which have been proposed for 

various purposes. Factorial HMMs [34] jointly estimate more then one hidden variables 

by assuming they are independent (for reducing the computational complexity). 

Coupled HMMs [35] model the binary interactions between hidden variables. 

Hierarchical HMMs [36] model domains with hierarchical structure and/or 

dependencies at multiple time scales. Variable-duration (semi-Markov) HMMs [3] 

model the duration as other arbitrary distribution rather than exponential one. 
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2.3.2 Inference in DBNs 

 As summarized in Fig. 2-3, there are four main kinds of inference problem: 

 Filtering 

 This is the most common inference problem in online analysis. Given the 

observations collected so far, we want to estimate current belief state of the hidden 

variables, using Bayes’ filter: 

 
1

1: 1: 1 1: 1

1 1 1: 1

( | ) ( | , ) ( | )
( | ) ( | ) ( | )

t

t t t t t t t

t t t t t t
x

P X z P z X z P X z
     P z X P X x P x z

−

− −

− − −

∝

= ∑  (2.4) 

There are two assumptions (Makrov assumptions); replacing 1: 1( | , )t t tP z X z −  by 

   

Fig. 2-3 Four main kinds of inference in DBNs. The slash region is the interval we 

have data, t is the current time instant, T is the sequence length, and the arrow is the 

time step we want to estimate. 
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( | )t tP z X  by assuming current observations only depend on current hidden variable; 

and decomposing 1: 1( | )t tP X z −  by assuming current hidden variable only depend on 

pervious one (order one Markov assumption). The filtering task can be decomposed into  

two steps of recursive computation: prediction, which computes 1: 1( | )t tP X z − , and 

update, which computes 1:( | )t tP X z . 

 Prediction 

 Prediction is to predict the future state, i.e. compute 1:( | )t h tP X z+ , where 0h >  is 

how far we want to look-ahead. We also can predict the future observations by 

marginalizing out hidden variable t hX + : 

 1: 1:( | ) ( | ) ( | )t h t t h t h t h t
x

P Z z z P Z z X x P X x z+ + + += = = = =∑  (2.5) 

 Smoothing 

 Smoothing is to estimate the state of in the past given all the observations, i.e. 

compute 1:( | )t TP X z  for all 1 t T≤ ≤ . 

 Viterbi decoding 

 Viterbi decoding is to compute the “most probable explanation”, i.e. to compute 

the most likely sequence of hidden states given observations collected so far: 

 
1:

*
1: 1: 1:arg max ( | )

t

t t t
x

x P x z=  (2.6) 

By distributive law of multiplication and dynamic programming, we can compute the 

Viterbi decoding using forward pass filtering (replace sum with max): 

 1 1( ) ( | ) max ( | ) ( )t t t t t ti
j P z X j P X j X i iα α− −= = = =  (2.7) 

where 

 
1: 1

1: 1 1: 1 1:( ) max ( , | )
t

t t t t tx
j P X x X j zα

−
− −= = =  (2.8) 
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 In activity recognition, these four kinds of inference mechanisms have their 

corresponding meaning and applications. Filtering means online tracking human’s 

current activity from sensor measurements; prediction means to predict human activity, 

which can be used for automatically providing services; smoothing is important for 

learning; Viterbi decoding is used to offline recognize human activity, and the output 

can be used to gather the statistics of human activity. 

2.3.3 DBNs: Learning 

 A DBN usually has some free parameters θ , which are used to define initial 

probability 1( )P X , transition probability 1( | )t tP X X − , and observation probability 

( | )t tP Z X . Learning is to estimate these parameters from training data. Suppose that we 

have training data (1) (2) ( ){ , ,..., }KD D D D= , where ( ) ( )
( )

1: 1:
{ , }k k

k
T T

D x z=  and all 

sequences are iid, then maximum likelihood estimation (MLE) is to find parameters that 

maximize the likelihood to observe the training data: 

 * arg max ( | ) arg max log ( | )MLE P D P D
θ θ

θ θ θ= =  (2.9) 

where the log likelihood of the training data is: 

 ( ) ( )

11

log ( | ) log ( | ) log ( | )
K K

k k

kk

P D P D P Dθ θ θ
==

= =∑∏  (2.10) 

Another variation is maximum a posteriori (MAP) which includes a prior on the 

parameters: 

 * arg max log ( | ) log ( )MAP P D P
θ

θ θ θ= +  (2.11) 

This may be useful when the number of free parameters is much greater than the size of 

the training data set. The prior term acts like a regularization term to prevent 
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over-fitting. 

 Those described above is the case with supervised learning. If the training data set 

does not contain values of hidden variable X , then it is unsupervised learning case; if 

the training data ( )kD  arrives with time rather than altogether, it is on-line learning 

case. In the following sections, we will describe more in detail about various learning 

problems. 

2.4  Sufficient Statistics 

 In the model learning problems, we want to estimate the free parameters of the 

model from training data set by a criterion such as MLE. The parameter estimation can 

be derived from some statistics of the training data. A statistic is a well-behaved 

function of the data, which is what actually used in calculations or inferences, rather 

than the full data set; for example, the sample mean, the sample median, the sample 

variance, etc. A statistic is sufficient if it is just as informative as the full data. Once we 

have known the sufficient statistic, nothing else, not even the original data, it can tell us 

anything more about the parameters. This means in parameter estimation, we can only 

store the sufficient statistics rather than whole training data set. For example, if we use a 

binomial distribution to model the flipping of a coin, for estimating the parameters of 

the binomial distribution, we only need to know the total counts of heads and tails, 

rather than the whole sequence of flipping. 

2.5  Semi-supervised Learning 

 In here, we consider the MLE case as the learning goal, which is finding parameter 
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values that maximize likelihood of the training data. Semi-supervised learning problem 

is that the training data set consists of labeled and unlabeled samples (or called partially 

observed, means values of some random variables are missing). This learning problem 

is useful in the case where getting label of the training sample is expensive (such as in 

activity recognition, requesting users’ current activity is very annoying). 

 In the partially observed case, the log-likelihood of the training data is: 

 

( )

1

( )

1

( | ) log ( | )

log ( , | )

K
k

k
K

k

k h

L D P D

             P H h V D

θ θ

θ

=

=

=

= = =

∑

∑ ∑
 (2.12) 

where we need to sum up the probability of all kinds of assignments of the hidden 

variable H, and ( )kV D=  means the values of visible nodes are specified by ( )kD . 

Because the summation of hidden variables makes this equation unable to be 

decomposed into a sum of local terms. In the following, we will introduce the 

expectation-maximization (EM) algorithm to find the local maximum of the likelihood. 

2.5.1 Expectation-Maximization (EM) algorithm 

 The basic idea of EM algorithm is to apply Jensen’s inequality to get a lower 

bound on the log-likelihood of the training data, and then to iteratively maximize this 

lower bound: 
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where q is a function such that ( )( | ) 1k

h
q h D =∑  and ( )0 ( | ) 1kq h D≤ ≤ . Maximizing 

the lower bound with respect to q gives: 

 ( ) ( )( | ) ( | , )k kq h D P h D θ=  (2.14) 

This is called E (Expectation) step, which means calculating the expectation value of the 

hidden variable given observation and model parameters; and this makes the bound 

tight. Maximizing the lower bound with respect to the free parameters θ  is equivalent 

to maximizing the expected complete-data log-likelihood: 

 ( ) ( )

1
( | ) log ( , | )

K
k k

k h
q h D P h D θ

=
∑∑  (2.15) 

This is called M (Maximization) step. In this step, the free parameters are calculated 

from expected sufficient statistics (the values of hidden variables are expectation value). 

 The whole EM algorithm is iteratively calculating the E-step and M-step until the 

log-likelihood of the training data converging to a local maximum. Because the initial 

values of the free parameters will greatly influence the convergence, we can try 

different initial values of the free parameters to find better local maximum. 

2.6  Active Learning 

 In many machine learning applications, the most time-consuming and costly task is 

the collection of a sufficiently large training data set. Active learning [28, 31] is a 

learning mechanism to reduce the requirement of large number of training samples by 

actively selecting potentially good samples from a pool under request. In here, 

“potentially good” means it can reduce the most the expected error of the model after 

training. Most of active learning approaches determine a training sample is good or not 

by calculating the hardness to classify the sample, such as normalized entropy of the 
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predicted label:   

 
( | ) log ( | )

( )
log ( )

X
P X z B X z

H z
N X

−
=
∑

 (2.16) 

where z  is a piece of unlabeled data, ( | )P X z  is the distribution of the 

corresponding predicted label which is calculated by a model we want to train, and 

( )N X  is number of possible states of the label X . 

 In this thesis, we apply active learning to semi-supervised learning, which selects 

good training samples from the unlabeled data pool to request the label, thus reducing 

the labeling effort from the users. 

2.7  Online Learning 

 In many real applications, the training data (1) (2) ( ){ , ,..., }KD D D D=  are received 

with time, not received totally at once. On-line learning is a learning mechanism that 

incrementally learns the model as the new training data are received. In here, we 

consider the on-line learning in a semi-supervised learning case. In this case, the EM 

algorithm computing the expected sufficient statistics (ESS) needed for the EM update 

involve summing over all training cases. [37] modified the EM algorithm that updates 

the parameters per little batch of the training data ( )kD  (called on-line or incremental 

EM). In this thesis, because the training data are received continuously, stop less, we 

modify the incremental EM to prevent the training data set gets too large that makes the 

learning procedure very long. 
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Chapter 3  

Activity Recognition System  

in a Static Environment 

 In this chapter, we will detail how the proposed activity recognition system works 

in a static environment, including how and why the components are designed and 

implemented. In a static environment, the recognition system has to learn only once the 

environment has been completely setup. In the next chapter, we will describe how the 

proposed recognition system deals with the environment changes. 

3.1  Overview 

 The design of the proposed activity recognition system considers the following two 

objectives: 

 Easy to install 

 Users may not have clues about how much information in the system they can 

access, and the building blocks for the system may not be cost-effective enough to 

manufacture, deploy, and maintain. We hope that the system can be easily installed to 
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users’ existing environment and do not affect the users too much, thus making the 

system widely acceptable to the public. 

 Configurable to different environment settings  

 Because we can not know the users’ environment in advance, the recognition 

system needs to have the ability to configure itself to various situations flexibly.  

 Fig. 3-1 shows the overview of the proposed activity recognition system for a static 

environment (does not include the red dotted lines and the indistinct component). In 

order to reach the objectives described above, the proposed recognition system contains 

three major components:  

1. The sensing component: The easily installed environment sensors are widely 

  

Sensing

Sensors

Interaction 
Detectors Training  

Data 
Collector

Model 
Learner

Activity
Recognizer

Raw Data

Query

Training Data
Interaction

Label

Output

Model
Learning Recognition

Activity
Models

Feature 
Generators

Feature

User

Belief of 
Activity Vector 

 

Fig. 3-1 System overview of activity recognition system for static environment (does 

not include the red dotted lines and the limpid part) 
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deployed in the environment for collecting information about how the objects 

are used in the environment. 

2. The model learning component: The flexible and expansible activity 

modeling strategy makes the system can adapt to different situation with less 

human supervision. 

3. The recognition component: The efficient on-line activity recognition 

algorithm can be executed to estimate users’ on-going activities. 

 The sensing part includes multi-modal environment sensors that are deployed 

around the environment to sense the status of the objects in the environment and 

interaction detectors can detect the patterns of state change of the sensors. The feature 

generators capture the relationships among interactions. The model learning part learns 

the correlations between the observed features and activity labels from collected 

training data. The recognition part infers on-going activities from current observed 

features using the learned activity model and outputs the estimated belief of activities to 

further activity-aware applications. 

 During the learning stage, the system collects a batch of observed features 

calculated from the sensor measurements, and then it off-line requests the users to give 

the activity labels. The model learner creates models of activities based on the 

relationship between features and activity labels. In the recognition stage, the system 

estimates the belief of activity status from observed features and learned activity models. 

The following sections will explain the components of the recognition system in more 

detail. 
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3.2  Environment Sensors and Interaction 

Detectors 

 We define activities as sequences of interactions between inhabitants and objects in 

the environment where an interaction is a description of how the object is used and is a 

basic component of an activity. We deploy various types of sensors around the 

environment to sense the status of the objects. Sensors are mounted on the objects and 

connected to a circuit board (hereafter called Taroko) which can preprocess the 

measurement data and send the results wirelessly to a remote system. 

3.2.1 Sensor Deployment 

 The goal of sensor system is to design suitable sensors for different types of objects, 

to deploy a sufficient number of sensors in the environment, to left unattended, and to 

collect synchronized data. In order to achieve this goal, the sensor needs to have the 

following characteristics:  

1. It is low-cost so that we can afford to deploy a sufficient number of sensors in 

the environment.  

2. In can send the measurement data wirelessly so that it can be deployed 

everywhere. 

3. Its size is small so that it can be installed and hidden easily. 

4. It has low power consumption so that it can be powered by a small battery and 

left unattended for a long period. 

5. It has high reliability. 
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6. Its module can be replaced by various types of sensors so that it is easily to 

customize. 

 Fig. 3-2 shows the circuit board of a Taroko and how various types of sensors 

connect to it. The board can connect at most eight sensors and is powered through a 

USB (Universal Serial Bus) interface (The USB can connect to a battery or a power 

regulator). The board includes a microprocessor (along with a programmable flash 

memory) that can samples and preprocesses the sensor measurement and sends the 

information wirelessly. Various types of sensors can be directly powered from the board 

and controlled by the microprocessor. In order to decrease the power consumption and 

the network interference, the board sends the information in an event-based manner. Fig. 

3-3 is examples of how sensors and the corresponding circuit board deployed in the 

environment. 

          

               (a)                                    (b) 

Fig. 3-2 (a) The circuit board (Taroko) with a programmable microprocessor that can 

control the sensors connected to it and preprocess the measurements of the sensors and 

send the information wirelessly. (b) The circuit board module can connect various 

types of sensors (at most eight sensors) and powered through USB interface (The USB 

can connect to a battery or a socket). 
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Fig. 3-3 Examples of how sensors and the corresponding circuit board deployed in the 

environment. 
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3.2.2 Interaction Detectors 

 An interaction is a description of how the object is used. The interaction detector is 

a binary function where input is a sequence of measurement and where output is a 

binary value that determines whether the specific interaction pattern happens or not. We 

can define various types of interactions for each type of sensor based on domain 

knowledge. For example, Fig. 3-4 illustrates the raw data of a pressure sensor and the 

corresponding responses from interaction detectors. The pressure sensor can measure 

how much force is on it, and we can use it to collect the location information of 

inhabitants by the change of pressure value. The pressure sensors can be installed in the 

floor, sofa, chair, bed, etc. Currently, we have defined two types of interactions on the 

pressure sensor, “Pressing” and “Pressing Still”, which means there is a significant 

  

 

Fig. 3-4 An example of raw data from a pressure sensor and the corresponding 

interaction detectors 
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pressure on it (may can be interpreted as someone sitting on it) and there is a significant 

pressure on it and no change for a while (may can be interpreted as someone sitting on it 

without moving for a while) respectively. The interaction detector of “Pressing” is a 

function that determines whether the filtered pressure measurement is greater than a 

threshold or not. The interaction detector of “Pressing Still” is a function that 

determines whether the filtered pressure measurement is greater than a threshold and the 

variance is less than a threshold or not. 

 The functions of interaction detectors can be programmed and run in the 

microprocessor on the circuit board. As the measurement data are received, the 

interaction detectors will calculate the function described above, and the circuit board 

will wirelessly output an event to the system only when function output changes. The 

event format is shown in Table 3-1. The event ID is a unique value. The interaction ID 

consists of the sensor ID and the interaction type. For example, “P1_Pressing” means 

the ”Pressing” interaction on pressure sensor P1, and “C1_Use” means the “Use” 

   

Event ID Interaction ID State Time 

1 P1_Pressing On 2008/05/21 19:18:26 

2 C1_Use On 2008/05/21 19:18:39 

3 P1_PressingStill On 2008/05/21 19:31:55 

4 P1_PressingStill Off 2008/05/21 20:22:47 

5 C1_Use Off 2008/05/21 20:36:33 

 

Table 3-1 An example of interaction detecting events 
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interaction on current sensor C1 (current sensor is installed on the electrical appliance to 

measure the current usage). The state attribute records whether the corresponding 

interaction occurs or not (On/Off), and the time attribute records the time instant of the 

occurrence of the event. Note that although detection of the interactions might have 

some delay (caused by the processing data window), but the time attribute of the event 

is not affected. For example, in Fig. 3-4, The “Pressing Still” interaction started at time 

2T , but detection has some delay (detected at time 3T ) cause by the data window of 

determining whether the variance is less than a threshold or not, however, the time 

attribute of the event which sent to recognition system is still 2T . 

 Many types of interaction detectors can be defined for each kind of sensor based on 

the domain knowledge. We assume that the designers of sensors are responsible 

designing the corresponding interaction detectors. 

3.3  Activity Modeling 

 The proposed environment sensing sub-system and interaction detectors provide 

information about what happens in the environment. The goal of the activity recognition 

system is to interpret the sequences of interactions into activity labels. In order to 

accomplish this goal, we have to model the relationships between the interaction 

sequences and activity labels, and to recognize the activities from newly incoming 

interaction sequences.  

 The following reasons motivate the design of activity modeling in this work: 

 Multitasking 

 It is natural that the resident often performs multiple activities simultaneously 

although some of them only engage little attention. The recognition system must have 
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the ability that recognizes multiple activities at the same time. 

 Flexibility to control the complexity of the activity model 

 Different kinds of activity have different level of complexity. Even the same kind 

of activity may have different characteristics with different levels of complexity under 

different environments or associated with different behavior. If we use a complex model 

to capture the characteristics of activities, although the model would have high 

representation power and could recognize more complex activities, but it also needs a 

large number of training data; or it may have bias, and the recognized activity may be 

too specific. The high computational complexity may also cause the system bad 

performance. On the other hand, if the model is too simple to capture the characteristics 

of activities, then the system may not have enough ability to recognize some kinds of 

activities. Because we can not anticipate the users’ situation, it is hard to decide the 

complexity of the model in advance. Thus, it is very important for the recognition 

system to be able to tune the complexity of activity models for different types of 

activities flexibly under various situations from learning procedure. 

 Semi-supervised learning 

 The environment and its furnishings have highly variable layouts, and individuals 

can perform activities in many ways. It is impossible to know all kinds of situations in 

advance and thus the system has to learn the activity models from residents’ daily life. 

At the learning stage, the user has to give the desired output (activity labels) of the input 

(detected interactions). However, labeling the training data for model learning is a 

tedious and error-prone job. Semi-supervised learning is a learning mechanism that uses 

labeled and unlabeled data simultaneously. It allows activities to be represented by 

various interactions from different environments and individuals. Furthermore, 

semi-supervised learning mechanism can train the model using a less number of labeled 
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data and a large number of unlabeled data, and thus reducing the training effort from 

end users. 

 Probabilistic reasoning 

 Probability reasoning is a good way to deal with the uncertainty from the 

ambiguous and noisy observations from multiple sensors. Furthermore, the probabilistic 

representation of the recognition output can provide more information than yes/no to the 

subsequent applications that need the activity information. It also provides a way to 

estimate the expected error rate of recognition results. 

 Model-based learning 

 Model-based learning uses the training data to construct models to represent the 

distribution of data. Once the learning procedure finishes, the training data can be 

discarded. This can reduce the system memory required to store a large number of data 

and also relieve the users’ privacy concerns. 

 Real-time performance 

 Some subsequent applications may need the real-time activity information. This 

requires a trade-off between models, features, and the computational complexity. 

 Online learning  

 Because of the environment changes and other reasons (which will be discussed in 

the next chapter), the recognition system needs to continuously update its knowledge 

about the relationships between interactions and activities. In such a situation, the 

training data is continuously received, and the learning algorithm needs to efficiently 

fuse the old and new coming data to update the activity model, instead of totally 

retraining the model. 
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 In order to recognize multi-tasking activities, our recognition system aims directly 

at recognizing what activities are occurring in the environment by tracking the states of 

activities (hereafter called activity vectors) instead of each individual. As shown in Fig. 

3-5, model (a) models the dependencies in the model level, if it need to be adjust to 

different situation, the whole needs to be retrained; model (b) models the dependencies 

in feature level, it can flexibly consider features with different level of dependency, thus 

flexibly control the complexity of the model. The recognition system uses various types 

of features instead of complex model to capture the different level of complexity of the 

characteristics of the activity structure. By doing this, the recognition system can 

flexibly control the complexity of the activity model by selecting suitable features with 

different representation power in the learning stage rather than changing the entire 

model. The recognition system uses Dynamic Bayesian Networks (DBNs) with an 

efficient on-line and semi-supervised learning strategy to model the activity. Because 

the recognition system selects only the features that have the most influence on the 

recognition performance in the learning stage, so the system can on-line recognize 
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Fig. 3-5 Model (a) models the long-term dependencies in the model level, and model 

(b) models the long-term dependencies in the feature level. 
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multiple activities with less computational effort (and shorter delay caused by the data 

window of the interaction detectors). The following two sub-sections will describe the 

cooperation between feature generation and activity model in more detail. 

3.3.1 Feature Generation 

 In order to make the recognition system able to control the complexity of the 

activity model more flexibly, we propose to represent the model complexity in the 

feature level instead of in the model level. We define features with various 

representation powers and then select the appropriate features during learning. There are 

three types of features: 

 Single-interaction feature 
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 It is the most basic type of feature, and captures the status of a single interaction. 

 Multiple-interaction feature 

 In some cases, the occurrences of interactions are not independent. For example: 

“lying on the bed” may mean “sleeping”, but “lying on the bed” and “turning on the 

TV” may mean “watching TV”. This type of feature captures the relationships among 

multiple interactions. Fig. 3-6 shows an example of a two-interaction feature. 

 N-gram feature 

 One of the challenges of activity recognition that is discussed in Section 1.2 is to 

capture the temporal information and encode it into the model. This type of feature 

captures the temporal information among interactions, for example: “go out” and “come 

back” may include the same interactions but with different orders. Fig. 3-7 shows an 

example of bi-gram features. 
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3.3.2 Activity Model 

 As the feature generation part generates various types of features that capture the 

temporal characteristics of activity and the relationship among interactions, the activity 

model correlate the features and activity labels. The activity model is depicted in Fig. 

3-8 as a Dynamic Bayesian Network (DBN) with first order Markov chain assumption. 

Each time instant t is the timing of the event that any feature state changed. As shown in 

Fig. 3-8 (a), 1 2{ , ,..., }LID ID ID
t t t tO f f f=  is the state vector of all features at time t, which 

is the observation of this model, 1 2{ , ,..., }N
t t t tA A A A=  is the activity vector at time t that 

we want to estimate. At each time instant, the activity vector tA  is estimated from the 

observation tO , and the temporal dependency (from tA  to 1tA + ) is used to filter the 

recognition result for reducing the effect of noise. Fig. 3-8 (b) shows that our activity 

model selects useful features for every activity types. ( )1 2{ , ,..., }L iIDID IDi
t t t tO f f f=  is the 

state vector of selected features of activity type iA , and hence i
t tO O⊆ . For 

simplification, we assume that the occurring of each type of activities is independent; 

and thus the state transition probability distribution of each activity type is independent: 

 1 1 1 1 1
1

( | , ) ( | ) ( | )
N

i i i i
t t t t t t t

i

P A A O P A A P A O+ + + + +
=

=∏  (3.1) 

Fig. 3-8 (c) shows the observation distribution of each type of activity. We assume each 

observed feature jID
tf  of each activity type is independent, and thus the observation 

distribution of ith type activity at time instant t is defined as: 

 
( )

1

( | ) ( | )j
L i

IDi i i
t t t t

j

P A O P A f
=

=∏  (3.2) 
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Fig. 3-8 Our activity model of a Dynamic Bayesian Network (DBN) with first order 

Markov chain assumption. Each time instant t is the timing of the event that any feature 

state changed. (a) 1 2{ , ,..., }LID ID ID
t t t tO f f f=  is the state vector of all features at time t, 

1 2{ , ,..., }N
t t t tA A A A=  is the activity vector at time t that we want to estimate. (b) 

( )1 2{ , ,..., }L iIDID IDi
t t t tO f f f=  is the state vector of selected features of activity type iA , 

i
t tO O⊆ , and we assume each type of activities are independent. (c) The observation 

distribution of i’th type activity: we assume each observed feature jID
tf  is 

independent.  
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 The advantages of this activity model are as follow: 

 Probabilistic representation 

 The probabilistic representation has the ability to capture the uncertainty, and it can 

be used to calculate expected error for making optimal decisions. 

 Combines prior knowledge and observations 

 It combines the prior distribution (recognition result of last time instant) and the 

observation distribution. This reduces the effect of observation noise. 

 Simple recognition algorithm 

 The independent assumptions of the observation and long-term dependency (we 

extract the dependency into feature level) greatly simplify the on-line recognition 

procedure. This makes the system be applicable to real-time recognition. 

 Online learning with fast update 

 The model parameters can be on-line updated (just accumulate the counting). This 

offers a possibility for adapting the activity model to various variations over time. 

 Multi-label classification 

 The recognition system tracks the state of each activity over time, and thus each 

data instance can have multiple activity labels. This makes the system able to handle the 

multitasking situation. 

 Flexibly using features with different complexity 

 The system can use various features with different representation power to capture 

the characteristic of an activity. This allows the recognition system to be able to flexibly 

tune the complexity of the model for different types of activity under various situations 

by only changing the connections of features, not the entire model. 
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3.4  Model Learning 

 In this section, we will discuss how the system selects important features for each 

type of activity and learns the parameters of activity model from labeled data. For 

simplification, we assume that the user only can edit activity label at the time instant 

when the event occurs, and the activity labels are unchanged during two successive 

events (the same as our recognition system).  

 Fig. 3-9 shows the learning procedure of the activity model. First, in training data 

collection, the system collects the observed features (preprocessed data) for a time 

period, and then requests the corresponding activity labels from the users. Second, the 

system calculates the sufficient statistics of the collected training data which will de 

used in feature selection and parameter estimation. Third, the system constructs the 

activity model by selecting useful features of every activity types. Fourth, the system 

estimates the parameters of the activity model. In the following three subsections, we 

will detail the three components of the learning procedure: feature selection, parameter 

estimation, and the final one is how the sufficient statistics (which are used in feature 

selection and parameter estimation) are calculated. 

  

 

Fig. 3-9 The learning procedure of the activity model. 
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3.4.1 Feature Selection 

 As the feature generators generate various features with different representation 

power, the system selects the features that have the most influence on the recognition 

performance during learning stage. In feature selection, the system selects useful 

features for every activity type by computing the corresponding weight. Because each 

state of a feature has different influence (for example, if we observe usage of the 

microwave, we may believe there is a “preparing food” activity happening; however, if 

we do not observe the usage of the microwave, because there exist other means for 

“preparing food”, then this observation will not influence the belief for “preparing food” 

activity), thus they have different weights. First, we define the weight of a feature j  

with state jf  to activity type i  as follows: 

 ( , )( ) ( , ) log
( ) ( )i i

i i j j
j j i i j j

i i i j j
a A

P A =a F =fw F f P A =a F =f
P A =a P F =f∈

= = ∑  (3.3) 

where the probabilities are calculated as follows: 

 ,( , )
,

i j

i i j j
i i j j

i j

a A ,f F

S(A =a F =f )P A =a F =f =
S(A =a F =f)

∈ ∈
∑

 (3.4) 

 ( )
i

i i
i i

a A

S(A =a )P A =a =
S(a)

∈
∑

 (3.5) 

 ( )( )
( )

j

j j
j j

f F

S F =fP F =f =
S f

∈
∑

 (3.6) 

where the S function is the sufficient statistics calculated from training data set (we will 

describe how the calculation is done in Subsection 3.4.3). This weight measures the 

degree of dependency between j jF f=  and iA , where greater value means greater 
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dependency, and thus higher influence. 

 After computing the weights of every feature value on every activity type, the 

system selects the useful features by clustering all the weights into two groups, selected 

and non-selected.  

3.4.2 Parameter Estimation 

 After feature selection, the structure of the activity model is constructed, and the 

next step is to estimate the parameters. There are three types of parameters in the 

activity model needed to be estimated: initial probability π , transition probability α , 

and observation probability β . We use maximum likelihood estimation (MLE) to 

estimate theses parameters: 

 
, ,

{ , }
{ , , } arg max ( | , , )

M G
P D

π α β

θ
θ π α β π α β

=
= =  (3.7) 

where G  is structure of the activity model, θ  is the parameters we want to estimate, 

and D  is the training data set. The training data set 1:{ , }t t t TD O A ==  consists of 

observed feature tO  and corresponding activity labels tA  at each event time instant t , 

and T  is the total length of the training data set D .  

 Given 1 2
1 2 1 1 1{ , ,..., } { ( ), ( ),..., ( )}N

N P A P A P Aπ π π π= = ; the MLE of the initial 

probability distribution 1( )i
i P Aπ =  of the ith activity type is calculated as follows: 

 1( )
i

i i
i i

i

a A

S(A =a )P A =a =
S(A =a)

∈
∑

 (3.8) 

1 1 2 2
1 2 1 1 1{ , ,..., } { ( | ), ( | ),..., ( | )}N N

N t t t t t tP A A P A A P A Aα α α α + + += = ; the MLE of the 

transition probability distribution 1( | )i i
i t tP A Aα +=  is calculated as follows: 
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1 2{ , ,..., }Nβ β β β= , ( ) ( )1 1{ ( | ),..., ( | )}L i L iID IDID IDi i
i P A F f P A F fβ = = = , where ( )L i  is 

the total number of selected features of ith activity type. The MLE of the observation 

probability distribution ( | )j jID IDiP A F f=  is calculated as follows: 

 ( , )( | )
( , )

j j
j j

j j

i

ID IDi i
ID IDi i

ID IDi

a A

S A a F fP A a F f
S A a F f

∈

= =
= = =

= =∑
 (3.10) 

3.4.3 Used Sufficient Statistics in Learning Procedure 

 In the feature selection and parameter estimation, the probabilities are computed 

from the sufficient statistics of training data. In here, because our recognition system is 

event based, except 1( ', )i i
t tS A a A a+ = =  is defined as the frequency counting, others 

are defined as the accumulated total time period of the event rather than instance 

number.  

3.5   Activity Recognition 

 As shown in Fig. 3-10, in the recognition step, the system continuously calculates 

the feature values, and then the recognition algorithm estimates the state of each activity 

type using Bayes filter: 

 { }
1:

1 1 1: 1
'

( | )
( | ) ( | ) ( | )
t t t

t t t t t t t t
a A

P A a O
P A a O P A a A a P A a O− − −

∈

=

′ ′= = ⋅ = = ⋅ =∑  (3.11) 

Because we assume the occurrence of each activity type is independent, the 

computation of each activity type can be separated. The computation of the ith type of 
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activity is: 
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Fig. 3-10 The recognition procedure of the activity model. 
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Chapter 4  

Activity Recognition System  

in a Dynamic Environment 

 In Chapter 3, we detail how the proposed activity recognition system works in a 

static environment. In this chapter, we will describe how the proposed recognition 

system deals with the environment changes. 

4.1  Overview 

 In the real environment such as home, it is dynamic in nature. Deployment of 

various devices may change over time, and we categorize them into the following: 

 Changes of sensor deployment 

 Adding or removing objects/sensors in the environment will directly change the 

measurement space from sensors, and thus affect the meaning of the corresponding 

interactions and features. The activity recognition system should learn the knowledge 

about the new sensors and the corresponding interactions and features, and remove the 

influence of removed sensors and corresponding interactions and features. In addition, 
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the events of adding/removing objects may cause changes of the inhabitant behavior to 

perform activities. For example, after adding a TV in front of the bed, lying on the bed 

may not just for resting, since it is possible for watching TV. The activity recognition 

system needs to re-correlate the features and activities. 

 Changes of Object deployment 

 This affects users’ interactions or behaviors with respect to objects; namely, the 

relationship between sensor measurements from the objects and activities may change. 

For example, moving a sofa in front of a TV from the living room to a study room, and 

sitting on the same sofa does not necessarily mean watching TV any longer; or after the 

contents of a cabinet are changed, opening the same cabinet does not necessarily mean 

the same purpose any longer. 

 Because of the change of objects and sensors, how an activity is performed in the 

training phase may be significantly different from that in the application phase after a 

time period. For instance, a user uses a broom to do cleaning activity, and sensors sense 

the interactions; however, after a few days, the user buys a new vacuum cleaner and 

uses it to clean the house. The training data for the two cleaning activities will be very 

different from each other. As a result, activity recognition based on a static activity 

model may gradually become obsolete and inaccurate for a dynamically changed 

environment. In addition, in order to recognize more complex activities, we can upgrade 

the ability of the system to capture more complex characteristics of an activity: 

 Define new types of interaction 

 In our activity recognition system, interaction is the basic element of an activity, 

and it is based on a specific pattern of sensor measurements. We can define new types of 

interaction based on an existing kind of sensor to capture another characteristic of an 

activity. For example, we can mount an accelerometer sensor on an object to detect the 
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movement of the object. In the beginning, we may only define an interaction based on 

the accelerometer sensor as follows: whether the object is used or not can be detected by 

telling whether the accumulation of acceleration is greater than a threshold or not. 

Afterwards, we find that the accelerometer sensor can also be used to detect a specific 

motion pattern of movement (such as shaking or falling) involved in other complex 

activities (for example, the motion pattern of using a broom to sweep the floor), which 

thus defines new types of interaction.  

 Add features with higher representation power 

 The feature generators generate various features with different level of 
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Fig. 4-1 System overview of self-reconfigurable activity recognition system 
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representation power. However, the complexities of features are bounded within a 

threshold (for examples, in multiple-interaction features, we may only consider the 

number of level less than three; or in n-gram features, we may only consider bi-gram), 

so that the ability of the recognition system to capture complex activity is bounded. We 

can raise the complexity threshold to capture more complex characteristics of activities. 

 Each time after any deployment changes or system upgrades, the activity model 

needs to be retrained from newly collected training data. However, collecting training 

data and labeling them is a tedious and an error-prone job. This motivates us to 

minimize the number of labeling instances for retraining; and therefore it becomes 

important for the system to keep much knowledge from the prior activity model in 

response to the deployment change such that the activity model can automatically adapt 

(hereafter called self-reconfigurable) to the change, rather than totally retrain the model. 

By achieving this self-reconfigurable algorithm, we can reduce the training effort and 

shorten the overall training periods. In addition, in order to further improve the 

performance of merely self-reconfiguring, the system takes advantages of active 

learning to select potentially good training data for querying correct labels from users, 

thus reducing the overall retraining effort. 

 As show in Fig. 4-1, we keep the influence of the deployment changes and the 

system upgrades in the sensing component. It only affects the meaning and space of the 

observed features, not the entire model. The activity recognition system just needs to 

update the feature selection and parameters of the activity model. The activity model is 

updated from newly collected training data, includes observed features and the activity 

labels. Because the originally collected training data are unlabeled, we estimate the 

expected values of the labels using the previously learned activity model (the red line 

which feeds the output of the recognition system to the input of the training data 
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collector). Because the new incoming training data may not be rich enough, the 

retrained activity model may have bias in such situation, and thus it is very important to 

fuse global and local activity model. In here, “global model” means it is trained from all 

training data (collected from beginning to present), and “local model” means it is 

trained from newly collected training data. The system will store sufficient statistics of 

the global activity model for the purpose of fusion. In addition, the recognition system 

will select useful examples to query the user in order to labels instances with more 

useful value, which will improve the training performance more efficiently (we will 

describe in Section 4.3 ).  

4.2  Self-reconfiguring 

 The goal of self-reconfiguring is to on-line update the knowledge of activities in 
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Fig. 4-2 The learning procedure of reconfiguring the activity model. 
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the activity model, including feature selection and model parameters. Fig. 4-2 shows the 

learning procedure of reconfiguring the activity model. First, the system collects the 

training data, including observed features and the corresponding predicted activity 

labels (being estimated from the previously learned model). Second, the system 

computes sufficient statistics ( )k
localS , which are computed from the newly collected 

training data and will be used in model construction. Third, the system stores the new 

computed sufficient statistics ( )k
localS  into database and updates ( )k

globalS , which is the 

sufficient statistics of the global model. Fourth, the system computes the probabilities of 

the global model ( )k
globalP  and the local model ( )k

localP  (the computation is the same as 

those described in Subsections 3.4.1 and 3.4.2), and then fuses them. Finally, the system 

selects the useful features and estimates the model parameters using the fused 

probabilities.  

 At the kth time update of the activity model by the system, the training data set 

( )
( ) ( )

1:
{ , ( )} k

(k) k k
t t t T

D O B A
=

=  includes observed features ( )
( ) ( ) ( ) ( )

1 2{ , ,..., }k
k k k k

T
O O O O=  and 

the belief of the predicted activity vector ( )
( ) ( ) ( ) ( )

1 2( ) { ( ), ( ),..., ( )}k
k k k k

T
B A B A B A B A= , 

where (k)T  is the length of the training data set. The system computes the expected 

value of the activity label from the previously learned activity model (k-1)M  using 

Bayes filter: 
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( 1) ( 1) ( 1)
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( ) ( | , )
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k i (k) i i k
t t t
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B A =P A O M

P A O M P A A a M P A a O M

−

− − −
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′∈

′ ′= = =∑  (4.1) 

where ( ) ( )k i
tB A  is the state belief of ith type of activity at time instant t in the training 

data set (k)D .  

 The system computes the expected local sufficient statistics (k)
localS , which includes 
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,(k) i i j j
localS (A =a F =f ) , (k) i i

localS (A =a ) , ( ) ( )k j j
localS F =f , and ( )

1( ', )k i i
local t tS A a A a+ = = , from 

( )kO  and ( ) ( )kB A  by multiplying the belief of activity vector: 
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S A a A a {B (A =a') B (A =a)}+ = = =∑ i  (4.5) 

Where the function ( )k
eventS  is defined as the time period of the event. 

 After computing the expected local sufficient statistics, the system updates the 

global sufficient statistics as follows: 

 ( ) ( 1) ( )k k k
global global localS S S−= +  (4.6) 

Then, the system computes the probabilities, ( )k
globalP  and ( )k

localP , for model construction 

(the same as those described in Subsections 3.4.1 and 3.4.2), which are computed from 

the “global” and “local” sufficient statistics respectively. Next, the system fuses the 

probabilities of local and global models according to the following fprmula: 

 ( ) ( ) ( ) ( ) ( )( ) (1 ( ))k k k k k
local globalP w T P w T P= + −i i  (4.7) 

where ( )( )kw T  is used to control the fused probabilities ( )kP  so that they can be 

closer to local model’s or to global model’s, defined as: 

 
( )( )( ) 1
kk Tw T e η−= −  (4.8) 

where η  is the learning rate. If ( )kT  is longer, the value of ( )( )kw T  is higher, and 

thus the fused probabilities ( )kP  are closer to local model’s. Finally, the system selects 
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useful features and estimates the parameters from the fused probabilities ( )kP  (the 

computation is the same as those described in Subsections 3.4.1 and 3.4.2). 

4.3  Active Learning for Activity Label 

Requirement 

 As shown in Fig. 4-3, in the learning procedure of self-reconfiguring, the training 

data set are unlabeled. The user can label the unlabeled training data for improving the 

performance of the system (the label will directly change the activity belief). In here, we 

employ an active learning strategy which will select training instances for requesting 

labels with priority. The priority of a training example ( ) ( ) ( ){ , ( )}k k k
t t tD O B A=  to 

activity type iA  is: 
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Fig. 4-3 The self-reconfiguring procedure with active learning (selecting 

hard-to-predicted instances to request the corresponding activity labels). 
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where the first term of the equation is normalized entropy of the activity belief, and 

( )iN A  is the number of states of activity type iA ; the second term of the equation is 

the ratio of the number of selected features ( ) ( )kL i  to the number of unknown (never 

seen) features ( ) ( )k
unknownL F . Higher value of ( )( )k

i tE D  means the data may be more 

uncertain. User can label the training data with priority, so that the label number can be 

reduced effectively. 



Chapter 5  

 55

Chapter 5  

System Evaluation 

 We have realized the proposed activity recognition system in a home environment, 

and design some experiments to evaluate it. In this chapter, we will introduce the 

experiment environment, and evaluation metric, and finally we will present the 

experiment result and provide a discussion. 

5.1  Experiment Environment 

 Fig. 5-1 is the overview of the experiment environment: NTU Attentive Home Lab, 

and there are some photographs of the environment as demonstrated in Fig. 5-2 . The 

properties of the deployed sensors are listed in Table 5-1. Note that the four cameras 

deployed on the corners are used to collect ground-truth data. The evaluation data set is 

collected in the Lab from several volunteers. One of the volunteers lives in the lab for 

several days, and others are visitors. In most of the time, the first volunteer is alone in 

the lab, and he can perform activities arbitrarily (arbitrary ordering, multitasking, 

interrupted, even null activities). Sometimes, there are more than one resident in the 

environment, and they also can perform activities arbitrarily.  



Chapter 5  

 56

   

Sensor Type Value Type Purpose 

Pressure Mat 
Weight on it 

(Positive real number) 
Location 

Current Sensor 
Current usage 

(Positive real number) 
Object usage 

Pressure Sensor 
Weight on it 

(Positive real number) 
Location 

Reed Switch 
Open / Close 

(Binary value) 
Object usage 

Camera Pictures 
Only used to collect 

ground-truth 

 

Table 5-1 Properties of sensors deployed in the NTU Attentive Home Lab 

 

Fig. 5-1 Overview of the experiment environment: NTU Attentive Home Lab. There 

are two environment changes, first, we add a TV in the bedroom (painted with green), 

and second, we swap the chairs in the bedroom and study room (painted with yellow). 
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Fig. 5-2 Some photographs of the experiment environment. 



Chapter 5  

 58

 In order to evaluate the abilities of the recognition system dealing with the 

environment changes, we design two changes in the experiment environment. As shown 

in Fig. 5-1, first, we add a TV in the bedroom (painted with green), and second, we 

swap the chair in the bedroom with the one in the study room (painted with yellow). 

 In our activity recognition system, the output is the states of each type of activities. 

Table 5-2 shows the list of nine types of activities aimed at in this experiment. At each 

time instant, the recognition system outputs the status of these nine types of activities. 

“On” means the activity is happening, “Off” means the activity is not happening, and 

“Unfocused” means the activity is occurring but causes the user’s attention. 

5.2  Evaluation Description 

 There are four stages in the evaluation: 

（1） Initial training stage: We collected two days of training data (0)D  to train 

   

Activity Status Activity Status 

Watching TV in 

the Living 
On / Off / Unfocused

Watching TV in 

the Bedroom 
On / Off / Unfocused

Cleaning On / Off Studying On / Off 

Preparing Food On / Off Working on PC On / Off / Unfocused

Go out On / Off Come back On / Off 

Sleeping On / Off Take a Drink On / Off 

 

Table 5-2  The list of types of activities aimed in this experiment. “On” means the 

activity is happening, “Off” means the activity is not happening, and “Unfocused” 

means the activity is occurring but cause the user’s attention. 



Chapter 5  

 59

the initial activity model (0)M . 

（2） Before environment changes: We collected two days of testing data (1)D  , 

which the environment is the same as in the initial training stage, to 

evaluate the performance of (0)M . 

（3） After environment changes: We collected 1.5 days of testing data (2)D  , 

which the environment is changed, to evaluate the performance of (0)M . 

（4） After reconfiguring the activity model: The system reconfigured the initial 

activity model (0)M  to (1)M  via dataset (1)D  and (2)D . Then, we 

collected two days of testing data (3)D  in the changed environment to 

evaluate the performance of (1)M . 

5.3  Evaluation Metric 

 To evaluate the result of the activity recognition is very difficult. This is because 

that the beginning and the end of activities are very fuzzy, so that the ground-truth 

values are not very definite. The observers label the same activity may have large 

variations. Even more, activities may occur sequentially, in parallel, alternate, and 

overlapping.  

  We employ two methods to evaluate the accuracy of the activity recognition 

system, which consider different features of the recognition system that could be 

important for different applications:  

 The percentages of time period that correctly classified 

 This criterion measures the amount of time that the state of activity is correctly 

classified during the duration of the label. Fig. 5-3 shows an example and corresponding 

confusion matrix to exemplify the evaluation using this method: (1) 20 % of time 
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correctly classified as “Off”; (2) 9 % of time “On” but miss classified as “Off”; (3) 45 % 

of time correctly classified as “On”; (4) 11 % of time “Off” but miss classified as “On”; 

(5) 15 % of time correctly classified as “Off”.  

 There are two measures for evaluating the quality of the recognition results which 

are defined as follows, recall: 

 True PositiveRecall
True Positive+False Negative

=  (5.1) 

  

 
Time

Ground-truth 
Label

Predicted
Label

Off On Off

Off On Off

20%

9%

45%

11%

15%

 

         Ground-truth 

Predicted 
On Off 

On 45 % 11 % 

Off 9 % 20 % + 15 % = 35 % 

 

Fig. 5-3 An example of the “The percentages of time period that correctly classified” 

method used to evaluate the activity recognition system. This measures the amount of 

time that the state of activity is correctly classified during the duration of the label. 
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Precision: 

 True PositivePrecision
True Positive+False Postive

=  (5.2) 

 How many times that correctly classify the activities 

 This criterion measures the number of operations required to transform the 

predicted label string into the ground-truth label string (matched if the labels have 

overlap time period, ignore the time length, only care about counts). Fig. 5-4 shows 

examples of the evaluation using this method: (1) the number of operation is zero; (2) 

the number of operation is one, because the predicted result inserts an “Off” state 

among the “On” state, needs one deletion operation; (3) the number of operation is two, 

delete the “On” state among “Off” and insert the ”On” state (because the “On” state in 

the predicted result and the “On” state in the ground-truth do not have overlap, they are 

treated as not matched).  

  

Off

Time

Ground-truth 
Label

Predicted
Label

Off On Off

Off On Off

Off On Off

Off Off

Off On Off

Off On

Edit Distance: 0 Edit Distance: 1
One Deletion

Edit Distance: 2
One Deletion
One Insertion

 

Fig. 5-4 Examples of “How many times that correctly classify the activities?” method 

used to evaluate the activity recognition system. This measures the number of 

operations required to transform the predicted label string into the ground-truth label 

string (matched if the labels have overlap time period, ignore the time length, only care 

about counts). 
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 The selected evaluation method depends on the applications that need the 

recognition result. For example, “how many times that correctly classify the activities?” 

method is more important to applications that intended to notify elderly people when 

they forget to perform routine activities of daily living such as take the medicine. 

Conversely, a system designed to detect abnormities of activities over time may require 

statistics of how long activities occurred in a daily basis. 

5.4  Experimental Result and Discussion 

 Table 5-3 shows the recognition performance before any environment changes. 

“Watching TV in the bedroom” activity is not available because there is no TV in the 

bedroom yet. We list the discussion of each type of activities in follows: 

（1） Watching TV: It is difficult to distinguish “On” and “Unfocused” because it 

is hard to know the residents are really watching the TV or not. We do not 

have sensors that provide sufficient information to distinguish them clearly. 

（2） Cleaning: Because the tools for cleaning are in the same cabinet, and the 

cabinet does not contain other things, each time between the users 

successively open the cabinet must be doing this type of activity, thus the 

recognition performance is very high. 

（3） Preparing food: The bad performance of recall measure is caused by the 

reason that users do not continuously using tool for preparing food but 

recorded as preparing food activity.  

（4） Go out / Come back: These two types of activities have similar interactions 

but with different orders. They can be distinguished by the moving 

direction of the residents (n-gram feature). 
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（5） Sleeping: The pressure sensors measure the bed is used or not by the 

pressure value. However, sometimes the distribution of the pressure is too 

unbalanced and causes the false negative detection. 

（6） Studying: Sometimes the resident may stand up for stretching the body 

   

Activity Recall Precision 
Edit 

Distance 

Watching TV in 

the Living 

0.86 / 0.99  

(On / Unfocused) 

0.98 / 0.88 

(On / Unfocused) 
6 (11) 

Watching TV in 

the Bedroom 
N/A N/A N/A 

Cleaning 1  1  0 (4) 

Preparing Food 0.65 0.95  6 (2) 

Go Out 1  1  0 (14) 

Com Back 1 0.82 2 (14) 

Sleeping 0.97  0.99  28 (6) 

Studying 0.99 0.95  16 (22) 

Working on PC 
0.99 / 0.97  

(On / Unfocused) 

0.96 / 0.99  

(On / Unfocused) 
14 (28) 

 

Table 5-3  The recognition performance before any environment changes. The length 

of the data set is about two days. 
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while studying for a long time, but not record in ground-truth. Thus causes 

some false positive detection. 

（7） Working on PC: Similar as “studying” activity, thus the “On” state and the 

“Unfocussed” state are not very clear in ground-truth. 

 Some types of activities occur in very low frequency, and most of time their states 

are “Off” (means not happen). The lack of training data may cause the biased activity 

model; the lack of testing data may cause the high variance of measured performance. 

 Table 5-4 shows the recognition performance after environment changes: (1) 

adding a TV in the bedroom (painted with green in Fig. 5-1), (2) swap the chairs in the 

bedroom and study room (painted with yellow in Fig. 5-1). The performance of 

recognizing “sleeping” activity is decreased, because after adding the TV in the 

bedroom, lying on the bed not only means sleeping any longer. The “watching TV in the 

bedroom” activity is still not available because the recognition system does not have 

any knowledge about it. Also the performances of recognizing “working on PC” and 

“studying” activity are decreased after swapping the chair. Surprised, the performance 

of recognizing “watching TV in the living room” also decreased; this is because the 

resident changes his behavior: sitting on another chair for watching TV.  

 Table 5-5 shows the recognition performance after reconfiguration. The length of 

training data set for reconfiguring is about 3.5 days (2 days of the beginning testing data 

and 1.5 days of data recorded after environment changes). The length of testing data set 

is about 2 days. The result shows that the system has recovered the outdated knowledge 

of activity models. 
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Activity Recall Precision Edit 
Distance 

Watching TV in 
the Living 

0.74 / 0.98  

(On / Unfocused) 

0.98 / 0.77 

(On / Unfocused) 
7 (17) 

Watching TV in 
the Bedroom 0 N/A 2 (2) 

Cleaning 0.20 1 2 (4) 

Preparing Food 0.63 0.95  19 (7) 

Go Out 0.79  1  2 (22) 

Com Back 1  1  0 (22) 

Sleeping 0.98  0.84 46 (4) 

Studying 0.23  0.33  84 (12) 

Working on PC 
0.43 / 0.81 

(On / Unfocused) 

 0.21 / 0.77  

(On / Unfocused) 
27 (60) 

 

Table 5-4  The recognition performance after environment changes: (1) adding a TV in 

the bedroom (painted with green in Fig. 5-1), (2) swap the chairs in the bedroom and 

study room (painted with yellow in Fig. 5-1). The length of this data set is about 1.5 

days. 
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Activity Recall Precision Edit 
Distance 

Watching TV in 
the Living 

0.88 / 0.98  

(On / Unfocused) 

0.98 / 0.87 

(On / Unfocused) 
9 (21) 

Watching TV in 
the Bedroom 

0.72 / 0.97  

(On / Unfocused) 

0.73 / 0.86 

(On / Unfocused) 
 4 (13) 

Cleaning 0.56 1 4 (8) 

Preparing Food 0.72 0.93  13 (12) 

Go Out 0.81 0.87  4 (36) 

Com Back 0.92  0.89  6 (36) 

Sleeping 0.99  0.96 37 (8) 

Studying 0.76  0.77  11 (15) 

Working on PC 
0.71 / 0.84  

(On / Unfocused) 

 0.81 / 0.90   

(On / Unfocused) 
18 (56) 

 

Table 5-5  The recognition performance after reconfiguration. The length of training 

data set for reconfiguring is about 3.5 days. The length of testing data set is about 2 

days. 
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5.5  Fall Detection Application 

 In this thesis, we focused on recognizing daily activities. However, there are some 

types of abnormal activities such as fall also needed to be detected. Because the data 

amounts of abnormal activities are very rare, it is impractical to train the corresponding 

activity models. In this subsection, we predefine the activity model of fall based on our 

knowledge, and use it to detect fall accidents. 

 Base on the deployment of the environment (show in Fig. 5-1), we use the cameras 

and pressure sensors in the floor to detect fall accidents. The basic idea is:  

1. The camera detects is there a person lying on the floor. 

2. The pressure sensors in the floor measure the pressure values of the 

corresponding area that camera detected. If there is a person on the floor, the 

mean of the pressure values will be high; If the person is lying on the floor, 

the variance of the pressure values will be low (because the center of gravity 

is more stable when lying). Therefore, if the mean of the pressure values is 

high and the variance is low, then it is very possible a fall. 

   

Fall Detection Recall Precision 

Using camera only 0.88 0.65 

Using floor only 0.94 0.92 

Using camera and floor 0.92 0.93 

 

Table 5-6  The recognition performance of the fall detection 
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3. Combining the result from camera and floor to decrease the false positive 

detection. 

 Table 5-6 shows the recognition performance of the fall detection. The false 

positive rate is decreased (or precision is increased) after combining the detecting result 

of camera and floor. 
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Chapter 6  

Conclusion 

6.1  Summary 

 This work shows that how to recognize daily activities in the home sitting via 

ubiquitous sensors, and how to adapt the activity model to deal with the environment 

changes via an active learning assisted semi-supervised learning strategy.  

 A flexible activity modeling approach has been proposed for making the 

recognition system can easily adapt to different situations. This approach flexibly 

incorporates various features with different level of representation power. This makes 

the recognition system can automatically tune the trade-off between complexity and 

representation power by selecting good features that best classifying the training data. 

 Unlike prior work that assume the environment is static, which the recognition 

system has to learn only once; in this thesis, we consider the situation when 

environment changes, making the proposed recognition system capable of 

self-reconfiguring to various situations. In addition, the active learning strategy help the 

recognition system requesting activity labels only when real need, and thus reducing the 

training effort for users.  
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 Although the preliminary results were based on small datasets collected over 

several-days period of time under a multi-resident environment, techniques have been 

developed that could be applied to various environment to study human behavior. 

6.2  Future Work 

6.2.1 Improving Environment Sensors 

 Capable for identifying residents 

 If the sensor can distinguish the user identification who activating it, the 

complexity of data association problem in the multi-resident environment could be 

reduced. This makes the recognition system capable for dealing with the multi-resident 

problem and modeling the interactions between residents for recognizing more complex 

activities.  

 Incorporating more rich types of sensors 

 The most important information for recognizing activities are location and object 

usage and different types of objects may need different types of sensors to get these two 

kinds of information (for example, we can not use a pressure sensor or a switch sensor 

to detect a object is moved or not). It is important to design various types of sensors that 

can tape on various types of objects to sense various characteristics of these two kinds 

of information. 

 Making the whole sensor module more compact and in a single-component 

 In order to making the installation of the sensors easier and non-intrusive (do not 

influence the use of the object), it is important to making the whole sensor module in a 

single-component (do not have any out connected part or wires). Accelerometer sensor 

is a good option. 
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6.2.2 Reducing the Learning Effort 

 Reducing the initial training effort 

 In our activity recognition system, it needs complete training data for training the 

initial activity model. If the recognition system rudimentary clusters the initial training 

data set and then requests the label of each cluster, it would greatly reduce the number 

of labels of the initial training data set. 

 Designing more rich types of queries 

 In our activity recognition system, a request for labeling data is like “Are you 

sleeping during time a to time b?” or “What are you doing during time a to time b?”, it 

is limited. If the recognition system allows more rich types of queries appropriately, the 

user can label the data more flexible and closer to the ground-truth. 

 Requesting the label at the right time 

 In order to avoid the interruption of user performing activities, our recognition 

system offline requests label rather than on-line. However, the user may not remember 

the answer very clear (in our system, we assume the user gives labels are correct). If the 

system can request the activity label at the right time such as when user just finish an 

activity (determine from the activity recognition result), then we can online request the 

activity label with less interruption.  

6.2.3 Improving the Self-reconfigurable Activity Recognition 

System 

 Incorporating probabilities representation into interaction and feature 

 In our activity modeling, we use various features with different representation 
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power to flexibly control the model complexity. However, the drawback is making the 

activity model not robust to the sensor noise (because the state of feature is binary, this 

makes the system does not model the uncertainty of sensor noisy, only models the 

uncertainty of ambiguity in model level). We can incorporate probabilities 

representation into interaction and feature, thus modeling the uncertainty of sensor 

noisy. 

 Fusing more models which learned from various interval of training data 

 As mentioned in Section 1.2 , one of the challenges of activity recognition is 

periodic variations. In our recognition system, we only fuse two kinds of periods of 

models, local and global (more detail in Section 4.2 ). If we fuse more models which 

learned from various types of periods of data, the system may be able to deal with the 

periodic variation problem. 

 Self discovering complex features 

 In our recognition system, the feature generators exhaustively generate all kinds of 

features; however, their representation power is bounded in a threshold. If the 

recognition system can self discovering complex features from statistics (such as in [14]) 

rather than exhaustively generate, we may release this limitation. 

 Considering the noise of activity label 

 In our recognition system, we assume that the user response activity labels are 

correct; however, in real scenario, the users may report incorrect labels. If the 

recognition system considers the noise of the user reported labels (such as in [27]),  it 

will more robust in real applications.
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