Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9522
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor葉安義
dc.contributor.authorYu-Chin Shenen
dc.contributor.author沈育致zh_TW
dc.date.accessioned2021-05-20T20:26:43Z-
dc.date.available2011-09-02
dc.date.available2021-05-20T20:26:43Z-
dc.date.copyright2008-09-02
dc.date.issued2008
dc.date.submitted2008-08-25
dc.identifier.citation于達元。2008。濃度對介質研磨纖維素流變性質的影響。國立台灣大學食品科技研究所碩士論文。
戈進杰。2003生物借解高分子材料及其應用。化學工業出版社。
呂維明、戴怡德。1998。粉體粒徑量測技術。高立圖書有限公司。台北市。
周裕臨。2002。生物完全可分解材料的種類分析與應用。塑膠資訊 73:12-17。
徐敬添。2001。濕式珠磨分散技術在奈米機能性產品之應用。產業奈米技術應用資訊園地-奈米粉體專刊。1:86-99。
陳仲仁。2007。微奈米技術在食品工業之應用序論。食品工業。
陳時欣。2006。蔗糖酯對奈米/次微米纖維素懸浮液穩定性之研究。國立台灣大學食品科技研究所碩士論文。
陳國符、鄔義明。1980。植物纖維化學。輕工業出版社。北京。
莊仲揚。2003。聚羥基烷酯 (PHA)發展現況。化工資訊與商情1:36-44
黃仁毅。2007。纖維素於介質研磨下之破碎模式。國立台灣大學食品科技研究所碩士論文。
葉安義,2004。奈米科技於食品的應用。科學發展,384: 44-49
楊承哲。2003。生物可分解高分子的發展。化工資訊與商情1:45-52。
趙明煜。2004。奈米纖維製備方法之研究。國立台灣大學食品科技研究所碩士論文。
劉士榮 (2005) 「高分子流變學」,滄海書局。台北市。
劉吟盈。2007。奈米-次微米化纖維素之特性及安全性。國立台灣大學食品科技研究所碩士論文。
蘇志杰。2004。奈米粉體粒徑檢測方法簡介。機械工業雜誌,255 期。
ASTM. 2002. Standard test methods for water vapor transmission of materials. American society for testing and materials D882-02.
Autumn K, Liang YA, Hsieh ST, Zesch W, Chan WP, Kenny TW, Fearing R, Full RJ. 2000. Adhesive force of a single gecko foot-hair. Nature 405:681-685.
Avella M, De Vliege J.J, Errico M.E, Fischer S, Vacca P, Volpe M.G. 2005. Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chemistry 93: 467-474.
Avella M, Errico M.E, Laurienzo P, Martuscelli E, Raimo M, Rimedio R. 2000. Preparation and characterisation of compatibilised polycaprolactone/starch composites. Polymes 41: 3875-3881.
Beguin P, Aubert JP. 1994. The biological degradation of cellulose. FEMS Microbiology Review 13: 25-58.
Belitz HD, Grosch W. 1999. Food Chemistry. 2nd ed. Springer-Verlag, Berlin, New York, USA.
BeMiller JN, Whistler RL. 1996. Ch4. Carbohydrates. Food Chemistry 3 rd ed. Fennema QR. Marcel Dekker, New York, USA.
Bootza A,Vogelb V, Schubertb D, Kreutera J. 2004. Comparison of scanning electron microscopy, dynamic light scattering and analytical ultracentrifugation for the sizing of poly(butylcyanoacrylate) nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics 57: 369–375.
Cabedo L, Feijoo J.L, Villanueva M.P, Lagaron J.M, Gimenez E. 2006. Optimization of biodegradable nanocomposites based on a PLA/PCL blends for food packaging applications. Macromolecular Symposia 233: 191-197
Carmen I, Moraru, Chithra P, Panchapakesan, Qingrong Huang, Paul Takhistov, Sean Liu, Jozef L, Kokini. 2003. Nanotechnology:A new frontier in food science. Food technology 57(12): 24-29.
Case SE, Capitani T, Whaley JK, Ahi YC, Trzasko R, Jeffcoat R, Goldfarb HB. 1998. Physical properties and gelatin behavior of a low-amylopectin maize starch and other high amylose maize starches. Journal of Cereal Science 27:301-314.
Cheetham, NWH. and L. Tao 1998. 'Variation in crystalline type with amylose content in maize starch granules: an X-ray powder diffraction study. Carbohydrate Polymers 36(4): 277-284.
Chen B, Evans J.R.G. 2005. Thermoplastic starch–clay nanocomposites and their characteristics. Carbohydrate Polymers 61: 455-463
Fadhel HB, Frances C. 2001. Wet batch grinding of alumina hydrate in a stirred bead mill. Powder Technology. 119: 257-268.
Fan LT, Gharpuray MM, Lee YH. 1987. Cellulose Hydrolysis: Abstracts of papers of the American Chemical Society. Springer-Verlag, Berlin, New York, USA.
Frances, C. 2004. On modelling of submicronic wet milling processes in bead mills. Powder Technology 143-144: 253-263.
Gallant, DJ, Bouchet B, Baldwin, PM. 1997. Microscopy of starch: evidence of a new level of granule organization. Carbohydrate Polymers 32: 177-191
Geim AK, Dubonos SV, Grigorieva IV, Novoselov KS, Zhukov AA, Shapovalsy SY. 2003. Microfabricated adhesive mimicking gecko foot-hair. Nature materials 2: 461-463.
Gonera, A., & Cornillon, P. (2002). Gelatinization of starch/gum/sugar system studied by using DSC, NMR and CSLM. Starch/Starke 54: 508-516.
Guilbert S, Gontard N, Gorris LGM. 1996. Prolongation of the shelf- life of perishable food products using biodegradable films and coatings. LWT - Food Science and Technology 29:10-17.
He M, Wang Y, Forssberg E. 2006. Parameter effects on wet ultrafine grinding of limestone through slurry rheology in a stirred media mill. Powder Technology 161: 10-21.
He M, Wang Y, Forssberg E. 2004. Slurry rheology in wet ultrafine grinding of industrial minerals: a review. Powder Technology 147: 94-112.
Herschel WH, Bulkley R. 1926. Measurement of consistency as applied to rubber-benzene solutions. Proceedings of the American Society for Testing Materials 26: 621-633.
Jillavenkatesa A, Kelly JF. 2002. Nanopowder characterization: challenges and future directions. Journal of Nanoparticle Research 4: 463-468.
Joseph T, Morrison M. 2006. Nanotechnology in Agriculture and Food. Institute of Nanotechnology Nanoform Report. Nanoforum, Düsseldorf, Germany.This report is available at http://www.nanoforum.org.
Kim, M. 2003. 'Evaluation of degradability of hydroxypropylated potato starch/polyethylene blend films. Carbohydrate Polymers 54(2): 173-181.
Mark J.E. 1999. Polymer Data Handbook, p. 39. Oxford University Press, New York, USA.
Merisko-Liversidge E, Liversidge GG, Cooper ER. 2003. Nanosizing: a formulation approach for poorly-water-soluble compounds. European journal of pharmaceutical sciences 18(2): 113-20.
Mondragon M, Arroyo K, Romero-Garcia J. 2008. Biocomposites of thermoplastic starch with surfactant. Carbohydrate Polymers 74(2): 201-208.
Morrision, WR and Tester, RF. 1994. Properties of damaged starch granules. IV. composition of ball-milled wheat starches and of fraction abtained on htdration. Journal of Cereal Science 20: 69-77.
Neinhuis C, Barthlott W. 1997. Characterization and Distribution of Water-repellent, Self-cleaning Plant Surfaces. Annals of Botany 79: 667-677.
Ouajai S, Shanks RA. 2006. Solvent and enzyme induced recrystallization of mechanically degraded hemp Cellulose. Cellulose 13: 31-44.
Park SH, Oha SG, Munb JY, Hanb SS. 2005. Effects of silver nanoparticles on the fluidity of bilayer in phospholipid liposome. Colloids and Surfaces B: Biointerfaces 44: 117-122.
Petersen K, Nielsen PV, Bertelsen G, Lawther M, Olsen MB, Nilsson NH, Mortensen G. 1999. Potential of biobased materials for food packaging. Trends in Food Science and Technology 10(2): 52-68.
Poliakoff M, Fitzpatrick JM, Farren TR, Anastas PT. 2002. Green chemistry: science and politics of change. Science 297: 807-810.
Potter M, Steinbuchel A. 2005. Physical Properties of Microbial Polythioesters: Poly(3-hydroxybutyrate) Granule-Associated Proteins: Impacts on Poly(3-hydroxybutyrate) Synthesis and Degradation, Biomacromolecules 6: 552-560.
Powers KW, Brown SC, Krishna VB, Wasdo SC, Moudgil BM, Roberts SM. 2006. Research Strategies for Safety Evaluation of Nanomaterials. Part VI. Characterization of Nanoscale Particles for Toxicological Evaluation. Toxicological Sciences 90(2): 296-303.
Ratoo JA, Stenhouse PJ, Auerbach M, Mitchell J, Farrell R. 1999. Processing performance and biodegradability of a thermoplastic aliphatic polyester/starch system. Polymer 40: 6777-6788.
Rindlav-Westling A, Stading M, Hermansson AM, Gatenholm P. 1998. Structure, mechanical and barrier properties of amylose and amylopectin films.Carbohydrate Polymers 36:217-224.
Saha BC. 2004. Lignocellulose Biodegradation and Applications in Biotechnology. American Chemical Society, Washington, D.C, USA.
Sanguansri, P. and M. A. Augustin (2006). Nanoscale materials development- a food industry perspective. Trends in Food Science and Technology 17(10): 547-556.
Szejtli J. 1991. Helical and cyclic structures in starch chemistry. ACS Symposium Series 458: 2-10.
Smits ALM, Ruhnau FC,Vliegenthart, JFG. 1998. Ageing of starch based systems as observed by FT-IR and solid state NMR spectroscopy. Starch/Starke 50(11-12): 478-483.
Sorrentino A, Gorrasi G, Vittoria V. 2007. Potential perspectives of bio-nanocomposites for food packaging applications. Trends in Food Science and Technology 18(2):84-95
Tabilo-Munizaga G, Barbosa-Canovas GV. 2005. Rheology for the food industry. Journal of Food Engineering 67: 147-156.
Tharanathan R.N. 2003. Biodegradable films and composite coatings: past present and future. Trends in Food Science and Technology 14:71-78.
Vogel V, Gohy JF, Lohmeijer BGG, Broke JAVD,Haase W, Schubert US,Schubert D. 2003. Metallo-supramolecular micelles: studies by analytical ultracentrifugation and electron microscopy. Journal of Polymer Science Part A: Polymer Chemistry 41: 3159-3168.
Wilhelma HM, Sierakowskia MR, Souzab GP,Wypychc F. 2003. Starch films reinforced with mineral clay. Carbohydrate Polymers 52: 101–110.
Wolff IA, Cluskey D.J.E, Gundrum LJ, Rist CE. 1951. Preparation of films from amylose. Industrial and Engineering Chemistry 43: 915-919.
Zhang QX, Yu ZZ, Xie XL, Naito K, Kagawa Y. 2007. Preparation and crystalline morphology of biodegradable starch/clay nanocomposites. Polyme. 48: 7193-7200.
Zobel H. F. 1988 . Starch Crystal transformation and their industrial importance. Starch/Starke 40: 1-7.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9522-
dc.description.abstract塑膠是最常使用於食品包裝上的一種材料,塑膠廢棄物的與日俱增,對環境是一沉重負擔。以生物性材料製造環保及特殊用途的包裝或隔絕性薄膜是目前科技發展的重點。生物性材料必須具備生物可降解、生物相容性或可食性等優點。澱粉為可製成薄膜之可食性材料,但無韌性且脆,不利於應用。由於纖維素結構排列緊密,添加纖維素可用來增強澱粉薄膜的機械強度。本研究目的在探討介質研磨及超細纖維素的添加對澱粉薄膜機械性質的影響。以玉米澱粉及棉花纖維素為材料,經介質研磨後利用靜態雷射粒徑分析儀確認懸浮液之顆粒組成大小為奈米/次微米等級。藉由電子顯微鏡觀察奈米/次微米懸浮液顆粒表面樣貌,確定奈米/次微米粒子的存在。
將研磨後澱粉與纖維素懸浮液以不同比例混合,利用動態流變儀進行流動測試,發現研磨會造成澱粉與纖維素的黏度上升。天然玉米澱粉糊化後黏度隨著纖維素的添加而下降,但是研磨後澱粉之糊化後黏度隨著纖維素的添加而上升,兩者變化量呈現線關係。由流動測試結果得知,所有實驗流體隨剪切速率增加而下降,屬切變致稀性流體,其流體行為可用Herschel-Bulkley模型描述。將澱粉與超細纖維素依不同比例混合成膜,使用質地分析儀測定薄膜機械強度,澱粉經研磨後之薄膜機械強度增加,楊氏模數(Young’s Modulus)由743增加至1505 MPa;添加11%的超細纖維素,澱粉膜由743 MPa 提高到1075 MPa,顯示介質研磨及超細纖維素皆能改善澱粉薄膜機械強度。
zh_TW
dc.description.abstractPlastic materials are generally applied matters in food packaging; however, it resulted in an environmental impact or pollution. Recently, environment friend materials from natural and renewable resources, which are biodegradable and biocompatible, have received great attention. Starch, an edible material with thermoplastic characteristics, is suitable for film formation; however, the starch-based film is too brittle to processing. Cellulose is an abundant polysaccharide in nature with high crystallinity, which has the potential to enhance the mechanical properties of starch-based film. In the present study, the influence of addition of ultrafine cellulose in starch-based film was studied by the application of media milling technique. Corn starch and cotton cellulose were fractured by media milling, and the static-light-scattering particle analyzer was applied to check the nano/submicron particles. Also, the scanning and transmission electron microscopes were used to observe the image of particles in nano/submicron scales.
The rheological properties of milled starch and cellulose suspension were evaluated by dynamic rheometer. The apparent viscosity of starch and cellulose suspension was increased after media milling. Addition of ultrafine cellulose drove the decrease of apparent viscosity of native gelatinized corn starch. But, the apparent viscosity of gelatinized milled starch increased with ultrafine cellulose addition. The suspensions appeared to be a shear-thinning fluid and can be described by Herschel–Bulkley model. The suspensions were used to prepared starch-based film using casting method. The mechanical properties of films were studies by texture analyzer with tensile test. The Young’s modulus increased from 743 MPa for the native starch film to 1505 MPa for the milled starch film. The Young’s modulus increased from 743 to 1075 MPa as the addition of ultrafine cellulose. increased from 0 to 11% (w/w, base on the weight of starch). Media milling as well as the addition of ultrafine cellulose can enhanced mechanical properties of starch based film.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T20:26:43Z (GMT). No. of bitstreams: 1
ntu-97-R95641032-1.pdf: 3647685 bytes, checksum: e75448a0aaa396ec713f79269187ba28 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents壹、前言 1
貳、文獻回顧 3
2.1奈米科技 3
2.2奈米材料的製備 4
2.3奈米科技於食品之應用 9
2.4生物可分解材料13
2.4.1. 生物可分解材料之簡介14
2.4.2. 生物塑膠其製造方法分類與相關產品 15
2.5 材料與特性 19
2.5.1. 澱粉 19
2.5.2. 纖維素 22
2.6. 粒徑量測 25
2.6.1. 靜態光散射 27
2.6.2. 粒徑分佈 27
2.7. 顯微結構觀察 30
2.7.1. 穿透式電子顯微鏡 30
2.7.2. 掃描式電子顯微鏡 30
2.8. 流變學 31
2.8-1流體的分類 31
2.8-2 靜態測試 35
2.9. 薄膜機械性質及測定 37
參、材料與方法 38
3.1. 材料 38
3.2. 設備 38
3.3. 實驗流程及步驟 42
3.3.1. 原料濃度 33
3.3.2. 介質研磨 43
3.3.3. 澱粉薄膜之製作 45
3.3.4. 粒徑量測 48
3.3.5. 流變性質量測 48
3.3.6. 顯微觀察 49
3.3.7. 厚度分析 49
3.3.8. 機械性質分析 50
肆、結果與討論 51
4.1. 原料性質 51
4.2. 介質研磨對物料粒徑的影響 54
4.2.1. 介質研磨對澱粉粒徑的影響 54
4.2.2. 介質研磨對纖維素粒徑的影響 58
4.3. 澱粉與纖維素經介質研磨後之形態 64
4.4. 流變性質分析 70
4.5. 薄膜厚度 78
4.6. 顯微結構 80
4.7. 機械性質 84
伍、結論 87
陸、參考文獻 88
柒、附錄 96
dc.language.isozh-TW
dc.title介質研磨及超細纖維素對澱粉薄膜機械性質之影響zh_TW
dc.titleInfluence of media milling and addition of ultrafine cellulose on the mechanical properties of starch-base filmen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee盧訓,張永和,賴鳳羲,馮臨惠
dc.subject.keyword澱粉,纖維素,介質研磨,薄膜,生物可分解,zh_TW
dc.subject.keywordStarch,Cellulose,media milling,Film,Biodegradable,en
dc.relation.page114
dc.rights.note同意授權(全球公開)
dc.date.accepted2008-08-25
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept食品科技研究所zh_TW
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf3.56 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved