Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9517
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許永真
dc.contributor.authorTsu-Yu Wuen
dc.contributor.author吳祖佑zh_TW
dc.date.accessioned2021-05-20T20:26:28Z-
dc.date.available2008-09-02
dc.date.available2021-05-20T20:26:28Z-
dc.date.copyright2008-09-02
dc.date.issued2008
dc.date.submitted2008-08-26
dc.identifier.citation[1] Physiological data modeling contest, 2004. Data available at http://www.cs.utexas.edu/?sherstov/pdmc/.
[2] Y. Altun, I. Tsochantaridis, and T. Hofmann. Hidden markov support vector machines. In Proceedings of the International Conference on Machine Learning (ICML), 2003.
[3] L. Bao and S. S. Intille. Activity recognition from user-annotated acceleration data. In Proceedings of the International Conference on Pervasive Computing (Pervasive), volume 3001 of Lecture Notes in Computer Science, pages 1–17. Springer, 2004.
[4] J. Bilmes. The Graphical Models Toolkit (GMTK), May 2007. Software available at http://ssli.ee.washington.edu/?bilmes/gmtk/.
[5] K.-h. Chang, M. Y. Chen, and J. Canny. Tracking free-weight exercises. In Proceedings of the International Conference on Ubiquitous Computing (Ubicomp), 2007.
[6] J. Chen, A. H. Kam, J. Zhang, N. Liu, and L. Shue. Bathroom activity monitoring based on sound. In Proceedings of the International Conference on Pervasive Computing (Pervasive), volume 3468 of Lecture Notes in Computer Science, pages 47–61. Springer, 2005.
[7] H. L. Chieu, W. S. Lee, and L. P. Kaelbling. Activity recognition from physiological data using conditional random fields. Technical report, Singapore-MIT Alliance (SMA) Annual Symposium, January 2006.
[8] T. Choudhury and S. Basu. Modeling conversational dynamics as a mixed memory markov process. In Advances in Neural Information Processing Systems (NIPS), 2004.
[9] T. V. Duong, H. H. Bui, D. Q. Phung, and S. Venkatesh. Activity recognition and abnormality detection with the switching hidden semi-markov model. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages I: 838–845, 2005.
[10] T. Huynh, U. Blanke, and B. Schiele. Scalable recognition of daily activities with wearable sensors. In Proceedings of the International Symposium on Locationand Context-Awareness (LoCA), volume 4718 of Lecture Notes in Computer Science, pages 50–67. Springer, 2007.
[11] S. S. Intille, K. Larson, E. M. Tapia, J. S. Beaudin, P. Kaushik, J. Nawyn, and R. Rockinson. Using a live-in laboratory for ubiquitous computing research. In Proceedings of the International Conference on Pervasive Computing (Pervasive), volume l, pages 349–365, 2006.
[12] T. Joachims. SVMhmm : Sequence Tagging with Structural Support Vector Machines, May 2008. Software available at http://svmlight.joachims.org/svm_struct.html.
[13] S. Katz, A.B. Ford, R.W. Moskowitz, B.A. Jackson, and M.W. Jaffe. Studies of illness in the aged: The index of ADL: A standardized measure of biological and psychosocial function. Journal of the American Medical Association, 185(12):914–9, 1963.
[14] S. S. Keerthi and S. Sundararajan. CRF versus SVM-struct for sequence labeling. Technical report, Yahoo Research, 2007.
[15] T. Kudo. CRF++: Yet Another CRF toolkit, December 2007. Software available at http://crfpp.sourceforge.net/.
[16] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models. for segmenting and labeling sequence data. In Proceedings of the International Conference on Machine Learning (ICML), June 2001.
[17] M.P. Lawton and E.M. Brody. Assessment of older people: self-maintaining and instrumental activities of daily living. Gerontologist, 9(3):179–86, 1969.
[18] L. Liao, D. Fox, and H. A. Kautz. Location-based activity recognition using relational markov networks. In Proceedings of the International Joint Conferences on Artificial Intelligence (IJCAI), pages 773–778. Professional Book Center, 2005.
[19] L. Liao, D. Fox, and H. A. Kautz. Extracting places and activities from GPS traces using hierarchical conditional random fields. International Journal of Robotics Research, 26:119–134, 2007.
[20] B. Limketkai, L. Liao, and D. Fox. CRF-Filters: Discriminative particle filters for sequential state estimation. In Proceedings of IEEE International Conference on Robotics and Automation (ICRA), April 2007.
[21] C.-y. Lin. IPARS: Intelligent portable activity recognition system. Master’s thesis, National Taiwan University, 2006.
[22] D. C. Liu and J. Nocedal. On the limited memory BFGS method for large scale optimization. Mathematical Programming, 45:503–528, 1989.
[23] B. Logan, J. Healey, M. Philipose, E. M. Tapia, and S. S. Intille. A long-term evaluation of sensing modalities for activity recognition. In Proceedings of the International Conference on Ubiquitous Computing (Ubicomp), volume 4717 of Lecture Notes in Computer Science, pages 483–500. Springer, 2007.
[24] J. Lopes, C. Lin, and S. Singh. Multi-stage classification for audio based activity recognition. In Proceedings of the International Conference on Intelligent Data Engineering and Automated Learning (IDEAL), volume 4224 of Lecture Notes in Computer Science, pages 832–840. Springer, 2006.
[25] U. Maurer, A. Smailagic, D. P. Siewiorek, and Michael D. Activity recognition and monitoring using multiple sensors on different body positions. In International Workshop on Wearable and Implantable Body Sensor Networks (BSN), pages 113–116. IEEE Computer Society, 2006.
[26] A. Mccallum, D. Freitag, and F. Pereira. Maximum entropy markov models for information extraction and segmentation. In Proceedings of the International Conference on Machine Learning (ICML), 2000.
[27] N. Nguyen and Y. Guo. Comparisons of sequence labeling algorithms and extensions. In Proceedings of the International Conference on Machine Learning (ICML), 2007.
[28] C.-w. Pan. Rehabilitation exercises recognition based on acceleration signals. Master’s thesis, National Taiwan University, 2007.
[29] D. J. Patterson, D. Fox, H. A. Kautz, and M. Philipose. Fine-grained activity recognition by aggregating abstract object usage. In Proceedings of the International Symposium onWearable Computers (ISWC), pages 44–51. IEEE Computer Society, 2005.
[30] D. J. Patterson, L. Liao, D. Fox, and H. A. Kautz. Inferring high-level behavior from low-level sensors. In Proceedings of the International Conference on Ubiquitous Computing (Ubicomp), volume 2864 of Lecture Notes in Computer Science, pages 73–89. Springer, 2003.
[31] W. Pentney, A.-M. Popescu, S. Wang, H. A. Kautz, and M. Philipose. Sensor based understanding of daily life via large-scale use of common sense. In Proceedings of the AAAI Conference on Artificial Intelligence. AAAI Press, 2006.
[32] N. Ravi, N. Dandekar, P. Mysore, and M. L. Littman. Activity recognition from accelerometer data. In Proceedings of the AAAI Conference on Artificial Intelligence, pages 1541–1546. AAAI Press / The MIT Press, 2005.
[33] W.A. Rogers, B. Meyer, N.Walker, and A.D. Fisk. Functional limitations to daily living tasks in the aged: a focus group analysis. Human Factors, 40(1):111–125, 1998.
[34] M. Shimosaka, T. Mori, and T. Sato. Robust action recognition and segmentation with multi-task conditional random fields. In Proceedings of IEEE International Conference on Robotics and Automation (ICRA), 2007.
[35] C. Sminchisescu, A. Kanaujia, and D. Metaxas. Conditional models for contextual human motion recognition. Computer Vision and Image Understanding, 104(2):210–220, 2006.
[36] P. Smyth, D. Heckerman, and M. I. Jordan. Probabilistic independence networks for hidden markov probability models. Neural Computation, 9(2):227–269, 1997.
[37] T. Stiefmeier, G. Ogris, H. Junker, P. Lukowicz, and G. Tr‥oster. Combining motion sensors and ultrasonic hands tracking for continuous activity recognition in a maintenance scenario. In International Symposium on Wearable Computers (ISWC), pages 97–104. IEEE, 2006.
[38] C. A. Sutton and A. McCallum. An introduction to conditional random fields for relational learning. In Lise Getoor and Ben Tasker, editors, Introduction to Statistical Relational Learning. MIT Press, 2006.
[39] E. M. Tapia, S. Intille, and K. Larson. Real-time recognition of physical activities and their intensities using wireless accelerometers and a heart rate monitor. In Proceedings of the International Symposium on Wearable Computers (ISWC), 2007.
[40] E. M. Tapia, S. S. Intille, and K. Larson. Activity recognition in the home using simple and ubiquitous sensors. In Proceedings of the International Conference on Pervasive Computing (Pervasive), volume 3001 of Lecture Notes in Computer Science, pages 158–175. Springer, 2004.
[41] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for structured and interdependent output variables. Journal of Machine Learning Research (JMLR), 6:1453–1484, 2005.
[42] T. Wada and T. Matsuyama. Multiobject behavior recognition by event driven selective attention method. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 22(8):873–887, 2000.
[43] H. M. Wallach. Conditional random fields: An introduction. Technical Report MS-CIS-04-21, Department of Computer and Information Science, University of Pennsylvania, April 2004.
[44] J. A.Ward. Activity Monitoring: Continuous Recognition and Performance Evaluation. PhD thesis, ETH Z‥urich, Switzerland, 2006.
[45] D. H. Wilson. Assistive Intelligent Environments for Automatic Health Monitoring. PhD thesis, Carnegie Mellon University, September 2005.
[46] D. H. Wilson and C. G. Atkeson. Simultaneous tracking and activity recognition (STAR) using many anonymous, binary sensors. In Hans-Werner Gellersen, Roy Want, and Albrecht Schmidt, editors, Proceedings of the International Conference on Pervasive Computing (Pervasive), volume 3468 of Lecture Notes in Computer Science, pages 62–79. Springer, 2005.
[47] Phil Woodland, Gunnar Evermann, and Mark Gales. HTK - Hidden Markov Model Toolkit - Speech Recognition toolkit, December 2006. Software available at http://htk.eng.cam.ac.uk/.
[48] T.-y. Wu, C.-c. Lian, and J. Y.-j. Hsu. Joint recognition of multiple concurrent activities using factorial conditional random fields. Technical Report WS-07-09, AAAI Workshop on Plan, Activity, Intent Recognition (PAIR), 2007. [49] D.Wyatt, M. Philipose, and T. Choudhury. Unsupervised activity recognition using automatically mined common sense. In Proceedings of the AAAI Conference on Artificial Intelligence, pages 21–27. AAAI Press / The MIT Press, 2005.
[50] C.-n. Yen. Utilizing heterogeneous sensors for everyday activity recognition. Master's thesis, National Taiwan University, 2007
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9517-
dc.description.abstract日常生活行為辨識是用來達到主動服務以及自動監控的一項關鍵科技。我們希望能從一段包含未知行為的感測器資訊中,連續辨識出發生的行為與時間。在這個論文中,我們透過感測器序列的資訊,不斷的去判斷出每一個時間點發生的行為來達到連續辨識的目的。
透過混合多種異質的感測器有助於我們分辨出各種行為,然而,異質感測器在資訊呈現形式上往往有很大的差別。我們希望能發掘不同模型在整合這些資訊時的特性,在我們的研究中比較了不同的模型在這個問題上的適用度,包括隱藏馬可夫模型 (Hidden Markov Model),%階層式隱藏式馬可夫模型(HHMM),條件隨機場 (Conditional Random Field),以及結構式支持向量機 (Structural Support Vector Machine)。
實驗結果說明,鑑別式模型如條件隨機場,以及結構式支持向量機對於整合感測器較為有效,其準確度明顯高於隱藏馬可夫模型。%其餘兩種模型。其中結構式支持向量機對於各種不同形式的感測器都能擁有相當好的結果。除此之外,我們引入了數種重疊特徵提取的方法,使用這些特徵值能夠進一步的改善準確度,在使用的這些特徵後,條件隨機場跟結構式支持向量機得到了相當接近的準確度。
為了提供主動的服務,我們比較了數種不同的即時辨識方法。在我們所比較的方法中,On-line Viterbi得到了最佳的單位時間準確度,然而卻會產生相當多不必要的服務。我們提出了Smooth On-line Viterbi方法來改善這種情形。
zh_TW
dc.description.abstractRecognition of daily activities is an enabling technology for active service providing and automatic in-home monitoring. In this thesis, we aim to recognize activities in a long sensor stream without knowing the boundary of activities. We formulate this continuous recognition problem as a sequence labeling problem. The activity is labeled every a fixed interval given the sensor readings.
Fusing multiple heterogeneous sensors helps disambiguate different activities. However, these sensors are very diverse in readings. To evaluate the capability of models in dealing with such diverse sensors, we compare several state-of-the-art sequence labeling algorithms including hidden Markov model (HMM), linear-chain conditional random field (LCRF) and SVMhmm. The results show that the two discriminative models, LCRF and SVMhmm, significantly outperform HMM. SVM$^{hmm}$ show robustness in dealing with all sensors we used. By incorporating proper overlapping features, the accuracy can be further improved. In additions, CRF and SVMhmm perform comparably with these overlapping features.
For active service providing, we evaluate various inference strategies for the on-line recognition problem. On-line Viterbi algorithm achieves highest frame accuracy but suffers from high insertion errors that may cause unexpected services. We propose smooth on-line Viterbi algorithm to solve this problem.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T20:26:28Z (GMT). No. of bitstreams: 1
ntu-97-R95922044-1.pdf: 848373 bytes, checksum: 75902f5e809913d1c81c3089385432b3 (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsAcknowledgments ii
Abstract v
List of Figures xiii
List of Tables xiv
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Research Objective 3
1.3 Thesis Organization 5
Chapter 2 Related Work 7
2.1 Sensor Setting 7
2.1.1 Sensor Selection 7
2.1.2 Multiple Heterogeneous Sensors 12
2.1.3 Sensor Placement 13
2.2 Classification Algorithms 13
2.2.1 Feature Extraction 14
2.2.2 Classifiers 14
2.2.3 Generative Modeling 16
2.2.4 Sequence Segmentation 17
2.3 Sequence Models 19
2.3.1 Hidden Markov Model 19
2.3.2 Dynamic Bayesian Network 20
2.3.3 Maximum Entropy Markov Model and Conditional Random
Field 21
2.3.4 Structural SVM 22
Chapter 3 Off-line Recognition for Monitoring 25
3.1 Problem Definition 25
3.2 E-Home Dataset 26
3.3 Activity Modeling 27
3.3.1 HMM 27
3.3.2 Linear Chain CRF 28
3.3.3 SVMhmm 30
3.3.4 Other Approaches 31
3.4 Performance Measures 31
3.5 Raw Features 32
3.5.1 Results 33
3.6 Overlapping Features 35
3.6.1 Generative Audio Probabilities 35
3.6.2 Region and Region Transitions 36
3.6.3 NextRFID and LastRFID 37
3.6.4 Results 38
Chapter 4 On-line Recognition for Active Services 41
4.1 Problem Definition 41
4.2 Dynamic Programming Algorithms 42
4.2.1 On-line Viterbi Algorithm 42
4.2.2 Bayes Filtering 43
4.2.3 Token Passing Algorithm 43
4.3 Evaluation 44
Chapter 5 Segment Analysis 45
5.1 Segment Error 46
5.1.1 Minimum Edit Distance 46
5.1.2 Time Critical Minimum Edit Distance 48
5.2 Evaluation 50
5.2.1 Off-line Recognition 50
5.2.2 On-line Recognition 50
5.3 Smooth on-line Viterbi 51
5.3.1 Evaluation 52
Chapter 6 Conclusion 57
Bibliography 60
dc.language.isoen
dc.title以多異質感測器進行日常生活行為連續辨識之研究zh_TW
dc.titleContinuous Recognition of Daily Activities from Multiple Heterogeneous Sensorsen
dc.typeThesis
dc.date.schoolyear96-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許鈞南,黃寶儀,陳穎平,李育杰
dc.subject.keyword行為辨識,異質感測器,連續辨識,隱藏馬可夫模型,條件隨機場,結構式支持向量機,zh_TW
dc.subject.keywordActivity Recognition,Heterogeneous Sensors,Continuous Recognition,Hidden Markov Model,Conditional Random Field,Structural Support Vector Machine,en
dc.relation.page67
dc.rights.note同意授權(全球公開)
dc.date.accepted2008-08-26
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf828.49 kBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved