
»ñ�È�.é^£G.o£G��@~X

Æÿ¡Z
Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Taiwan University

Master Thesis

|||999²²²²²²���???   


���^̂̂ðððßßßþþþ���

===���ïïïIII���@@@~~~

Continuous Recognition of Daily Activities
from Multiple Heterogeneous Sensors

ÒÞ¥
Tsu-yu Wu

¼0>0�&ÕË}ÿ
Advisor: Jane Yung-jen Hsu, Ph.D.

�ºÓ»ÜèÚO0`
June, 2008



Acknowledgments

9	¡ZÝ�W�Î&ËOÝáIá��ÄæÝW��&��kXb��&á

I|C��&G
æ�ÝN×Íß�

��&Ý¼0>0&ÕË�/�×î�&�<�0Ñ&×°�ÁÝ�

°��&�ÈÝ�*T�ô����/èº×Í�ãÝ@~�(�¯&�È�

½�Ý·¶s"��/ÀÎ�Ê`Ý3.êî�&×°bàÝ�����&

ÝlÒ�¯&��ãÝ² �¯&3.êî^b¡)�Í���&�ý�õ

3¡Zî�&Ý¼>�

��Brooky�u�Î¯ð¼T¤�/Ý£]�&µP°�W9	¡Z�¯

Î×Í&ð-ËÝ.��¯ÝV�×àÎ&[°ÝEé�

��?���XË�.��¯ÆÝ ×ÀÎ&ðÝÞ$�¯&�3Ý¼á

IîbX@s�3D¡�ôÀÎ¯&åÇ�9���SY.���¯.��Ç1

.��Ì�.��3@~ÝÄ���Ý&&9�òÝáI����

��@��ÝN×�!.�.��C.���«��3×R8�Î&�È

G
Ýæ�æ���Zþ��Î9ËO¼t¥�ÝD3��¯&W�Ý&9�

���&�¯Ýßþ]P×àÎ&!ÁÝ�¯Î×��?Ý;B�«¯D¡À

Î�ks×°±Ý�°�����«@��¯ÆÎ��ÝD¡Eé��ÑÎ5

ii



²ßþTÎ@~����S����O�«Yuhana�@~ßþbÝ¯Æ9Ý�

9�9ÝKî�

��39ðÄ��×R)®ÄÝý ���b�&�Zþ���3AI

Project�ÝÄæ����&«&�T�WPaper���?i��®��»��v

�3�ÏyR���Îw�×RQRiGhost Project���?i«æ�3Wireless

Sensor Network����&N×Í@�+|�&ÕG��Ýt¡¯��þÝ

£Í�Ì�M���b¯Z�v��@�õ&×R«E�ÊÝRobot Studio��

à|C®¼�©½��¯ZÀÎ×öÃRÃ>�I5Ý.����N×�¢�

�ïI@�Ýå?ï�

��&Ý�BBlueCat��¨CTB�¯&NFÒ�Ý@��¡�Î�=bá

¶�¯&�àðTy�ÚT¦�Ýjì®Þ������×��?Ý;B�À

Î�|õ¯5²×°@~Tÿ�ô��¯QR�ïIÝ@����dregs�×

à|¼KÎ�?ÝìFÆ¦ÝEé���6Ü�DSP�^b¯ÝQR&���

5¿;Ä���GH�Ng«¯ìFK�Ù"�¯ß�á�Æµ�Ý` ��

�camel�try�����ä�ÆÙ�butz��.!.Æ�¯Æ×àKÎ&¥�Ý

YÖ�

��&�Ý���39ø�BÝ®>ì��ÈÑðÝ�®�3&.Dæ

¶�|C&Ë�«�ïÅ
¼Ý`Î���È1XÝ��¼�

H9ÝßÂÿ���P°××¼ó���úº�ß�¯&�Èb9øÝº

��Â�¯Æ9ø?Ýß�

iii



iv



Abstract

Recognition of daily activities is an enabling technology for active service provid-

ing and automatic in-home monitoring. In this thesis, we aim to recognize activities

in a long sensor stream without knowing the boundary of activities. We formulate

this continuous recognition problem as a sequence labeling problem. The activity is

labeled every a fixed interval given the sensor readings.

Fusing multiple heterogeneous sensors helps disambiguate different activities. How-

ever, these sensors are very diverse in readings. To evaluate the capability of models

in dealing with such diverse sensors, we compare several state-of-the-art sequence

labeling algorithms including hidden Markov model (HMM), linear-chain conditional

random field (LCRF) and SVMhmm. The results show that the two discriminative mod-

els, LCRF and SVMhmm, significantly outperform HMM. SVMhmm show robustness

in dealing with all sensors we used. By incorporating proper overlapping features, the

accuracy can be further improved. In additions, CRF and SVMhmm perform compara-

bly with these overlapping features.

For active service providing, we evaluate various inference strategies for the on-

line recognition problem. On-line Viterbi algorithm achieves highest frame accuracy

but suffers from high insertion errors that may cause unexpected services. We propose

smooth on-line Viterbi algorithm to solve this problem.
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Chapter 1

Introduction

1.1 Motivation

The development of modern technology makes computers essential in our living world.

Various forms of computing devices such as the notebook, PDA, cell phone, and desk-

top are accessible with low prices. Computers serve as tireless tools and are ubiquitous

in the environment. However, they usually passively wait for commands. Can comput-

ers become more intelligent to know our need and provide services actively?

If the computer understands what we are doing, it is able to provide helpful services

automatically. For example, we may have the experience that we fall into an uncon-

scious sleep after the hard working of a day. A considerate computer system should

understand this situation and turn off lights. Sensor technology grants computers the

ability to sense the world. However, sensing is far from understanding. Sensor data are

usually noisy and unstructured. Activity recognition is key to bridge the ambiguous

1



2 CHAPTER 1. INTRODUCTION

and noisy sensor data to meaningful activities that we care.

The aim of the activity recognition is widespread.

Physical activities such as exercises and sports are important for keeping us healthy.

In additions, exercises need to be done carefully. Wrong postures in a fierce exercise

may induce severe injury. Monitoring physical activities is helpful for a coach or a

doctor to keep their customers in correct progress. Examples for recognizing exercises

involve tracking free-weight exercise [5] and rehabilitative exercise [28].

Accidents ranks five in the ten leading causes of death in 2005 in Taiwan. Detecting

abnormal activities enables the system to be aware of the emergency. For example,

with the video surveillance system, we are able to identify car accidents automatically.

Accidents in the home living should also be carefully monitored. When we rolls on

the floor or slipping in a bathroom, it would be dangerous if we are alone and nobody

is aware. The detection of abnormal activities is thus of great help for saving lives.

Social network researchers may be favored by an activity recognition system that

recognizes the conversations and social events between people. For example, knowing

the conversations between participants in a conference can be utilized to construct a

social network [8].

Daily activity is one of the most important activities we want to recognize. Medical

professionals believe that one of the best way to detect an emerging medical condition

before it becomes critical is to look for changes in the activities of daily living (ADLs)

[13], instrumental ADLs (IADLs) [17], and enhanced ADLs (EADLs) [33]. ADLs are

“the things we normally do in daily living including any daily activity we perform for

self-care such as feeding ourselves, bathing, dressing, grooming, work, homemaking,
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and leisure”. “The ability or inability to perform ADLs can be used as a very prac-

tical measure of ability and disability in many disorders”.1 Collecting information

about ADLs is thus important for the health assessment. However, self-reporting of

ADLs may not be reliable due to the dishonesty or inability of the subjects. With a

computational system that keeps tracking daily activities of human, it would be easier

for family members, care-givers or physicians to identify the potential health problem

at home.

Recognizing daily activities also enables the computer to be an active service

provider. An intelligent housekeeper can control the lighting, heating, air condition-

ing, and noisy level to adapt the environment to us. A personal assistant can remind

us the schedule or medication time. A consultant can show us what to notice when

we are doing the housework or cooking. With the recognition of daily activities, our

computer is able to play the role of an intelligent housekeeper, a personal assistant, and

a consultant to provide us prompt help at the right time and at the right place.

1.2 Research Objective

Our goal is to recognize when and which activities occur given a sensor trace. Daily

activities are performed sequentially. As a result, no explicit cue is available in the

trace for us to know the boundary of the activities. In additions, durations of activities

can be as long as one hour and as short as twenty seconds. The task is thus challenging.

Different daily activities involve similar patterns in some aspects. For example,

1Definition in MedicineNet.com



4 CHAPTER 1. INTRODUCTION

preparing meals, having meals and washing dishes involve touches of the dishes.

Watching TV has similar audio pattern with listening to music since the TV program

plays music as well. The bed is usually a place for sleeping but can also be a place

for reading. We can sit on the same chair for both reading and playing computers. It

seems impossible to use single kind of sensor to distinguish daily activities well due

to the ambiguity. As a result, we favor utilizing multiple heterogeneous sensors for the

recognition system. However, heterogenous sensors are diverse in readings. We need

to properly integrate the information of all sensors.

Different people have different ways of executing activities. For example, some-

one may take a bath for an hour while another completes it in three minutes. The

preferences is also different. One may favor drinking the juice while another may fa-

vor the coffee. The sequential orders of activities or sub-activities are also subject to

individuals. In cooking dishes, one may put condiments first while another may put in-

gredients first. A recognition system would be more practical when it is able to handle

the individual difference.

We want to build a robust model that is able to properly deal with different forms

of sensor readings as well as fuse them. It should also be robust to learn the variation

of different individuals.

In this thesis, we utilize state-of-the-art sequence models to recognize daily ac-

tivities from multiple heterogeneous sensors including the microphone, the location

system and the RFID system. We discuss several issues including the model compari-

son, overlapping features, on-line recognition and segment errors.
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1.3 Thesis Organization

The thesis is organized as follows: In chapter 2, we survey existing approaches for

both sensor usages and recognition algorithms. In chapter 3, we compare and discuss

various models in solving the off-line recognition problem. We also propose strategies

for extracting useful overlapping features. In chapter 4, we evaluate several inference

algorithms to handle the on-line recognition problem. In chapter 5, we analyze the

segment error using the edit distance and propose a smooth algorithm to reduce the

high insertion errors of the on-line algorithm. The conclusion and future research

direction are presented in chapter 6.
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Chapter 2

Related Work

Activity recognition involves two main issues. The first is how to collect relevant

information from the environment. The second is how to predict what occurs in the

environment given the information. In this chapter, we survey various approaches to

activity recognition problems.

2.1 Sensor Setting

2.1.1 Sensor Selection

It is important to identify what information is crucial for the recognition of target ac-

tivities. In this way, we can select proper sensors for acquiring information.

7



8 CHAPTER 2. RELATED WORK

Vision

Vision is one of the major sensory component for human. We easily recognize what

one is doing in a complex scene with our eyes. Therefore, we believe visual informa-

tion contains most clues about the environment. With the computer vision, although

it is not as powerful as our eye in the current development, the activities can be rec-

ognized automatically with cameras. Wada et al. [42] conduct an experiment for de-

tecting entering and exiting the door using multiple cameras in different views. Video

clips are widely used for the recognition of motions. Sminchisescu et al. [35] recog-

nize different motions such as walking, running, bending, picking, and dancing with

the silhouettes.

However, the privacy issue is a major concern. In Wilson’s report [45], the camera

is less acceptable for the user. In his report, 11% of participants never accept the

camera in the home while 31% of them hesitate. None of them definitely accepts the

usage of the camera.

In additions, the visual information is quite sensitive to the variation of the envi-

ronment such as the change of lighting conditions. The processing of 2-D images or

3-D videos is usually computational costly. The storage requirement of the visual data

is also high.

Audio

Hearing is another important sensory component for human. We use speech as our

main communication median. Doing activities sometimes generates distinguishable
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sounds for the recognition. For example, Chen et al. [6] use a microphone to recognize

bathroom activities such as showering, urination, flushing, washing hands, and sighing.

The operation of machines generates unusual sounds. Ward [44] recognizes activities

in the wood workshop with the microphone worn on the right hand. The results show

that the audio information is of great help for the detection of the usage of the hammer,

drill, grind, and drawer. Daily activities can be recognized via audio. Lopes et al. [24]

recognize different sounds generated by the car, door, train, clapping, stepping, and

talking.

The privacy issue is also a concern for the microphone. In Wilson’s report [45],

17% of participants never accept the microphone while 43% hesitate. None of them

definitely accept the usage of the microphone as well.

Human Object Interaction

Activities involve the interaction with objects. For example, we drink with a cup and

have meals with dishes. We cook with a stove and wash clothes with a washing ma-

chine. Sensors attached on objects inform the recognition system how people are inter-

acting with these objects. Current sensors can be used to detect the usage of electrical

devices such as the microwave and the refrigerator. Flow sensor can be used to detect

the usage of water faucet. Switch sensors can be used to detect opening and closing

the door and window. To detect the usage of mobile objects such as cups, attaching

them accelerometers or tilt sensors to sensor the movement is a possible choice.

Radio-frequency identification (RFID) is another choice for detecting the human

object interaction. An RFID system consists of readers and tags. When a reader is



10 CHAPTER 2. RELATED WORK

close to a tag, the reader senses which tag is nearby. In this way, it informs the system

the interaction between the reader and the tag. Passive RFID tags can be used without

the internal power supply. In additions, they can be small enough to be attached on

most of the objects. Patterson et al. [29] use an RFID glove to detect activities which

involve the interaction with objects such as cleaning the table, eating breakfast, taking

out trash and making tea. Work similar RFID usages is done by Lin [21], Wyatt et al.

[49], and Pentney et al. [31].

Location

Location can be used to recognize activities since some activity is usually done in

some specific place. For example, we work in the office and sleep at home. Global

positioning system (GPS) is a popular tool for the outdoor localization. Although the

weather can affect the accuracy, it is still quite accurate. Researchers in Washington

university contribute much effort to the activity recognition using GPS. Patterson et al.

[30] track transportation modes such as foot, bus, and car using the GPS readings. Liao

et al. [18] recognize the high level activity such as at home, at work, shopping, dining

out, visiting by the inferring different locations. For the indoor localization, existing

approaches include using ultrasound, infrared, and radio-frequency signal.

Wilson [46] suggests a formulation that recognizes the location and activity simul-

taneously. We know that the activity and location may constrain each other. If we

know someone is cooking, it is highly probable that he is in the kitchen. On the other

hands, if we know someone is in the bedroom, it is more likely he is sleeping. His

work utilizes motion detectors, contact switches, pressure mats, and break beams to



2.1. SENSOR SETTING 11

track people. Unlike GPS and other indoor location systems, this kind of sensors is

anonymous such that you are not able to directly know the association of the sensor

trigger and the person. The association problem is difficult when there are many people

in the same places.

Physical and Physiological Information

The physical status is useful for the activity recognition, particularly for the recognition

of exercises. Exercising involves frequent and repetitive movement. The information

can be acquired with accelerometers, pedometers or force sensors. As we mention pre-

viously, Pan [28] recognizes rehabilitative exercises such as shoulder rolling, Pectoralis

stretch and front raise with accelerometers attached on the elbow, wrist and shoulder.

Chang et al. [5] recognize free-weight exercises with accelerometers attached on the

back of the hand and on the belt.

Actions can also be recognized by the accelerometers since they also involve fre-

quent and repetitive movement. Ravi et al. [32] recognize activities such as standing,

walking, running with one accelerometer attached near the pelvic region. Maurer et al.

[25] recognize running, sitting, standing, and walking effectively with accelerometers

attached on 6 positions.

The other high-level activities can be recognized by identifying the posture and

action. For example, we usually lie when sleeping and sit when playing a computer.

Bao et al. attach 5 accelerometers on the hip, wrist, arm, ankle and thigh to detect

activities such as working on a computer, folding laundry, bicycling and reading.

When the motion is slow or in constant speed, acceleration may be dominated by
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noise. It is not easy to track the real trajectory of our limbs using accelerometers only.

As an alternative, the ultrasound location system tracks the targets accurately in a 3D

space. Stiefmeier et al. [37] utilize both accelerometers and the ultrasound location

system to recognize activities of repairing the bicycle.

The change of activities may affect the physiological status. Our breath may be-

come more frequent when we are nervous in a game. Physiological data modeling

contest (PDMC) [1] is a contest for the activity recognition. The dataset are collected

using both physical sensors such as the pedometer and accelerometer and physiolog-

ical signals such as galvanic skin reflex (GSR), skin temperature and heat flux. In

the contest, participants are asked to predict two different activities, watching TV and

sleeping. The results show that they are highly recognizable with the physical and

physiological sensors.

2.1.2 Multiple Heterogeneous Sensors

Since the sensor information is directly related to what activity we care, by combining

multiple heterogeneous sensors, we are able to gather information to disambiguate

different activities.

Yen [50] shows the accuracy of the activity recognition can be improved by fusing

multiple heterogeneous sensors. However, he models this problem in a simplified sce-

nario that is to recognize activities in a set of manual segmented observation sequence.

This work is an extension by relaxing the need of manual segmentation that is usually

not feasible in real applications.



2.2. CLASSIFICATION ALGORITHMS 13

2.1.3 Sensor Placement

The placement of sensors is an important issue. Sensors can be worn on human body

or ubiquitous in the environment. Wearable sensors excel at the low equipping cost

and the scalability. However, it is not natural for us to wear something like the wrist

support or the badge all day long.

On the contrary, ubiquitous sensors can be attached on objects and invisible to the

user. House n [11] is such a realization that they attach objects current sensors, flow

sensors, light sensors, switch sensors and accelerometers. The disadvantage is that we

need to spend much effort arranging sensors and keep them alive. If sensors lost their

power supply or suddenly crash, how can we detect it and recover the sensors in an

acceptable cost becomes a big problem. In additions, the range of the recognition is

limited by the scale of the sensors.

Some sensors are flexible to be used in different settings. For example, the micro-

phone can be either placed in the room or on one’s hand. RFID can be used in multiple

schemes. We can wear an RFID reader and tag objects that we are interested in. We

can put tags and readers both in the environment and detect the displacement of the

objects. We can put the reader in the environment and wear a tag as well.

2.2 Classification Algorithms

Machine learning approach is key to the activity recognition problem. There is a se-

mantic gap between the target activity and the sensor readings so that it is not easy to

encode the mapping by a simple rule-based system. Machine learning serves as a tool
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that automatically identify the relationship between the sensor readings and the activ-

ities by learning from the training data. In additions, sensors usually involve noise.

The modern models can take the noise into account and provide an accurate and robust

prediction.

2.2.1 Feature Extraction

We need preprocessing the raw sensor data for filtering out the noise and aggregating

information. Features are extracted materials from the raw sensor readings. Although

the feature extraction is domain dependent, ideas in many other fields can be applied

to the activity recognition problems. For example, the mean, variance, correlation, and

entropy in statistics and information theory are often used as the features for signal-

based sensors such as accelerometers. Mel frequency cepstral coefficients (MFCCs)

for speech recognition can also be used as the features in the activity recognition prob-

lem. For the discrete sensor event such as the RFID reading, the order of the sensor

events can be considered using specialized temporal features. For example, in Tapia’s

[40] work, the order of the object usage is encoded as the ’Before Feature’ which de-

notes one sensor is triggered before another sensor. With proper features, we can make

the recognition better.

2.2.2 Classifiers

A classifier is the bridge between noisy and unstructured features and target classes.

Given an unlabeled instance, a classifier maps the features to a predicted class. Due
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to the popularity of the machine learning, we now have an amount of classifiers and

widely available tools. Thus, we can easily formulate the activity recognition task as a

classification problem and solve it with existing classifiers. We introduce some popular

classifiers in the following paragraph.

Decision tree (DT) is a tree-structured model. The classification process goes

through the tree and stop at a leaf node. In each internal node, we check feature values

with a certain condition and branch to a child according to the condition. In the leaf

node, we determine a class that is associated with the leaf node. The decision tree can

be converted to a set of rules and easily understood by human.

Statistical approach is popular in dealing with noisy data. For example, Naı̈ve

Bayes (NB) classifier models the joint probability of the features and the class label.

Conditional independence is assumed for every feature given the class label. As a

result, the joint probability is factorized to multiplication of simple distributions. The

classification process selects the class with the maximum likelihood given the features.

The distributions can be easily on-line updated when new training data come. DT and

NB are already widely used in activity recognition problems [3] [40] [25] [44] [23]

[39].

The classification process in k-Nearest Neighborhood (kNN) simply computes the

distances in the feature space between the testing instance and the training instances.

The predicted class is determined by the labels of k nearest training instances. No

training process is needed but high computational and storage cost is therefore un-

avoidable, particularly when the training data are large. Lopes et al. [24] use kNN as

their implementation for the audio recognition problem.
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Support vector machine (SVM) learns a decision hyperplane in the feature space. It

is originally designed for the binary classification, but the extension to multiple classes

is available. One may directly train a multi-class SVM or a set of binary SVMs for the

multi-class classification problem. Huynh et al. [10] make a comparison of utilizing

kNN and SVM for the recognition of both low-level and high-level activities. In their

work, SVM outperforms kNN.

To avoid overfitting, ensemble of multiple weak classifiers is a possible choice. For

example, different combinations of base classifiers such as DT, NB, kNN and SVM

and ensemble strategies such as boosting, bagging, plurality voting and stacking are

compared in Ravi’s work [32]. They show plurality voting and boosted SVM achieve

highest accuracy.

2.2.3 Generative Modeling

A generative model captures the joint probability of the observed random variables and

the hidden random variables. Since the joint probability is modeled, we can infer any

joint and conditional probabilities of any random variables. For example, if we model

the joint probability of the humidity, temperature and raining, it is possible to ask how

possible the temperature is high if we know it is raining or how possible it is raining if

the temperature and the humidity are high.

Bayesian network (BN) is a generative model that allows flexible factorization of

the joint probability of different random variables. Naı̈ve Bayes classifier is one simple

instantiation of BN. To model the real value random variable, Gaussian mixture model

(GMM) is a possible choice. In a GMM, the distribution is assumed to be a mixture of
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Gaussian distributions. For example, Patterson et al. [30] model the speed of moving

using 4 mixtures of Gaussian distributions since simple Gaussian distribution may not

be able to describe the moving speed of 3 different transportation modes. However, it

is usually difficult to observe which mixture each training instance belongs to. Fortu-

nately, we can automatically learn it by maximizing the likelihood of the training data

using EM algorithm.

Sometimes the input is a series of features that comes sequentially. Hidden Markov

model (HMM) is a generative model for capturing the temporal relationship in the

sequence. For each frame of the feature sequence, it introduces a single latent ran-

dom variable with multiple states to represent the underlying multiple stages of the

sequence. The latent random variables are assumed to be conditionally independent to

early frames given the previous frame. This is known as Markov assumption. Given

the latent random variable for a frame, the features in the same frame is assumed

conditionally independent to any other random variables in other frames. These two

assumptions result in a very good factorization of the joint probability. Thus, there ex-

ists an efficient way for inferring the generative probability of the observation. Similar

to GMM, we can automatically learn an HMM by maximizing the likelihood of the

training data.

2.2.4 Sequence Segmentation

Activities occur continuously without explicit cues. In this way, we need to segment a

small sequence from the long observation for the classification algorithm.
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Sliding Window

Windowing is a commonly used techniques in the signal processing. Since we do not

know the activity boundary for a continuous sensor trace, we assume the useful infor-

mation reveals in a finite length of window. We slide the window and segment a short

sequence for the classification. Thus, we can easily reduce the complex continuous

recognition problem into a classification problem. This approach is widely used in

previous work [3] [40] [23] [10]. Tapia et al. [40] propose the window length should

be variant according to the duration of each activity.

However, windowing results in unavoidable noise at the activity boundary. In ad-

ditions, there is no guarantee what window length involves sufficient information for

classification. Longer window involves more information but suffers from more noise

at the boundary. In Huynh’s [10] work, they select best window length by search. But

the search requires much more computation.

Dynamic Programming Search

Dynamically determining the activity boundary is probable by defining a search criteria

over the whole observation sequence. In this way, the problem of the boundary noise

and insufficient information in sliding window approach is not presented. Dynamic

programming search is widely used in large-vocabulary continuous speech recogni-

tion. The searching criteria can be determined according to the probability estimations

of generative models and the transition probabilities by the language model. Although

the search space is exponentially large, we can use the dynamically programming tech-
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nique to find optimal or sub-optimal solutions efficiently. For example, In HTK [47]

which refers to HMM toolkit, token passing algorithm is used to recursively search the

best next state in multiple HMMs where each HMM models the generative probability

of the phone or the word in speech. The best sequence is thus determined for a given

audio sequence.

2.3 Sequence Models

Similar to the classification problem, sequence labeling model seeks a mapping from

the input to the output. However, sequence labeling problem differs from the classifica-

tion problem in that the input and output are sequences. Therefore, the input space and

output space are exponentially large. Consider a noun-phrase chunk problem that is to

label each word an IOB tag in a natural language sentence. With only 3 classes and 20

words, there will be 320 possible sequences for the output space. This kind of problem

exists in many popular fields including natural language processing, computer vision

and bioinformatics. Researchers propose different models that represent the input and

output space with a structure. Here we introduce some of the state-of-the-art sequence

labeling models.

2.3.1 Hidden Markov Model

Although HMM is a generative model, it is widely used in such a discrimination prob-

lem. By defining the output sequence as the hidden random variable sequence, the

states of the random variable are corresponding to labels of the output sequence. The
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state sequence that has highest joint probability with the observation is determined as

the output sequence. Wyatt et al. [49] use automatically mined common sense to build

an HMM as their model for inferring activities from an RFID sequence. Patterson et

al. [29] compare three different formulations using HMM.

2.3.2 Dynamic Bayesian Network

Dynamic Bayesian network (DBN) is a more general model that extends BN to repre-

sent the temporal relationship between time slices. HMM and many of its extensions

are specialization of DBN. Rather than a single latent random variable every frame in

HMM, DBN allows complex dependency structure of different random variables in the

time frame and between time frames. Patterson et al. [30] and Liao et al. [18] propose

different DBNs that model the complex dependency of the transportation mode, speed,

location and GPS readings. Consider modeling this kind of relationship in an HMM,

there can be exponentially large states and too many conditional probabilities to be

learned. Some filtering algorithm such as Rao-Blackwellized particle filter (RBPF)

favors this kind of factored structured since it allows different filtering strategies for

different parts. Wilson [46] propose an RBPF that estimates the association using the

particle filter but estimates the distribution of the location and activity using Bayes

filter.

HMM implicitly models the duration of each class using the geometric distribu-

tion which may not be appropriate. Hidden semi-Markov Model (HSMM) is a kind of

DBN that add a duration node or an end node which models the distribution of staying

in the same state and transiting to other states. Another limit in HMM is that the transi-



2.3. SEQUENCE MODELS 21

tion probabilities remains the same for every time frame. Hierarchical hidden Markov

model (HHMM) is another kind of DBN that represents the transition probabilities

using a hierarchy of HMMs such that different transition probabilities are modeled in

different time scales. Duong et al. [9] introduce the Switching Hidden Semi-Markov

Model (S-HSMM) that use a two-layer hierarchy of HSMMs to model the complex

relationship of high level activity that is the composite of atomic actions.

Although DBN is powerful for modeling complex relationship of multiple random

variables, it usually pay for more computational effort. Exact inference algorithm such

as junction tree algorithm [36] needs exponential inference time if the structure is too

complex in DBN. Approximation techniques such as Gibbs sampling and loopy belief

propagation try to solve this problem.

2.3.3 Maximum Entropy Markov Model and Conditional Random

Field

Generative models select the sequence with maximum likelihood of observation. How-

ever, sequence labeling is a discrimination problem that is to predict the sequence given

the observation. Directly modeling the conditional probabilities of the label sequence

given the observation seems more natural for this problem. For example, maximum

entropy Markov model (MEMM) [26] is a conditional model that uses similar struc-

ture of HMM except the relationship of the observation is inverted. In this way, we can

model dependent observation such as overlapping features and long-term observation

without making improper independence assumption. However, MEMM suffers from
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the label bias problem due to the per-state normalization.

Conditional random field [16] (CRF) achieves great success in this field by solving

the label bias problem in MEMM using the global normalization. CRF has also been

applied in activity recognition. Chieu et al. [7] and Sminchisescu et al. [35] utilize a

linear-chain CRF (LCRF) for the activity recognition problem and show the superiority

over HMM. Liao et al. propose using a hierarchical CRF and iteratively inferring

activities and important locations simultaneously [19]. Shimosaka et al. [34] and we

[48] propose using a factored structure of CRF for solving the multi-tasking activity

recognition. Benson et al. [20] propose a CRF-Filter that is adapted from the particle

filter to solve the on-line recognition problem in localization.

2.3.4 Structural SVM

SVM is an effective approach for the classification problem. Altun et al. [2] propose

an extension of SVM, hidden markov support vector machine, that handles the se-

quence labeling problem. A general model for arbitrary output space, structural SVM

is proposed by Tsochantaridis et al. [41]. In an experiment conducted by Nguyen

and Guo [27], structural SVM outperforms 5 other state-of-the-art models including

HMM, CRF, Averaged perceptron (AP), Maximum margin Markov networks(M3N),

and an integration of search and learning algorithm (SEARN) in two sequence label-

ing tasks, part-of-speech (POS) tagging and optical character recognition (OCR). The

experiments show the superiority of structural SVM in two problems. But in a later

technical report [14], CRF is shown to be comparable with structural SVM when ap-

propriate features are used. In this thesis, we also address this issue with the activity
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recognition problem.
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Chapter 3

Off-line Recognition for Monitoring

Analyzing daily activities is helpful to track one’s healthy status and living ability. For

the elders, we may need to take care how much they eat and how often they sleep every

week. For the patients, we may need to know if they remember to take medicines. In

such applications, no prompt interaction is needed for the recognition system. The

main issue is to maximally utilize the information in the whole observation for the

accurate prediction.

3.1 Problem Definition

To monitor daily activities automatically, we collect a long trace of sensor data from

the subject. In the trace, we do not know how many activities occur as well as the

duration of each activity. The problem is difficult since there are a large number of

possible hypothesizes. We formulate this problem as a sequence labeling problem.

25
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Sequence labeling problem is to assign a single label to each element in an observation

sequence. In our problem, the activity is labeled every a fixed interval given the sensor

readings.

We define the problem as follow.

Given an observation sequence O = (O1, O2, ..., OT ) where Ot is the feature vector

of readings from multiple heterogeneous sensors at time t, the goal is to predict an

activity sequence A = (A1, A2, ..., AT ) where At is the activity occurs at time t. At

belongs to a set of N target activities T = {t1, t2, ...tN}.

3.2 E-Home Dataset

We use E-Home dataset as the evaluation dataset. E-Home dataset is collected in a

home-like environment for the research of the activity recognition by Yen [50]. The

dataset involves 13 subjects and each performs 12 activities including ”listening to

music”, ”watching TV”, ”reading”, ”telephoning”, ”preparing meals”, ”having meals”,

”drinking”, ”resting”, ”taking medicines”, ”mopping”, ”taking out of the garbage” and

”using the computer”. The order of activities is set as random and the parts of reading

experimental instructions in the trace is manually eliminated. The dataset consists of

totally 27818 seconds and the activity is annotated every second. In the dataset, three

primary kinds of sensors including a microphone in the corner of the room, a wearable

RFID reader and 40 load sensory blocks on the floor are used.

For the audio stream from the microphone, 24-dimensional real value feature vec-

tor including the mean of volume, variance of volume, low short time energy rate
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(LSTER), mean of zero-crossing rate, variance of zero-crossing rate, range of zero-

crossing rate, high zero-crossing rate ratio (HZCRR), mean of the spectrum flux (SF),

mean of band energy, variance of band energy, mean of band energy ratio, and vari-

ance of band energy ratio, are extracted. A location system estimates the most active

block of the 40 load sensory blocks by filtering out the deformation noise. The RFID

reader returns null or one of the 24 tagged objects including ”book1”, ”book2”, ”CD1”,

”CD2”, ”CD player”, ”computer keyboard”, ”cup1”, ”cup2”, ”dish”, ”garbage bag”,

”garbage bag2”, ”juice”, ”juice2”, ”microwave oven”, ”mop”, ”plastic spoon”, ”re-

frigerator”, ”TV remote control”, ”teabag box”, ”teakettle”, ”telephone”, ”trash can”,

”vitamin and water boiler”. The features are extracted every second. The detail of the

experiment and feature extraction can be found in Yen’s thesis [50].

3.3 Activity Modeling

Since we model the recognition problem as a sequence labeling problem, existing se-

quence models can be used to recognize activities. We compare state-of-the-art models

including HMM, linear chain CRF and SVMhmm in this problem.

3.3.1 HMM

Each activity is modeled as one state of the hidden node in HMM. Thus, HMM models

the joint probability P (A,O) of the activity sequence A and the observation sequence

O with the initial probabilities of activities, the conditional probabilities of the tran-

sitions between activities and the conditional probabilities between activities and the
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sensor observation. Each dimension of the observation is assumed conditionally inde-

pendent of each other given the activity. The conditional probability of each discrete

feature given the activity is modeled as a multinomial distribution; the conditional

probability of each real value feature given the activity is modeled as a mixture of 5

Gaussian distributions.

We use the Graphical Modeling Toolkit (GMTK) [4] for the implementation of

HMM. We smooth each multinomial distribution using a weighted sum of the learned

distribution and a uniform distribution. The weight w of the uniform distribution is

used to control the smoothness of parameters in HMM.

3.3.2 Linear Chain CRF

We use a linear chain CRF (LCRF) [16] for the recognition problem. LCRF is an

instantiation of CRF that uses similar graphical structure with HMM. Tutorials can be

found in the introduction by Wallach [43] and Sutton [38].

CRF models the conditional probability P (A|O) by a set of feature functions F =

{f1(A,O, t), f2(A,O, t), ..., fJ(A,O, t))} and a weight vector W = {w1, w2, ..., wJ}.

The conditional probability P (A|O) is defined as

P (A|O) =
exp(

∑
j

∑
t wjfj(A,O, t))

Z(O)

where Z(O) is the normalization constant.

Here we use unigram feature functions between the activity label and a feature in

the same frame. For the discrete feature, a set of binary feature functions is defined

for every combination of the activity and the feature value. For example, we define a
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binary feature function for the activity ”reading” and the RFID reading ”book1” as

freading,book1(A,O, t) =





1, if At = ”reading” and ORFID
t = ”book1”.

0, otherwise.

where ORFID
t is the RFID reading at time t.

For the real value feature, a set of real value feature functions is defined for every

activity. The value of the feature functions is defined as the feature value. For example,

we define a feature function for the activity ”reading” and the mean of volume as

freading,meanV olume(A, O, t) =





x, if At = ”reading” and OmeanV olume
t = x

0, otherwise.

where OmeanV olume
t is the mean of volume at time t.

For modeling the temporal relationship, we use bigram feature functions between

adjacent activities. A set of binary feature functions is defined for every combination

of the activities. For example, we define a binary feature function for the consecutive

”reading” activities as

freading,reading(A,O, t) =





1, if At−1 = ”reading” and At = ”reading”.

0, otherwise.

We choose CRF++ [15] for the implementation of LCRF. CRF++ is an open source

package which allows flexible definition of the feature functions. CRF++ is originally

designed for discrete features. We extend CRF++ to handle the real value features.

CRF++ uses forward/backward algorithms for computing the marginal probabilities

and the normalization constant. We predict the activity sequence with the maximum
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conditional probability given the observation sequence using Viterbi algorithm. Given

the training data D = (D1, D2, ..., DN) where Di = (Ai, Oi), the learning criteria is to

find a weight vector W that maximizes the log-likelihood of the training data. A zero

mean Gaussian prior is assumed to avoid overfitting. A single variance σ2 is used to

control the degree of penalization for each weight wi. Higher σ2 makes the model tend

to fit the training data. CRF++ uses L-BFGS [22] for the optimization that is shown to

be effective in previous papers.

3.3.3 SVMhmm

SVMhmm [12] is a sequence labeling instantiation of structural SVM. Similar to LCRF,

structural defines a linear discriminant function D(A,O) by a set of feature functions

F = {f1(A,O, t), f2(A,O, t), ..., fJ(A,O, t))} and a weight vector W = {w1, w2, ..., wJ}.

The linear discriminant function D(A,O) is defined as

D(A,O) =
∑

j

∑
t

wjfj(A, O, t).

Here we use the same feature functions in LCRF and SVMhmm.

Unlike the maximum likelihood estimation in CRF and HMM, structral SVM does

not model the probabilities but discriminate between different label sequences. The

learning criteria is similar to conventional SVM that maximizes the margin. The loss

function is the misclassified labels in a sequence. A cost factor c is used to control the

trade off between the margin and loss. Higher c makes the model tend to fit the training

data.
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3.3.4 Other Approaches

Frame-Based Classification

To evaluate how we benefit from the modeling of the temporal relationship, we use

three classifiers, NBC, maximum entropy classifier (MEC), and SVM for comparison.

In this formulation, each time frame is viewed as an instance and the activity is in-

dependently classified with the observation in the frame. NBC, MEC and SVM can

be viewed as a specialization of HMM, CRF and SVMhmm. Here we use the same

implementation in HMM, CRF and SVMhmm.

3.4 Performance Measures

The output P = (P1, P2, ..., PT ) of the recognition is a string of T predictions. Each

prediction Pt belongs to one of the 12 activities. The ground truth G = (G1, G2, ..., GT )

is the annotated activity sequence. To evaluate how our recognition algorithm per-

forms, the frame accuracy and the average class accuracy are used for the following

comparisons.

Frame Accuracy

The frame accuracy (FA) is the rate of matching frames between the prediction and the

ground truth. Thus, it is defined as

FA(P, G) =

∑T
t=1 δ(Pi, Gi)

T
where δ(Pi, Gi) =





1, if Pi = Gi.

0, otherwise.
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Average Class Accuracy

The frame accuracy is easily affected by the long activity. For example, in E-Home

dataset, a system that always predicts the activity as ”watching TV” can be as accurate

as 17% that is much higher than random guess due to the high coverage of watching TV.

The average class accuracy (ACA) is the normalized frame accuracy by each activity.

The measure is defined as

Recall(P, G, a) =

∑T
t=1 ∆(Pi, Gi, a)∑T

t=1 δ(Gi, a)
where ∆(Pi, Gi, a) =





1, if Pi = Gi = a.

0, otherwise.

ACA(P, G) =

∑N
a=1 Recall(P, G, a)

N
.

3.5 Raw Features

We first use the raw features for the evaluation. Raw features include a 24-dimensional

sequence of real value vector for the audio sensor, a discrete sequence for the RFID

system and a discrete sequence for the location system. The features of these three

sensors diverge in form. Audio features are real value vectors while RFID features and

location features are discrete values. In additions, RFID features differ from location

features in sparsity. In E-home dataset, RFID returns null in 90% of time.

For evaluation, we use leave-one-subject-out cross-validation. The sequence of

each subject is tested once using the model trained with sequences of the rest 12 sub-

jects.
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3.5.1 Results

To compare the characteristic of each sequence model for dealing with heterogeneous

sensors, we evaluate the frame accuracy and the average class accuracy for all seven

combinations of the three sensors using HMM, LCRF and SVMhmm.

The smooth parameter w in HMM is tested from 0.90 to 0.99 and 0.01 as a step.

The variance σ2 for LCRF and the cost factor c for SVMhmm are tested from 2−3 to 24

and multiplied by 2 as a step. The parameters that achieve highest frame accuracy are

used for each model. The results are summarized in Table 3.1.

FA/ACA(%) HMM LCRF SVMhmm

Audio 23.5/24.8 37.6/27.3 45.0/36.4
RFID 44.9/44.1 51.4/44.4 59.5/50.9

Location 31.5/37.4 43.3/37.1 40.2/37.5
Audio+RFID 31.9/33.5 62.3/54.9 69.7/63.5

Audio+Location 39.5/41.9 56.3/48.6 61.0/56.0
Location+RFID 39.6/45.0 63.8/56.8 65.2/60.3

All 44.3/46.8 68.8/64.6 72.0/67.8

Table 3.1: Performance Comparison of HMM, LCRF and SVMhmm using Raw Fea-
tures.

In HMM, the result of fusing all sensors is even worse than using RFID only.

The situation informs us that it can be dangerous to fuse sensors in a single HMM.

Assuming independence for the 24-dimensional audio features in HMM is dangerous

since these features are extracted from the same audio signal.

With discriminative models such as LCRF and SVMhmm, fusing more sensors gen-

erally performs better. The accuracy of LCRF and SVMhmm using all sensors is much
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better than HMM.

In our experiment, LCRF performs slightly worse than SVMhmm. We can see that

SVMhmm show robustness in dealing with varieties of sensors while LCRF is relatively

weak in dealing with RFID and audio features. It seems inappropriate to assume simple

distribution between the activity and the audio features. Fitting parameters to a wrong

distribution can result in severe bias. For RFID, since the event is sparse, there may

not be enough counts for CRF to overcome the prior.

To show the usefulness of temporal relationship, we evaluate how sequence models

improve over the frame-based classification by considering the temporal relationship.

The results of different models are shown in Table 3.2.

FA/ACA(%) NBC/HMM MEC/LCRF SVM/SVMhmm

Classification 35.5/34.2 42.7/39.7 43.7/40.9
Sequence Models 40.9/43.1 68.8/64.6 72.0/67.8

Table 3.2: Performance Comparison of Frame-Based Classification and Sequence
Models.

The results show that all sequence models outperform corresponding classifiers in

both performance measures. The improvement of the frame accuracy by considering

the temporal relationship can be up to 28.3% in SVMhmm. The improvement of the

average class accuracy can be up to 27% in LCRF. The significant difference shows us

frame-based classification is not adequate in this problem.
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3.6 Overlapping Features

Observation can be view in multiple ways. For example, in natural language pro-

cessing, the word ”White” can be viewed as the word itself or a capitalized word. In

recognizing the name entity, the capitalization feature may be very informative. Dis-

criminative models such as LCRF and SVMhmm are shown to be able to utilize this

kind of overlapping features. We describe three different strategies to extract features

in our problem.

3.6.1 Generative Audio Probabilities

The audio in a single second may not contain sufficient information. In additions,

performing activities may generate different sounds in different stages. For example,

in preparing meals, the sound of chewing can be very different from using microwave.

We use an HMM to model the relationship between a specific activity and a small

segment of audio features.

Given the training data, at each time c, we segment a small length w of audio

features SLR
c = (OAudio

c−w , OAudio
c−w+1, ..., O

Audio
c ) and associate the segment SLR

c with the

activity label Ac . For each activity i, we independently train an HMM parameter λLR
i

using the segments with activity label i. By reversing the time index, we segment a

set of audio features SRL
c and train an HMM parameter λRL

i for each activity i. As a

result, we have 24 HMM parameters.

For a testing sequence, we use a backward sliding window as well as a forward

sliding window to segment two audio sequence of w frames with 50% overlapping.
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24-Dimensional Audio Features

Right-to-Left HMMs for Each Activity (12)
Left-to-Right HMMs for Each Activity (12)

24-Dimensional Generative Probability Estimations

Figure 3.1: Generative Audio Probabilities.

We then use the 24 HMM parameters to estimate the generative probabilities of the

two segments. The probability estimations are logged and scaled to values ranging

from 0 to 1. These 24 probability estimations are used as an additional feature vector.

Figure 3.1 show the process of creating these features.

3.6.2 Region and Region Transitions

We group the 40 load sensory blocks into 3 places including the living room, the dining

room and the workspace. The location feature is the index of the 40 blocks while the

region feature is the corresponding place. In additions, we consider all transitions

between these 3 places as additional features. Figure 3.2 shows the relationship of the
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Work Space
Dining Room Living Room

Figure 3.2: Regions and Sensory Blocks.

regions and location sensory blocks.

3.6.3 NextRFID and LastRFID

When a non-null object is read by the RFID reader, it is usually very informative for

disambiguating activities. Referring to the recent non-null object reading is helpful.

For example, if we hold the TV remote control at last 3 seconds, it is very possible that

we are watching TV currently. We define two features, NextRFID and LastRFID for

expanding the raw RFID features.

For non-null object i at the time frame c, if the nearest RFID reading of object i is

at the time frame c′ where c′ is larger than c, NextRFID distance is defined as (c′ − c).
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To prevent referring to the object that is irrelevant in time frames of other activities,

the maximum distance is limited. In additions, the forward referencing process ended

when it encounters the location change or another object. LastRFID distance is defined

in the same way of the NextRFID except that the order of time frames is reversed. The

resulting distances for objects are scaled to values ranging from 0 to 1. As a result, we

have a new 48-dimensional features for RFID. These features are used as a replacement

of the raw RFID readings.

3.6.4 Results

To show the effect of incorporating these overlapping features, we evaluate the per-

formance of LCRF and SVMhmm with these overlapping features. The results are

summarized in Table 3.3.

FA/ACA(%)
CRF SVMhmm

Raw Overlapping Raw Overlapping
Audio 37.6/27.3 40.1/29.8 45.0/36.4 45.9/37.4
RFID 51.4/44.4 63.6/56.8 59.5/50.9 63.0/55.4

Location 43.3/37.1 45.9/39.2 40.2/37.5 44.1/40.3
All 68.8/64.6 74.8/70.0 72.0/67.8 73.0/71.1

Table 3.3: Performance Comparison of LCRF and SVMhmm Using Raw Features and
Overlapping Features.

By combining these overlapping features, we improve the accuracy of LCRF and

SVMhmm in all sensor settings. Note that the frame accuracy of LCRF is improved

from 51.4% to 63.6% with the NextRFID and LastRFID features because the two fea-

tures solve the sparsity of the raw RFID readings. With these features, the performance
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of LCRF and SVMhmm is close.
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Chapter 4

On-line Recognition for Active

Services

Some applications require instant reaction to the query. Imagine an advising system

which suggests how you can cook your dish when you are cooking or a care-giver that

turns off TV and lights when you fall into unconscious sleep. In such a problem, we

have to make decisions promptly without referring to the future. In this chapter, we

introduce the on-line extensions of the off-line recognition algorithms.

4.1 Problem Definition

We define the recognition problem as follow. For each time c from 1 to T , given the

partial observation sequence O1:c = (O1, O2, ..., Oc) where Ot is the sensor observa-

tion at time t, we predict an activity label Ac where Ac is the activity at time c. The

41
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definition of the observation sequence is the same as what we used in the previous

chapter.

4.2 Dynamic Programming Algorithms

Viterbi algorithm is a general inference algorithm for HMM, LCRF and SVMhmm.

Given an observation sequence O, Viterbi algorithm finds an output sequence A that

maximizes measures such as the generative probability P (A,O) in HMM, the condi-

tional probability P (A|O) in LCRF, and the linear discriminant function D(A, O) in

SVMhmm. Here we generalize these measures as a score function S(A,O).

4.2.1 On-line Viterbi Algorithm

With simple modification, Viterbi algorithm can be used to handle the on-line recogni-

tion problem. Assume Viterbi algorithm returns an output sequence A∗
1:c = (A∗

1, A
∗
2, ..., A

∗
c)

given the partial observation sequence O1:c such that

A∗
1:c = arg max

A1:c

S(A1:c, O1:c).

On-line Viterbi algorithm is simply to return A∗
c at time c. The output can be efficiently

determined with the well-know max-product algorithm. As a result, the inference time

for every time slice is O(n2) where n is the number of activities.
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4.2.2 Bayes Filtering

Bayes filtering is originally used to estimates the marginal probability P (Ac|O1:c) in

HMM. By following the framework, we use Bayes filtering to solve the on-line recog-

nition problem. We return the activity A∗
c at time c such that

A∗
c = arg max

Ac

∑
A1:c−1

S(A1:c−1 : Ac, O1:c)

where A1:c−1 : Ac = (A1, A2, ..., Ac−1, Ac). The output can be determined with the

well-known sum-product algorithm. As a result, the inference time for every time slice

is also O(n2).

4.2.3 Token Passing Algorithm

Token passing algorithm can be viewed as a greedy Viterbi algorithm. Once the activity

label is predicted at time c, we determine it as the true label and find the next best label

from the current label. Assume token passing algorithm returns Atp
t at time t, token

passing algorithm returns Atp
c at time c such that

Atp
c = arg max

Ac

S(Atp
1:c−1 : Ac, O1:c)

where Atp
1:c−1 : Ac = (Atp

1 , Atp
2 , ..., Atp

c−1, Ac). Since it is a greedy algorithm, the infer-

ence time is only O(n) for every time slice.

We can see that the three algorithms are similar except they return labels accord-

ing to different measures. Bayes filtering returns the optimal label given the partial

observation while on-line Viterbi algorithm returns the label in the optimal sequence.
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We suppose both algorithms should be accurate. However, when two activities are

ambiguous, the output labels may frequently alter.

On the contrary, token passing algorithm returns sub-optimal labels. Due to the

greedy fashion, the error propagates when the early result is wrong. However, the

labeling result is consistent in the whole process. In additions, token passing algorithm

is much efficient. When the number of activities is large, token passing algorithm is

favored since O(n2) in other algorithms can be too slow.

4.3 Evaluation

We use E-home dataset as our evaluation dataset. We implement on-line Viterbi al-

gorithm, Bayes filtering and token passing algorithm in SVMhmm. We evaluate the

results with all raw features. The results are summarized in Table 4.1.

FA/ACA(%) Viterbi On-line Viterbi Bayes Filtering Token Passing
Accuracy 72.0/67.8 65.0/62.0 64.8/61.9 52.1/47.3

Table 4.1: Performance Comparison of Viterbi, On-line Viterbi, Bayes Filtering and
Token Passing Algorithms.

Due to the limitation of instant response, all three on-line recognition algorithms

are worse than the standard Viterbi algorithm for the off-line recognition. On-line

Viterbi and Bayes filtering perform comparably in this setting. The low accuracy of

token passing is due to the error propagation. Comparing to the frame-based classi-

fication algorithms, the frame accuracy of these algorithms are still better. Historical

temporal information is still very helpful in this problem.



Chapter 5

Segment Analysis

In previous chapters, we use the frame accuracy and the average class accuracy as main

performance metrics. If the application requires exact executive time of activities,

the frame accuracy and the average class accuracy are appropriate. However, some

applications do not need the accurate timing of activities. For example, if we want to

monitor how many times the elder sleeps in a day, the prediction of timing is not really

needed. Figure 5.1 shows an example of two recognition systems. Although system 2

achieves higher frame accuracy than system 1, the count of the sleeping is wrong.

Assuming the service is provided when an activity transition occurs, we can find

similar problem in such an application. Consider a context-aware service that turns off

the light when the user sleeps and turn on the light when the user wakes up. In the

same example in Figure 5.1, although system 2 achieves higher frame accuracy than

system 1, it unexpectedly turns on the light when the user is sleeping.

To evaluate how the recognition system performs in such applications, we define
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SleepingWatching TV

Sleeping Sleeping

Ground Truth

System 2 Reading

Watching TV SleepingSystem 1
Watching TV

Figure 5.1: Example for Segment Errors.

the performance measure in a different view. For a predicted activity sequence P =

(P1, P2, ..., PT ), we transform it to a segment sequence PS = (PS1, PS2, ..., PSP ).

Each segment consists of three elements such that PSi = (PSA
i , PSST

i , PSET
i ) where

PSA
i is the activity label, PSST

i is the starting time and PSET
i is the ending time.

Algorithm 1 shows how the transformation is done. For the ground sequence G =

(G1, G2, ..., GT ), the ground segment GS = (GS1, GS2, ..., GSG) are defined in the

same way where GSi = (GSA
i , PSST , PSET

i ) .

5.1 Segment Error

5.1.1 Minimum Edit Distance

We evaluate the segment error using minimum edit distance which is a well-known

measure. Edit distance or Levenshtein distance is a metric for measuring the differ-

ence between two strings. For example, the minimum edit distance between the string

“abba” and “ababb” is 2 because we can modify the “abba” to be “ababb” with 2 edits.

An edit can be a substitution that substitutes a character, an insertion that inserts a
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Algorithm 1 SEGMENT(P )

1: PSA
1 ⇐ P1

2: PSST
1 ⇐ 1

3: i ⇐ 1
4: last ⇐ P1

5: for t ⇐ 2 to T do
6: if Pt 6= last then
7: PSET

i ⇐ t− 1
8: i ⇐ i + 1
9: PSA

i ⇐ Pt

10: PSST
i ⇐ t

11: last ⇐ Pt

12: end if
13: end for
14: PSET

i ⇐ T
15: return PS

Having Meals Watching TV Resting

Having 
Meals Watching TVCooking Having Meals Resting

Match

Insertion

Match

Telephoning

Deletion

Match

Cooking

Resting

Substitution

Ground Truth

Prediction

Figure 5.2: Example for Minimum Edit Distance.

character and a deletion that deletes a character. In the example above, we add an “a”

before the third character and substitute the last “a” with a “b” in the string “abba” such

that the two strings become equal. Figure 5.2 shows an example of the minimum edit

distance. Algorithm 2 shows how to evaluate the number of matches, substitutions,

insertions, deletions between two strings.
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The edit distance over the prediction segments PS and the ground truth segments

GS is thus directly related to the counting problem we mentioned. An insertion error

means one over count of an activity while a deletion error means one less count. In

addition to the counting problem, other applications such as mining patterns of activity

transitions may also favor this measure.

In addition to the edit distance, word error rate (WER) is a widely used measure-

ment in the speech recognition. WER is defined based on the edit distance. The defi-

nition is as follow.

WER =
insertion + deletion + substituion

G

5.1.2 Time Critical Minimum Edit Distance

Some on-line applications are time critical. If we make a prediction after the activity

is finished, the service is also provided in vain. We define a time critical minimum edit

distance for these applications.

The algorithm for computing the time critical minimum edit distance is similar the

minimum edit distance except we do not allow two segments to match when there is no

overlapping. We match the first segment that overlaps with the ground segment. For

an insertion segment that has the same activity label with the ground truth, the segment

is specialized as a fragment segment. A substitution is replaced with an insertion and a

deletion. Figure 5.3 shows an example of the time critical minimum edit distance. We

can see that an insertion results in an unexpected service while a deletion results in a
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Figure 5.3: Example for Time Critical Minimum Edit Distance.

missing service. A fragment results in a duplicate service.

Algorithm 3 is the process for evaluating the time critical minimum edit distance.

We define the word error rate (WER) to measure the quality of services. We also

define the precision and recall such that a recognition system with low precision tends

to provide more unexpected services while a system with low recall tends to miss the

chance to provide the service. The definitions are as follow.

WER =
insertion + deletion

G

Precision =
match

(match + insertion)

Recall =
match

G
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5.2 Evaluation

5.2.1 Off-line Recognition

We evaluate LCRF and SVMhmm with raw features using the edit distance. The results

are summarized in Table 5.1.

Results(%) Match Substitution Insertion Deletion WER
LCRF 113 27 24 16 42.9

SVMhmm 127 25 65 4 60.3

Table 5.1: Segment Error of LCRF and SVMhmm.

Although the frame accuracy is very similar in LCRF and SVMhmm. Their be-

havior of prediction in segment level is quite different. LCRF makes fewer predic-

tions while SVMhmm tends to predict aggressively. As a result, the insertion errors of

SVMhmm are higher and the deletion and substitution errors of LCRF are higher. This

may guide us in choosing models when applications vary.

5.2.2 On-line Recognition

We evaluate inference algorithms in the previous chapter using the time critical mini-

mum edit distance. The results are summarized in table 5.2.

Although on-line Viterbi algorithm and Bayes filtering are superior to token passing

algorithm in the frame accuracy, they are very bad at word error rate. Due to the

ambiguous situation when two activities are highly possible, the prediction may jump

back and forth in these two activities. As a result, the insertion errors become very
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Results(%) Match Insertion Deletion Fragment WER Precision Recall
Viterbi 129 86 27 11 67.9 60.0 82.7
O. V. 139 376 17 99 251.9 27.0 89.1
B. F. 140 379 16 102 253.2 31.0 89.7
T. P. 97 122 59 15 116 44.3 62.2

Table 5.2: Segment Error of On-line Algorithms.

high. We can see that wrong services are more than twice of correct services.

5.3 Smooth on-line Viterbi

In some services, a wrong prediction may be critical. For example, the light control

system should not turn on the light when the user is sleeping. To reduce the high inser-

tion errors in on-line Viterbi algorithm, we propose smooth on-line Viterbi algorithm.

As we mention in the previous chapter, a score function S(A,O) is used for each

model. Given the partial observation sequence O1:c and an activity label a, we define a

function V iterbiScore(O1:c, a) that returns a score s such that

s = max
A1:c−1

S(A1:c−1 : a,O1:c)

where A1:c−1 : a = (A1, A2, ..., Ac−1, a). V iterbiScore(O1:c, a) function is implicitly

implemented in Viterbi algorithm.

To prevent prediction when there is ambiguity, we define a measure for estimating

whether it is ambiguous. As we know that the score degrades with time. Absolute

score is not a good measure. We define the discriminability dc at time c as the ratio of

highest score versus the second highest score.
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Figure 5.4: Searching the Threshold of Smooth On-line Viterbi Algorithm.

We define a threshold dth such that if dc is larger than dth, we predict the class

with highest score and use the last prediction otherwise.

Algorithm 4 show the smooth on-line Viterbi algorithm.

5.3.1 Evaluation

The evaluation is as follow, Figure 5.4 is the WER and the frame accuracy by increas-

ing dth. The frame accuracy degrades slowly when dth is small. This means that the

frames we reject are usually wrong originally. As a result, WER decreases quickly

with dth. When dth is 8.9, we achieve similar WER with token passing algorithm
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Figure 5.5: PR Curve of Smooth On-line Viterbi.

but remain the frame accuracy as 63.6% which is higher than 52.1% in token passing

algorithm. When dth is 17.5, we achieve similar frame accuracy with token passing

algorithm but result a lower WER 60.8%. As a result, with a proper threshold, smooth

on-line Viterbi algorithm is better than token passing algorithm.

Figure 5.5 is another way to evaluate this algorithm. We show the PR curve by

adjusting the dth. The original on-line Viterbi algorithm achieves very low precision.

By increasing dth, the precision increase with a price of lower recall. In this way, we

can choose different quality of services by adjusting dth for specific applications.
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Algorithm 2 MED(GS, PS)

1: for i ⇐ 0 to G do
2: SCOREi,0 ⇐ i
3: end for
4: for j ⇐ 1 to P do
5: SCORE0,j ⇐ j
6: end for
7: for i ⇐ 1 to G do
8: for j ⇐ 1 to P do
9: SCOREi,j ⇐∞

10: if GSA
i = PSA

j then
11: SCOREi,j ⇐ SCOREi−1,j−1

12: BACKTRACKi,j ⇐ ”match”
13: else
14: SCOREi,j ⇐ SCOREi−1,j−1 + 1
15: BACKTRACKi,j ⇐ ”substitution”
16: end if
17: if SCOREi,j−1 + 1 < SCOREi,j then
18: SCOREi,j ⇐ SCOREi,j−1 + 1
19: BACKTRACKi,j ⇐ ”insert”
20: end if
21: if SCOREi−1,j + 1 < SCOREi,j then
22: SCOREi,j ⇐ SCOREi−1,j + 1
23: BACKTRACKi,j ⇐ ”delete”
24: end if
25: end for
26: end for
27: (i, j) ⇐ (G, P )
28: (match, insertion, deletion, substitution) ⇐ (0, 0, 0, 0)
29: while i 6= 0 or j 6= 0 do
30: if BACKTRACKi,j = ”match” then
31: (match, i, j) ⇐ (match + 1, i− 1, j − 1)
32: else if BACKTRACKi,j = ”substitution” then
33: (substitution, i, j) ⇐ (substitution + 1, i− 1, j − 1)
34: else if BACKTRACKi,j = ”insert” then
35: (insertion, j) ⇐ (insertion + 1, j − 1)
36: else
37: (deletion, i) ⇐ (deletion + 1, i− 1)
38: end if
39: end while
40: return (match, insertion, deletion, substitution)
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Algorithm 3 TCMED(GS,PS, G, P )

1: for i ⇐ 0 to G do
2: SCOREi,0 ⇐ i
3: end for
4: for j ⇐ 1 to P do
5: if GPSST

j
= PPSST

j
then

6: SCORE0,j ⇐ SCORE0,j−1 + fpenal {fpenal ¿ 1}
7: else
8: SCORE0,j ⇐ SCORE0,j−1 + 1
9: end if

10: end for
11: for i ⇐ 1 to G do
12: for j ⇐ 1 to P do
13: SCOREi,j ⇐∞
14: if GSA

i = PSA
j and GSST

i ≤ PSET
j and PSST

j ≤ GSET
i then

15: latescore ⇐ lpenal×min(0, PSST
j −GSST

i ) {lpenal ¿ fpenal}
16: SCOREi,j ⇐ SCOREi−1,j−1 + latescore
17: BACKTRACKi,j ⇐ ”match”
18: end if
19: if GPSST

j
= PPSST

j
and SCOREi,j−1 + fpenal < SCOREi,j then

20: SCOREi,j ⇐ SCOREi,j−1 + fpenal
21: BACKTRACKi,j ⇐ ”fragment”
22: else if SCOREi,j−1 + 1 < SCOREi,j then
23: SCOREi,j ⇐ SCOREi,j−1 + 1
24: BACKTRACKi,j ⇐ ”insert”
25: end if
26: if SCOREi−1,j + 1 < SCOREi,j then
27: SCOREi,j ⇐ SCOREi−1,j + 1
28: BACKTRACKi,j ⇐ ”delete”
29: end if
30: end for
31: end for
32: (i, j) ⇐ (G,P )
33: (match, insertion, deletion, fragment) ⇐ (0, 0, 0, 0)
34: while i 6= 0 or j 6= 0 do
35: if BACKTRACKi,j = ”match” then
36: (match, i, j) ⇐ (match + 1, i− 1, j − 1)
37: else if BACKTRACKi,j = ”insert” then
38: (insertion, j) ⇐ (insertion + 1, j − 1)
39: else if BACKTRACKi,j = ”fragment” then
40: (fragment, j) ⇐ (fragment + 1, j − 1)
41: else
42: (deletion, i) ⇐ (deletion + 1, i− 1)
43: end if
44: end while
45: return (match, insertion, deletion, fragment)
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Algorithm 4 SMOOTHONLINEVITERBI(O1:c, dth)

1: ȧ ⇐ arg max
a

V iterbiScore(O1:c, a)

2: ä ⇐ arg max
a 6=ȧ

V iterbiScore(O1:c, a)

3: ṡ ⇐ V iterbiScore(O1:c, ȧ)
4: s̈ ⇐ V iterbiScore(O1:c, ä)
5: dt ⇐ ṡ/s̈
6: lastact ⇐ SMOOTHONLINEVITERBI(O1:c−1, dth)
7: if log(dc) > dth or c = 1 then
8: return ȧ
9: else

10: return lastact
11: end if



Chapter 6

Conclusion

In this work, we formulate the continuous recognition of daily activities as a sequence

labeling problem. We compare several state-of-the-art models including HMM, LCRF,

and SVMhmm using E-home dataset. The capacity of each model in dealing with the

heterogeneous sensors is discussed. In additions, we propose strategies for extracting

overlapping features to better utilize the sensor data. We compare inference strategies

for the on-line recognition problem using both the frame accuracy and the segment

error. Finally, we propose smooth on-line Viterbi algorithm for the on-line recognition

problem.

In our experiment, discriminative models such as LCRF and SVMhmm significantly

outperform HMM. SVMhmm is robust in dealing with all three kinds of sensors we used

and LCRF is relatively weak in the RFID and audio sensors. By incorporating three

overlapping features, the accuracy of both models is improved. We found that the Nex-

tRFID and LastRFID features greatly improve the accuracy of LCRF by eliminating
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the sparsity of the RFID sensor. As a result, SVMhmm and LCRF perform similarly

with these overlapping features.

For the on-line recognition problem, we have shown that the on-line Viterbi algo-

rithm with highest frame accuracy suffers from high insertion errors. Smooth on-line

Viterbi algorithm is a way to remove insertion errors without losing too much frame

accuracy. In additions, the threshold in smooth on-line Viterbi algorithm can be used

to trade the rate of wrong services and missing services.

There is still limitation in this work. The evaluation dataset, E-home dataset is a

semi-natural dataset which is collected in an instructed laboratory environment. The

activities in a real home can be more complex. For example, we may stop an activity to

do another. In additions, we usually carry out multiple activities at the same time. As a

result, we should model the multi-tasking problems. An even more complex scenario

is to recognize activities in a multi-people environment. Associating the sensor trigger

with the subject is not a trivial job.

The performance of current recognition is also not perfect. The highest frame

accuracy is 74.8% which is not practical in many real applications. Currently we do

not use the physical information of the subjects. Attaching accelerometers are shown

to be helpful in recognizing activities. Therefore, we want to incorporate this kind of

sensors in the future.

Currently the parameters of models are selected by evaluating a set of predefined

values. In addition to the parameters for models, smooth on-line Viterbi algorithm

also needs a good threshold. The resolution and range of the searching process greatly

affect the accuracy. Selecting suitable parameters can be very time consuming when
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encountering a large dataset. As a result, finding an efficient way to choose parameters

is a possible research direction.
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