Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 財務金融學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95132
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor管中閔zh_TW
dc.contributor.advisorChung-Ming Kuanen
dc.contributor.author黃筠凱zh_TW
dc.contributor.authorYun-Kai Huangen
dc.date.accessioned2024-08-29T16:13:56Z-
dc.date.available2024-12-27-
dc.date.copyright2024-08-29-
dc.date.issued2024-
dc.date.submitted2024-08-14-
dc.identifier.citationAhn, Y., & Kim, D. (2020). Sentiment disagreement and Bitcoin price fluctuations: A psycholinguistic approach. Applied Economics Letters, 27(5), 412–416. https://doi.org/10.1080/13504851.2019.1619013
Assaf, A., Demir, E., & Ersan, O. (2024). Detecting and date-stamping bubbles in fan tokens. International Review of Economics Finance, 92, 98–113. https://doi.org/10.1016/j.iref.2024.01.039
Azariadis, C. (1981). Self-fulfilling prophecies. Journal of Economic Theory, 25(3), 380–396. https://doi.org/10.1016/0022-0531(81)90038-7
Barberis, N., Shleifer, A., & Vishny, R. (1998). A model of investor sentiment. Journal of Financial Economics, 49(3), 307–343. https://doi.org/10.1016/S0304-405X(98)00027-0
Bashchenko, O., & Marchal, A. (2020). Deep learning for asset bubbles detection (Research Paper No. 20-08). Swiss Finance Institute. https://doi.org/10.2139/ssrn.3531154
Black, F. (1986). Noise. The Journal of Finance, 41(3), 528–543. https://doi.org/10.1111/j.1540-6261.1986.tb04513.x
Blanchard, O. J. (1979). Speculative bubbles, crashes and rational expectations. Economics Letters, 3(4), 387–389. https://doi.org/10.1016/0165-1765(79)90017-X
Blanchard, O. J., & Watson, M. W. (1982). Bubbles, rational expectations and financial markets. National Bureau of Economic Research Working Paper Series, No. 945. https://doi.org/10.3386/w0945
Bouri, E., Gupta, R., & Roubaud, D. (2019). Herding behaviour in cryptocurrencies. Finance Research Letters, 29, 216–221. https://doi.org/10.1016/j.frl.2018.07.008
Bouri, E., Shahzad, S. J. H., & Roubaud, D. (2019). Co-explosivity in the cryptocurrency market. Finance Research Letters, 29, 178–183. https://doi.org/10.1016/j.frl.2018.07.005
Bouteska, A., Mefteh-Wali, S., & Dang, T. (2022). Predictive power of investor sentiment for Bitcoin returns: Evidence from COVID-19 pandemic. Technological Forecasting and Social Change, 184, 121999. https://doi.org/10.1016/j.techfore.2022.121999
Campbell, J. Y., Lo, A. W., & MacKinlay, A. C. (1997). The econometrics of financial markets. Princeton University Press. https://doi.org/10.2307/j.ctt7skm5
Cass, D., & Shell, K. (1983). Do sunspots matter? Journal of Political Economy, 91(2), 193–227. http://www.jstor.org/stable/1832054
Cheung, A., Roca, E., & Su, J.-J. (2015). Crypto-currency bubbles: An application of the Phillips–Shi–Yu (2013) methodology on Mt. Gox Bitcoin prices. Applied Economics, 47(23), 2348–2358. https://doi.org/10.1080/00036846.2015.1005827
Chowdhury, M. S. R., Damianov, D. S., & Elsayed, A. H. (2022). Bubbles and crashes in cryptocurrencies: Interdependence, contagion, or asset rotation? Finance Research Letters, 46, 102494. https://doi.org/10.1016/j.frl.2021.102494
Corbet, S., Lucey, B., & Yarovaya, L. (2018). Datestamping the Bitcoin and Ethereum bubbles. Finance Research Letters, 26, 81–88. https://doi.org/10.1016/j.frl.2017.12.006
Crépellière, T., Pelster, M., & Zeisberger, S. (2023). Arbitrage in the market for cryptocurrencies. Journal of Financial Markets, 64, 100817. https://doi.org/10.1016/j.finmar.2023.100817
Daniel, K., Hirshleifer, D., & Teoh, S. H. (2002). Investor psychology in capital markets: Evidence and policy implications. Journal of Monetary Economics, 49(1), 139–209. https://doi.org/10.1016/S0304-3932(01)00091-5
Dastgir, S., Demir, E., Downing, G., Gozgor, G., & Lau, C. K. M. (2019). The causal relationship between Bitcoin attention and Bitcoin returns: Evidence from the Copula- based Granger causality test. Finance Research Letters, 28, 160–164. https://doi.org/10.1016/j.frl.2018.04.019
De Long, J. B., Shleifer, A., Summers, L. H., & Waldmann, R. J. (1990). Noise trader risk in financial markets. Journal of Political Economy, 98(4), 703–738. http://www.jstor.org/stable/2937765
Diba, B. T., & Grossman, H. I. (1988). Explosive rational bubbles in stock prices? The American Economic Review, 78(3), 520–530. http://www.jstor.org/stable/1809149
Dickey, D., & Fuller, W. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, 74(366), 427–431. https://doi.org/10.2307/2286348
Engle, R. F., & Granger, C. W. J. (1987). Co-integration and error correction: Representation, estimation, and testing. Econometrica, 55(2), 251–276. https://doi.org/10.2307/1913236
Enoksen, F. A., Landsnes, C. J., Lučivjanská, K., & Molnár, P. (2020). Understanding risk of bubbles in cryptocurrencies. Journal of Economic Behavior & Organization, 176, 129–144. https://doi.org/10.1016/j.jebo.2020.05.005
Evans, G. W. (1991). Pitfalls in testing for explosive bubbles in asset prices. The American Economic Review, 81(4), 922–930. http://www.jstor.org/stable/2006651
Fama, E. F. (1970). Efficient capital markets: A review of theory and empirical work. The Journal of Finance, 25(2), 383–417. https://doi.org/10.2307/2325486
Fama, E. F. (2014). Two pillars of asset pricing. American Economic Review, 104(6), 1467–1485. https://doi.org/10.1257/aer.104.6.1467
Filardo, A. (2004). Should monetary policy respond to asset price bubbles? Some experimental results (BIS Working Paper). Bank for International Settlements. https://doi.org/10.2139/ssrn.285413
Flood, R. P., & Garber, P. M. (1980). Market fundamentals versus price-level bubbles: The first tests. Journal of Political Economy, 88(4), 745–770. http://www.jstor.org/stable/1837311
Flood, R. P., & Garber, P. M. (1991). The linkage between speculative attack and target zone models of exchange rates. The Quarterly Journal of Economics, 106(4), 1367–1372. https://doi.org/10.2307/2937968
Foley, S., Karlsen, J. R., & Putniņš, T. J. (2019). Sex, drugs, and Bitcoin: How much illegal activity is financed through cryptocurrencies? The Review of Financial Studies, 32(5), 1798–1853. https://doi.org/10.1093/rfs/hhz015
Froot, K. A., & Obstfeld, M. (1991). Intrinsic bubbles: The case of stock prices. The American Economic Review, 81(5), 1189–1214. http://www.jstor.org/stable/2006913
Gandal, N., Hamrick, J. T., Moore, T., & Oberman, T. (2018). Price manipulation in the Bitcoin ecosystem. Journal of Monetary Economics, 95, 86–96. https://doi.org/10.1016/j.jmoneco.2017.12.004
Garber, P. M. (1989). Tulipmania. Journal of Political Economy, 97(3), 535–560. http://www.jstor.org/stable/1830454
Garber, P. M. (1990). Famous first bubbles. The Journal of Economic Perspectives, 4(2), 35–54. http://www.jstor.org/stable/1942889
Granger, C. W. J. (1981). Some properties of time series data and their use in econometric model specification. Journal of Econometrics, 16(1), 121–130. https://doi.org/10.1016/0304-4076(81)90079-8
Granger, C. W. J., & Newbold, P. (1974). Spurious regressions in econometrics. Journal of Econometrics, 2(2), 111–120. https://doi.org/10.1016/0304-4076(74)90034-7
Griffin, J. M., & Shams, A. (2020). Is Bitcoin really untethered? The Journal of Finance, 75(4), 1913–1964. https://doi.org/10.1111/jofi.12903
Haber, S., & Stornetta, W. S. (1991). How to time-stamp a digital document. Journal of Cryptology, 3(2), 99–111. https://doi.org/10.1007/BF00196791
Hamilton, J. D. (1986). On testing for self-fulfilling speculative price bubbles. International Economic Review, 27(3), 545–552. https://doi.org/10.2307/2526680
Harvey, D. I., Leybourne, S. J., Sollis, R., & Taylor, A. M. R. (2016). Tests for explosive financial bubbles in the presence of non-stationary volatility. Journal of Empirical Finance, 38, 548–574. https://doi.org/10.1016/j.jempfin.2015.09.002
Kindleberger & Aliber. (2005). Manias, panics and crashes: A history of financial crises (5thed.,Vol.7). Palgrave Macmillan UK. https://doi.org/10.1057/9780230628045
Kristoufek, L. (2013). Bitcoin meets Google trends and Wikipedia: Quantifying the relationship between phenomena of the internet era. Scientific Reports, 3(1), 3415. https://doi.org/10.1038/srep03415
Lewis, A. (2021). The basics of Bitcoins and blockchains: An introduction to cryptocurrencies and the technology that powers them. Mango Media. https://books.google.com.tw/books?id=C8YpzgEACAAJ
Lux, T. (1995). Herd behaviour, bubbles and crashes. The Economic Journal, 105(431), 881–896. https://doi.org/10.2307/2235156
M’Bakob, G. B. (2024). Bubbles in Bitcoin and Ethereum: The role of halving in the formation of super cycles. Sustainable Futures, 7, 100178. https://doi.org/10.1016/j.sftr.2024.100178
Meese, R. A. (1986). Testing for bubbles in exchange markets: A case of sparkling rates? Journal of Political Economy, 94(2), 345–373. http://www.jstor.org/stable/1837408
Merton, R. C. (1995). A functional perspective of financial intermediation. Financial Management, 24(2), 23–41. https://doi.org/10.2307/3665532
Minsky, H. P. (1986). Stabilizing an unstable economy (Vol. 1). Yale University Press.
Montasser, G. E., Charfeddine, L., & Benhamed, A. (2022). COVID-19, cryptocurrencies bubbles and digital market efficiency: Sensitivity and similarity analysis. Finance Research Letters, 46, 102362. https://doi.org/10.1016/j.frl.2021.102362
Muth, J. F. (1961). Rational expectations and the theory of price movements. Econometrica, 29(3), 315–335. https://doi.org/10.2307/1909635
Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system.
Nelson, C. R., & Plosser, C. R. (1982). Trends and random walks in macroeconmic time series: Some evidence and implications. Journal of Monetary Economics, 10(2), 139–162. https://doi.org/10.1016/0304-3932(82)90012-5
Ng, S., & Perron, P. (1995). Unit root tests in ARMA models with data-dependent methods for the selection of the truncation lag. Journal of the American Statistical Association, 90(429), 268–281. https://doi.org/10.1080/01621459.1995.10476510
Ng, S., & Perron, P. (2001). Lag length selection and the construction of unit root tests with good size and power. Econometrica, 69(6), 1519–1554. https://doi.org/10.1111/1468-0262.00256
Obstfeld, M., & Rogoff, K. (1983). Speculative hyperinflations in maximizing models: Can we rule them out? Journal of Political Economy, 91(4), 675–687. http://www.jstor.org/stable/1831073
Obstfeld, M., & Rogoff, K. (1986). Ruling out divergent speculative bubbles. Journal of Monetary Economics, 17(3), 349–362. https://doi.org/10.1016/0304-3932(86)90062-0
Pedersen, T. Q., & Schütte, E. C. M. (2020). Testing for explosive bubbles in the presence of autocorrelated innovations. Journal of Empirical Finance, 58, 207–225. https://doi.org/10.1016/j.jempfin.2020.06.002
Phillips, P. C. B. (1987). Time series regression with a unit root. Econometrica, 55(2), 277–301. https://doi.org/10.2307/1913237
Phillips, P. C. B., & Shi, S. (2020). Real time monitoring of asset markets: Bubbles and crises. In H. D. Vinod & C. R. Rao (Eds.), Handbook of statistics (pp. 61–80). Elsevier. https://doi.org/10.1016/bs.host.2018.12.002
Phillips, P. C. B., Shi, S., & Yu, J. (2014). Specification sensitivity in right-tailed unit root testing for explosive behaviour. Oxford Bulletin of Economics and Statistics, 76(3), 315–333. https://doi.org/10.1111/obes.12026
Phillips, P. C. B., Shi, S., & Yu, J. (2015a). Testing for multiple bubbles: Historical episodes of exuberance and collapse in the S&P 500. International Economic Review, 56(4), 1043–1078. https://doi.org/10.1111/iere.12132
Phillips, P. C. B., Shi, S., & Yu, J. (2015b). Testing for multiple bubbles: Limit theory of real-time detectors. International Economic Review, 56(4), 1079–1134. https://doi.org/10.1111/iere.12131
Phillips, P. C. B., Wu, Y., & Yu, J. (2011). Explosive behavior in the 1990s NASDAQ: When did exuberance escalate asset values? International Economic Review, 52(1), 201–226. https://doi.org/10.1111/j.1468-2354.2010.00625.x
Said, E. S., & Dickey, D. A. (1984). Testing for unit roots in autoregressive-moving average models of unknown order. Biometrika, 71(3), 599–607. https://doi.org/10.2307/2336570
Samuelson, P. A. (1965). Proof that properly anticipated prices fluctuate randomly. IMR; Industrial Management Review (pre-1986), 6(2), 41.
Shahzad, S. J. H., Anas, M., & Bouri, E. (2022). Price explosiveness in cryptocurrencies and Elon Musk’s tweets. Finance Research Letters, 47, 102695. https://doi.org/ 10.1016/j.frl.2022.102695
Shen, D., Urquhart, A., & Wang, P. (2019). Does twitter predict Bitcoin? Economics Letters, 174, 118–122. https://doi.org/10.1016/j.econlet.2018.11.007
Shiller, R. J. (2015). Irrational exuberance revised and expanded third edition (REV - Revised, 3). Princeton University Press. https://doi.org/10.2307/j.ctt1287kz5
Skrobotov, A. (2023). Testing for explosive bubbles: A review. Dependence Modeling, 11(1). https://doi.org/10.1515/demo-2022-0152
Smith, V. L., Suchanek, G. L., & Williams, A. W. (1988). Bubbles, crashes, and endoge- nous expectations in experimental spot asset markets. Econometrica, 56(5), 1119–1151. https://doi.org/10.2307/1911361
Summers, B. J. (1994). The payment system: Design, management, and supervision. International Monetary Fund. https://doi.org/10.5089/9781557753861.071
Thomas, W. I. (1928). The child in America: Behavior problems and programs. Knopf.
Tsay, R. (2010). Linear time series analysis and its applications. In Analysis of financial time series (3rd ed., p. 33). John Wiley Sons, Ltd. https://doi.org/10.1002/9780470644560.ch2
Turk, Ž., & Klinc, R. (2017). Potentials of blockchain technology for construction management. Procedia Engineering, 196, 638–645. https://doi.org/10.1016/j.proeng.2017.08.052
Vidal-Tomás, D. (2022). Which cryptocurrency data sources should scholars use? International Review of Financial Analysis, 81, 102061. https://doi.org/10.1016/j.irfa.2022.102061
West, K. D. (1987). A specification test for speculative bubbles. The Quarterly Journal of Economics, 102(3), 553–580. https://doi.org/10.2307/1884217
Xu, Y. (2023). Behavioral finance: An introduction of herd effect - Take the dotcom bubble in 2000s as an example. Proceedings of the 8th International Conference on Financial Innovation and Economic Development (ICFIED 2023), 216–224. https://doi.org/10.2991/978-94-6463-142-5_25
Yao, C.-Z., & Li, H.-Y. (2021). A study on the bursting point of Bitcoin based on the BSADF and LPPLS methods. The North American Journal of Economics and Finance, 55, 101280. https://doi.org/10.1016/j.najef.2020.101280
Zeira, J. (1999). Informational overshooting, booms, and crashes. Journal of Monetary Economics, 43(1), 237–257. https://doi.org/10.1016/S0304-3932(98)00042-7
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/95132-
dc.description.abstract新冠疫情的爆發促進了加密貨幣市場的顯著增長,市場呈現高度波動與頻繁劇烈的價格震盪,識別和分析加密貨幣市場中的泡沫現象儼然成為投資者、研究者與監管單位的關注焦點。本研究選取市值排名前三的加密貨幣:比特幣、以太幣與幣安幣作為研究對象,並應用Phillips, Wu 與 Yu (2011, PWY) 提出的 supremum augmented Dickey–Fuller (SADF) 檢定與 Phillips, Shi與Yu (2015a, PSY) 提出 generalized SADF (GSADF) 檢定方法進行泡沫檢測,並透過backward SADF (BSADF) 檢定標記出泡沫發生日期。研究結果顯示,這些加密貨幣在樣本期間內均被檢測出多次泡沫。儘管這些檢定能有效識別部分泡沫,但在面對加密貨幣價格複雜且變化劇烈的序列特徵時,PWY(2011) 與 PSY(2015a) 所提出的泡沫偵測模式的應用價值仍有所局限,這一缺失有待進一步改進。然而,這些模型仍然為投資者提供了具有價值的預警資訊。此外,本研究亦發現,加密貨幣價格易受市場情緒、新聞事件以及政策變動的影響。zh_TW
dc.description.abstractThe COVID-19 pandemic has significantly accelerated the growth of the cryptocurrency market, characterized by high volatility and frequent dramatic price fluctuations. Identifying and analyzing bubbles in this market has become a critical concern for investors, researchers, and regulatory authorities. This study focuses on the top three cryptocurrencies by market capitalization: Bitcoin (BTC), Ethereum (ETH), and Binance Coin (BNB). We employ the supremum augmented Dickey-Fuller (SADF) test proposed by Phillips, Wu, and Yu (2011, PWY), the generalized SADF (GSADF) test by Phillips, Shi, and Yu (2015a, PSY), and the backward SADF (BSADF) test to date the occurrence of bubbles. Our findings reveal multiple bubbles in these cryptocurrencies during the sample period. Although these tests effectively identify some bubbles, the complex and highly volatile nature of cryptocurrency price sequences limits their utility, indicating a need for further investigation. Despite these limitations, these models still provide valuable early warning signals for investors. Additionally, our study finds that cryptocurrency prices are influenced by market sentiment, news events, and policy changes, highlighting the multifaceted dynamics of this emerging market.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-29T16:13:56Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-29T16:13:56Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
中文摘要 ii
英文摘要 iii
目次 iv
圖次 vi
表次 vii
第一章 緒論 1
第二章 加密貨幣發展背景 3
2.1 加密貨幣緣起 3
2.2 區塊鏈技術 4
2.3 加密貨幣技術與發展 6
第三章 資產價格泡沫 12
3.1 泡沫之定義與概念 12
第四章 自我迴歸棋型與單根檢定 18
4.1 自我迴歸模型定態概念 19
4.2 時間序列單根性質 24
4.3 單根檢定 26
第五章 泡沫檢測模型 29
5.1 單根檢定在泡沫研究之應用 29
5.2 右尾單根模型一般式設定 31
5.3 SADF檢定 33
5.4 GSADF檢定 34
5.5 泡沫時間戳記 35
5.6 PWY與PSY模型應用與發展 38
第六章 研究方法與結果 41
6.1 樣本與研究方法 41
6.2 研究結果 44
第七章 結論 55
參考文獻 58
附錄 — 密碼學技術 65
-
dc.language.isozh_TW-
dc.subjectBSADFzh_TW
dc.subjectGSADFzh_TW
dc.subject泡沫zh_TW
dc.subject加密貨幣zh_TW
dc.subjectSADFzh_TW
dc.subjectBubblesen
dc.subjectCryptocurrencyen
dc.subjectSADFen
dc.subjectBSADFen
dc.subjectGSADFen
dc.title加密貨幣市場泡沫特徵與檢測方法研究zh_TW
dc.titleA Study on the Characteristics and Detection Methods of Cryptocurrency Market Bubblesen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee何耕宇;黃裕烈zh_TW
dc.contributor.oralexamcommitteeKeng-Yu Ho;Yue-Lieh Huangen
dc.subject.keyword加密貨幣,泡沫,SADF,GSADF,BSADF,zh_TW
dc.subject.keywordCryptocurrency,Bubbles,SADF,GSADF,BSADF,en
dc.relation.page68-
dc.identifier.doi10.6342/NTU202404297-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-14-
dc.contributor.author-college管理學院-
dc.contributor.author-dept財務金融學系-
顯示於系所單位:財務金融學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf10.61 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved