請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94990完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 潘敏雄 | zh_TW |
| dc.contributor.advisor | Min-Hsiung Pan | en |
| dc.contributor.author | 董立敏 | zh_TW |
| dc.contributor.author | Li-Min Tung | en |
| dc.date.accessioned | 2024-08-23T16:19:22Z | - |
| dc.date.available | 2024-08-24 | - |
| dc.date.copyright | 2024-08-23 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-09 | - |
| dc.identifier.citation | Ali, A. T.; Hochfeld, W. E.; Myburgh, R.; Pepper, M. S. Adipocyte and adipogenesis. Eur J Cell Biol. 2013, 92, 229-236.
Almind, K.; Kahn, C. R. Genetic determinants of energy expenditure and insulin resistance in diet-induced obesity in mice. Diabetes. 2004, 53, 3274–3285. Arif, M.; Kumar, G. V.; Narayana, C.; Kundu, T. K. Autoacetylation induced specific structural changes in histone acetyltransferase domain of p300: Probed by surface enhanced raman spectroscopy. J Phys Chem B. 2007, 111, 11877–11879. Armani, A.; Mammi, C.; Marzolla, V.; Calanchini, M.; Antelmi, A.; Rosano, G. M.; Fabbri, A.; Caprio, M. Cellular models for understanding adipogenesis, adipose dysfunction, and obesity. J Cell Biochem. 2010, 110, 564–572. Asano, H.; Kanamori, Y.; Higurashi, S.; Nara, T.; Kato, K.; Matsui, T.; Funaba, M. Induction of beige-like adipocytes in 3t3-l1 cells. J Vet Med Sci. 2014, 76, 57–64. Bagchi, R. A.; Ferguson, B. S.; Stratton, M. S.; Hu, T. J.; Cavasin, M. A.; Sun, L.; Lin, Y. H.; Liu, D. X.; Londono, P.; Song, K. H.; Pino, M. F.; Sparks, L. M.; Smith, S. R.; Scherer, P. E.; Collins, S.; Seto, E.; McKinsey, T. A. Hdac11 suppresses the thermogenic program of adipose tissue via brd2. Jci Insight. 2018, 3, 16. Beiroa, D.; Imbernon, M.; Gallego, R.; Senra, A.; Herranz, D.; Villarroya, F.; Serrano, M.; Ferno, J.; Salvador, J.; Escalada, J.; Dieguez, C.; Lopez, M.; Fruhbeck, G.; Nogueiras, R. Glp-1 agonism stimulates brown adipose tissue thermogenesis and browning through hypothalamic ampk. Diabetes. 2014, 63, 3346–3358. Belzer, C.; de Vos, W. M. Microbes inside--from diversity to function: The case of akkermansia. ISME J. 2012, 6, 1449–1458. Bergman, E. N. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol Rev. 1990, 70, 567–590. Bindels, L. B.; Delzenne, N. M.; Cani, P. D.; Walter, J. Towards a more comprehensive concept for prebiotics. Nat Rev Gastroenterol Hepatol. 2015, 12, 303–310. Bjorntorp, P. Portal adipose-tissue as a generator of risk-factors for cardiovascular-disease and diabetes. Arteriosclerosis. 1990, 10, 493–496. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976, 72, 248–254. Buettner, R.; Scholmerich, J.; Bollheimer, L. C. High-fat diets: Modeling the metabolic disorders of human obesity in rodents. Obesity (Silver Spring). 2007, 15, 798–808. Cannon, B.; Nedergaard, J. Brown adipose tissue: Function and physiological significance. Physiol Rev. 2004, 84, 277–359. Chait, A.; den Hartigh, L. J. Adipose tissue distribution, inflammation and its metabolic consequences, including diabetes and cardiovascular disease. Front Cardiovasc Med. 2020, 7, 22. Chambers, E. S.; Morrison, D. J.; Frost, G. Control of appetite and energy intake by scfa: What are the potential underlying mechanisms? Proc Nutr Soc. 2015, 74, 328–336. Chia, C. W.; Egan, J. M. Incretins in obesity and diabetes. Ann N Y Acad Sci. 2020, 1461, 104–126. Choe, S. S.; Huh, J. Y.; Hwang, I. J.; Kim, J. I.; Kim, J. B. Adipose tissue remodeling: Its role in energy metabolism and metabolic disorders. Front Endocrinol (Lausanne). 2016, 7, 30. Chomczynski, P.; Sacchi, N. The single-step method of rna isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: Twenty-something years on. Nat Protoc. 2006, 1, 581–585. Chou, Y. C.; Ho, C. T.; Pan, M. H. Immature citrus reticulata extract promotes browning of beige adipocytes in high-fat diet-induced c57bl/6 mice. J Agric Food Chem. 2018, 66, 9697–9703. Chusyd, D. E.; Wang, D.; Huffman, D. M.; Nagy, T. R. Relationships between rodent white adipose fat pads and human white adipose fat depots. Front Nutr. 2016, 3, 10. Collins, S.; Daniel, K. W.; Petro, A. E.; Surwit, R. S. Strain-specific response to beta 3-adrenergic receptor agonist treatment of diet-induced obesity in mice. Endocrinology. 1997, 138, 405–413. Cypess, A. M.; Lehman, S.; Williams, G.; Tal, I.; Rodman, D.; Goldfine, A. B.; Kuo, F. C.; Palmer, E. L.; Tseng, Y. H.; Doria, A.; Kolodny, G. M.; Kahn, C. R. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 2009, 360, 1509–1517. Cypess, A. M.; Weiner, L. S.; Roberts-Toler, C.; Franquet Elia, E.; Kessler, S. H.; Kahn, P. A.; English, J.; Chatman, K.; Trauger, S. A.; Doria, A.; Kolodny, G. M. Activation of human brown adipose tissue by a beta3-adrenergic receptor agonist. Cell Metab. 2015, 21, 33–38. Cypess, A. M.; White, A. P.; Vernochet, C.; Schulz, T. J.; Xue, R.; Sass, C. A.; Huang, T. L.; Roberts-Toler, C.; Weiner, L. S.; Sze, C.; Chacko, A. T.; Deschamps, L. N.; Herder, L. M.; Truchan, N.; Glasgow, A. L.; Holman, A. R.; Gavrila, A.; Hasselgren, P. O.; Mori, M. A.; Molla, M.; Tseng, Y. H. Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat. Nat Med. 2013, 19, 635–639. Dao, M. C.; Everard, A.; Aron-Wisnewsky, J.; Sokolovska, N.; Prifti, E.; Verger, E. O.; Kayser, B. D.; Levenez, F.; Chilloux, J.; Hoyles, L.; Dumas, M.-E.; Rizkalla, S. W.; Doré, J.; Cani, P. D.; Clément, K. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: Relationship with gut microbiome richness and ecology. Gut. 2016, 65, 426. den Besten, G.; Bleeker, A.; Gerding, A.; van Eunen, K.; Havinga, R.; van Dijk, T. H.; Oosterveer, M. H.; Jonker, J. W.; Groen, A. K.; Reijngoud, D. J.; Bakker, B. M. Short-chain fatty acids protect against high-fat diet-induced obesity via a ppargamma-dependent switch from lipogenesis to fat oxidation. Diabetes. 2015, 64, 2398–2408. Derrien, M.; Vaughan, E. E.; Plugge, C. M.; de Vos, W. M. Akkermansia muciniphila gen. Nov., sp. Nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol. 2004, 54, 1469–1476. Eisinger, K.; Liebisch, G.; Schmitz, G.; Aslanidis, C.; Krautbauer, S.; Buechler, C. Lipidomic analysis of serum from high fat diet induced obese mice. Int J Mol Sci. 2014, 15, 2991–3002. Everard, A.; Belzer, C.; Geurts, L.; Ouwerkerk, J. P.; Druart, C.; Bindels, L. B.; Guiot, Y.; Derrien, M.; Muccioli, G. G.; Delzenne, N. M.; de Vos, W. M.; Cani, P. D. Cross-talk between akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 9066–9071. Everard, A.; Lazarevic, V.; Derrien, M.; Girard, M.; Muccioli, G. G.; Neyrinck, A. M.; Possemiers, S.; Van Holle, A.; Francois, P.; de Vos, W. M.; Delzenne, N. M.; Schrenzel, J.; Cani, P. D. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes. 2011, 60, 2775–2786. Farr, O.; Gavrieli, A.; Mantzoros, C. Leptin applications in 2015: What have we learned about leptin and obesity? Curr Opin Endocrinol Diabetes Obes. 2015, 22, 353–359. Fenton, P. F.; Dowling, M. T. Studies on obesity. I. Nutritional obesity in mice. J Nutr. 1953, 49, 319–331. Ferrari, A.; Fiorino, E.; Longo, R.; Barilla, S.; Mitro, N.; Cermenati, G.; Giudici, M.; Caruso, D.; Mai, A.; Guerrini, U.; De Fabiani, E.; Crestani, M. Attenuation of diet-induced obesity and induction of white fat browning with a chemical inhibitor of histone deacetylases. Int J Obes (Lond). 2017, 41, 289–298. Franczyk, B.; Rysz, J.; Ławiński, J.; Rysz-Górzyńska, M.; Gluba-Brzózka, A. Is a high hdl-cholesterol level always beneficial? Biomedicines. 2021, 9. French, S.; Robinson, T. Fats and food intake. Curr Opin Clin Nutr Metab Care. 2003, 6, 629–634. Frontini, A.; Cinti, S. Distribution and development of brown adipocytes in the murine and human adipose organ. Cell Metab. 2010, 11, 253–256. Gao, Z.; Yin, J.; Zhang, J.; Ward, R. E.; Martin, R. J.; Lefevre, M.; Cefalu, W. T.; Ye, J. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes. 2009, 58, 1509–1517. Garcia-Villalba, R.; Gimenez-Bastida, J. A.; Garcia-Conesa, M. T.; Tomas-Barberan, F. A.; Carlos Espin, J.; Larrosa, M. Alternative method for gas chromatography-mass spectrometry analysis of short-chain fatty acids in faecal samples. J Sep Sci. 2012, 35, 1906–1913. Gautron, L.; Elmquist, J. K. Sixteen years and counting: An update on leptin in energy balance. J Clin Invest. 2011, 121, 2087–2093. George, V.; Tremblay, A.; Despres, J. P.; Leblanc, C.; Bouchard, C. Effect of dietary fat content on total and regional adiposity in men and women. Int J Obes. 1990, 14, 1085–1094. Greaves, P. (2000). Histopathology of preclinical toxicity studies: Interpretation and relevance in drug safety evaluation. Green, H.; Meuth, M. An established pre-adipose cell line and its differentiation in culture. Cell. 1974, 3, 127–133. Gregoire, F. M.; Smas, C. M.; Sul, H. S. Understanding adipocyte differentiation. Physiol Rev. 1998, 78, 783–809. Gregoretti, I. V.; Lee, Y. M.; Goodson, H. V. Molecular evolution of the histone deacetylase family: Functional implications of phylogenetic analysis. J Mol Biol. 2004, 338, 17–31. Guerra, C.; Koza, R. A.; Yamashita, H.; Walsh, K.; Kozak, L. P. Emergence of brown adipocytes in white fat in mice is under genetic control. Effects on body weight and adiposity. J Clin Invest. 1998, 102, 412–420. Hardie, D. G. Amp-activated protein kinase: Maintaining energy homeostasis at the cellular and whole-body levels. Annu Rev Nutr. 2014, 34, 31–55. Hariri, N.; Thibault, L. High-fat diet-induced obesity in animal models. Nutr Res Rev. 2010, 23, 270–299. Harms, M.; Seale, P. Brown and beige fat: Development, function and therapeutic potential. Nat Med. 2013a, 19, 1252–1263. Harms, M.; Seale, P. Brown and beige fat: Development, function and therapeutic potential. Nat Med. 2013b, 19, 1252-1263. Hebbard, L.; George, J. Animal models of nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol. 2011, 8, 35–44. Hester, C. M.; Jala, V. R.; Langille, M. G.; Umar, S.; Greiner, K. A.; Haribabu, B. Fecal microbes, short chain fatty acids, and colorectal cancer across racial/ethnic groups. World J Gastroenterol. 2015, 21, 2759–2769. Holst, J. J. The physiology of glucagon-like peptide 1. Physiol. Rev. 2007, 87, 1409–1439. Holst, J. J.; Orskov, C.; Nielsen, O. V.; Schwartz, T. W. Truncated glucagon-like peptide i, an insulin-releasing hormone from the distal gut. FEBS Lett. 1987, 211, 169–174. Horvath, C.; Wolfrum, C. Feeding brown fat: Dietary phytochemicals targeting non-shivering thermogenesis to control body weight. Proc Nutr Soc. 2020, 79, 338–356. Hsu, C. L.; Lin, Y. J.; Ho, C. T.; Yen, G. C. Inhibitory effects of garcinol and pterostilbene on cell proliferation and adipogenesis in 3t3-l1 cells. Food Funct. 2012, 3, 49–57. Hurtado, E.; Nunez-Alvarez, Y.; Munoz, M.; Gutierrez-Caballero, C.; Casas, J.; Pendas, A. M.; Peinado, M. A.; Suelves, M. Hdac11 is a novel regulator of fatty acid oxidative metabolism in skeletal muscle. FEBS J. 2021, 288, 902–919. Hwang, J. T.; Park, I. J.; Shin, J. I.; Lee, Y. K.; Lee, S. K.; Baik, H. W.; Ha, J.; Park, O. J. Genistein, egcg, and capsaicin inhibit adipocyte differentiation process via activating amp-activated protein kinase. Biochem Biophys Res Commun. 2005, 338, 694–699. Ikeda, K.; Maretich, P.; Kajimura, S. The common and distinct features of brown and beige adipocytes. Trends Endocrinol. Metab. 2018, 29, 191–200. ISO, E. 10993-5: 2009—biological evaluation of medical devices—part 5: Tests for in vitro cytotoxicity (iso 10993-5: 2009). German Version. 2009. Jager, S.; Handschin, C.; St-Pierre, J.; Spiegelman, B. M. Amp-activated protein kinase (ampk) action in skeletal muscle via direct phosphorylation of pgc-1alpha. Proc Natl Acad Sci U S A. 2007, 104, 12017–12022. Jequier, E. Pathways to obesity. Int J Obes Relat Metab Disord. 2002, 26 Suppl 2, S12–17. Jia, Y.; Hong, J.; Li, H.; Hu, Y.; Jia, L.; Cai, D.; Zhao, R. Butyrate stimulates adipose lipolysis and mitochondrial oxidative phosphorylation through histone hyperacetylation-associated β3-adrenergic receptor activation in high-fat diet-induced obese mice. Exp. Physiol. 2017, 102, 273-281. Jian, H.; Liu, Y.; Wang, X.; Dong, X.; Zou, X. Akkermansia muciniphila as a next-generation probiotic in modulating human metabolic homeostasis and disease progression: A role mediated by gut-liver-brain axes? Int J Mol Sci. 2023, 24. Juberg, D. R.; Mudra, D. R.; Hazelton, G. A.; Parkinson, A. The effect of fenbuconazole on cell proliferation and enzyme induction in the liver of female cd1 mice. Toxicol Appl Pharmacol. 2006, 214, 178–187. Kajimura, S.; Spiegelman, B. M.; Seale, P. Brown and beige fat: Physiological roles beyond heat generation. Cell Metab. 2015, 22, 546–559. Kastelein, J. J.; van der Steeg, W. A.; Holme, I.; Gaffney, M.; Cater, N. B.; Barter, P.; Deedwania, P.; Olsson, A. G.; Boekholdt, S. M.; Demicco, D. A.; Szarek, M.; LaRosa, J. C.; Pedersen, T. R.; Grundy, S. M. Lipids, apolipoproteins, and their ratios in relation to cardiovascular events with statin treatment. Circulation. 2008, 117, 3002–3009. Kersten, S. Mechanisms of nutritional and hormonal regulation of lipogenesis. EMBO Rep. 2001, 2, 282–286. Kim, E.; Bisson, W. H.; Löhr, C. V.; Williams, D. E.; Ho, E.; Dashwood, R. H.; Rajendran, P. Histone and non-histone targets of dietary deacetylase inhibitors. Curr Top Med Chem. 2016, 16, 714–731. Kopytko, P.; Piotrowska, K.; Janisiak, J.; Tarnowski, M. (2021). Garcinol—a natural histone acetyltransferase inhibitor and new anti-cancer epigenetic drug. International Journal of Molecular Sciences, 22(6). doi:10.3390/ijms22062828 Kutil, Z.; Novakova, Z.; Meleshin, M.; Mikesova, J.; Schutkowski, M.; Barinka, C. Histone deacetylase 11 is a fatty-acid deacylase. ACS Chem. Biol. 2018, 13, 685–693. Kwok, K. H.; Lam, K. S.; Xu, A. Heterogeneity of white adipose tissue: Molecular basis and clinical implications. Exp Mol Med. 2016, 48, e215. Le Chatelier, E.; Nielsen, T.; Qin, J.; Prifti, E.; Hildebrand, F.; Falony, G.; Almeida, M.; Arumugam, M.; Batto, J. M.; Kennedy, S.; Leonard, P.; Li, J.; Burgdorf, K.; Grarup, N.; Jorgensen, T.; Brandslund, I.; Nielsen, H. B.; Juncker, A. S.; Bertalan, M.; Levenez, F.; Pons, N.; Rasmussen, S.; Sunagawa, S.; Tap, J.; Tims, S.; Zoetendal, E. G.; Brunak, S.; Clement, K.; Dore, J.; Kleerebezem, M.; Kristiansen, K.; Renault, P.; Sicheritz-Ponten, T.; de Vos, W. M.; Zucker, J. D.; Raes, J.; Hansen, T.; Meta, H. I. T. c.; Bork, P.; Wang, J.; Ehrlich, S. D.; Pedersen, O. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013, 500, 541–546. Lean, M. E. Brown adipose tissue in humans. Proc Nutr Soc. 1989, 48, 243–256. Lee, H. Y.; Park, J. H.; Seok, S. H.; Baek, M. W.; Kim, D. J.; Lee, K. E.; Paek, K. S.; Lee, Y.; Park, J. H. Human originated bacteria, lactobacillus rhamnosus pl60, produce conjugated linoleic acid and show anti-obesity effects in diet-induced obese mice. Biochim Biophys Acta. 2006, 1761, 736–744. Lee, P.-S.; Teng, C.-Y.; Kalyanam, N.; Ho, C.-T.; Pan, M.-H. Garcinol reduces obesity in high-fat-diet-fed mice by modulating gut microbiota composition. Mol Nutr Food Res. 2019, 63, e1800390. Lee, P. S.; Teng, C. Y.; Kalyanam, N.; Ho, C. T.; Pan, M. H. Garcinol reduces obesity in high-fat-diet-fed mice by modulating gut microbiota composition. Mol Nutr Food Res. 2019, 63, e1800390. Levin, B. E.; Dunn-Meynell, A. A.; Ricci, M. R.; Cummings, D. E. Abnormalities of leptin and ghrelin regulation in obesity-prone juvenile rats. Am J Physiol Endocrinol Metab. 2003, 285, E949–957. Lewis, S.; Williams, A.; Eisenbarth, S. Structure and function of the immune system in the spleen. Sci Immunol. 2019, 4, e6085. Li, X.; Shimizu, Y.; Kimura, I. Gut microbial metabolite short-chain fatty acids and obesity. Biosci Microbiota Food Health. 2017, 36, 135–140. Lin, H. V.; Frassetto, A.; Kowalik, E. J., Jr.; Nawrocki, A. R.; Lu, M. M.; Kosinski, J. R.; Hubert, J. A.; Szeto, D.; Yao, X.; Forrest, G.; Marsh, D. J. Butyrate and propionate protect against diet-induced obesity and regulate gut hormones via free fatty acid receptor 3-independent mechanisms. PLoS One. 2012, 7, e35240. Liu, H.; Du, T.; Li, C.; Yang, G. Stat3 phosphorylation in central leptin resistance. Nutrition & Metabolism. 2021, 18, 39. Liu, S. S.; Wu, F.; Jin, Y. M.; Chang, W. Q.; Xu, T. M. Hdac11: A rising star in epigenetics. Biomed Pharmacother. 2020, 131, 110607. Luo, L.; Liu, M. Adipose tissue in control of metabolism. J Endocrinol. 2016, 231, R77–R99. Münzberg, H.; Morrison, C. D. Structure, production and signaling of leptin. Metabolism. 2015, 64, 13–23. Madsen, C. M.; Varbo, A.; Nordestgaard, B. G. Extreme high high-density lipoprotein cholesterol is paradoxically associated with high mortality in men and women: Two prospective cohort studies. Eur Heart J. 2017, 38, 2478–2486. Majeed, M.; Bani, S.; Bhat, B.; Pandey, A.; Mundkur, L.; Neupane, P. Safety profile of 40% garcinol from garcinia indica in experimental rodents. Toxicol Rep. 2018, 5, 750–758. Majeed, M.; Majeed, S.; Nagabhushanam, K.; Lawrence, L.; Mundkur, L. Garcinia indica extract standardized for 20% garcinol reduces adipogenesis and high fat diet-induced obesity in mice by alleviating endoplasmic reticulum stress. J. Funct. Food. 2020, 67, 9. Martel, J.; Ojcius, D. M.; Chang, C. J.; Lin, C. S.; Lu, C. C.; Ko, Y. F.; Tseng, S. F.; Lai, H. C.; Young, J. D. Anti-obesogenic and antidiabetic effects of plants and mushrooms. Nat Rev Endocrinol. 2017, 13, 149–160. Maslowski, K. M.; Vieira, A. T.; Ng, A.; Kranich, J.; Sierro, F.; Yu, D.; Schilter, H. C.; Rolph, M. S.; Mackay, F.; Artis, D.; Xavier, R. J.; Teixeira, M. M.; Mackay, C. R. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor gpr43. Nature. 2009, 461, 1282–1286. Meyers, K.; Lopez, M.; Ho, J.; Wills, S.; Rayalam, S.; Taval, S. Lipocalin-2 deficiency may predispose to the progression of spontaneous age-related adiposity in mice. Sci Rep. 2020, 10, 14589. Myers, M. G.; Cowley, M. A.; Munzberg, H. Mechanisms of leptin action and leptin resistance. Annu Rev Physiol. 2008, 70, 537–556. Ntambi, J. M.; Young-Cheul, K. Adipocyte differentiation and gene expression. J Nutr. 2000, 130, 3122S–3126S. Nunez-Alvarez, Y.; Suelves, M. Hdac11: A multifaceted histone deacetylase with proficient fatty deacylase activity and its roles in physiological processes. FEBS J. 2022, 289, 2771–2792. O'Toole, P. W.; Marchesi, J. R.; Hill, C. Next-generation probiotics: The spectrum from probiotics to live biotherapeutics. Nat Microbiol. 2017, 2, 17057. Ong, B. X.; Brunmeir, R.; Zhang, Q.; Peng, X.; Idris, M.; Liu, C.; Xu, F. Regulation of thermogenic adipocyte differentiation and adaptive thermogenesis through histone acetylation. Front Endocrinol (Lausanne). 2020, 11, 95. Pan, M. H.; Chang, W. L.; Lin-Shiau, S. Y.; Ho, C. T.; Lin, J. K. Induction of apoptosis by garcinol and curcumin through cytochrome c release and activation of caspases in human leukemia hl-60 cells. J Agric Food Chem. 2001, 49, 1464–1474. Park, A.; Kim, W. K.; Bae, K. H. Distinction of white, beige and brown adipocytes derived from mesenchymal stem cells. World J Stem Cells. 2014, 6, 33–42. Park, S. J.; Park, M.; Sharma, A.; Kim, K.; Lee, H. J. Black ginseng and ginsenoside rb1 promote browning by inducing ucp1 expression in 3t3-l1 and primary white adipocytes. Nutrients. 2019, 11, 13. Popkin, B. M.; Keyou, G.; Zhai, F.; Guo, X.; Ma, H.; Zohoori, N. The nutrition transition in china: A cross-sectional analysis. Eur J Clin Nutr. 1993, 47, 333–346. Porras, D.; Nistal, E.; Martinez-Florez, S.; Pisonero-Vaquero, S.; Olcoz, J. L.; Jover, R.; Gonzalez-Gallego, J.; Garcia-Mediavilla, M. V.; Sanchez-Campos, S. Protective effect of quercetin on high-fat diet-induced non-alcoholic fatty liver disease in mice is mediated by modulating intestinal microbiota imbalance and related gut-liver axis activation. Free Radic Biol Med. 2017, 102, 188–202. Rader, D. J.; Hovingh, G. K. Hdl and cardiovascular disease. The Lancet. 2014, 384, 618–625. Reddy, J. K.; Sambasiva Rao, M. Lipid metabolism and liver inflammation. Ii. Fatty liver disease and fatty acid oxidation. Am. J. Physiol.-Gastroint. Liver Physiol. 2006, 290, G852–G858. Reddy, P.; Lent-Schochet, D.; Ramakrishnan, N.; McLaughlin, M.; Jialal, I. Metabolic syndrome is an inflammatory disorder: A conspiracy between adipose tissue and phagocytes. Clin Chim Acta. 2019, 496, 35–44. Rezai-Zadeh, K.; Yu, S.; Jiang, Y.; Laque, A.; Schwartzenburg, C.; Morrison, C. D.; Derbenev, A. V.; Zsombok, A.; Münzberg, H. Leptin receptor neurons in the dorsomedial hypothalamus are key regulators of energy expenditure and body weight, but not food intake. Mol Metab. 2014, 3, 681–693. Rinella, M. Nonalcoholic fatty liver disease: A systematic review. JAMA. 2015, 313, 2263–2273. Rodriguez-Cuenca, S.; Pujol, E.; Justo, R.; Frontera, M.; Oliver, J.; Gianotti, M.; Roca, P. Sex-dependent thermogenesis, differences in mitochondrial morphology and function, and adrenergic response in brown adipose tissue. J Biol Chem. 2002, 277, 42958–42963. Roever, L.; Biondi-Zoccai, G.; Chagas, A. C. Non-hdl-c vs. Ldl-c in predicting the severity of coronary atherosclerosis. Heart Lung Circ. 2016, 25, 953–954. Rosen, E. D.; MacDougald, O. A. Adipocyte differentiation from the inside out. Nat Rev Mol Cell Biol. 2006, 7, 885–896. Roy, S.; Trinchieri, G. Microbiota: A key orchestrator of cancer therapy. Nat Rev Cancer. 2017, 17, 271–285. Saadat, N.; Gupta, S. V. Potential role of garcinol as an anticancer agent. J Oncol. 2012, 2012, 647206. Saito, M.; Yoneshiro, T.; Matsushita, M. Food ingredients as anti-obesity agents. Trends Endocrinol Metab. 2015, 26, 585–587. Saris, W. H.; Astrup, A.; Prentice, A. M.; Zunft, H. J.; Formiguera, X.; Verboeket-van de Venne, W. P.; Raben, A.; Poppitt, S. D.; Seppelt, B.; Johnston, S.; Vasilaras, T. H.; Keogh, G. F. Randomized controlled trial of changes in dietary carbohydrate/fat ratio and simple vs complex carbohydrates on body weight and blood lipids: The carmen study. The carbohydrate ratio management in european national diets. Int J Obes Relat Metab Disord. 2000, 24, 1310–1318. Schapira, M. Structural biology of human metal-dependent histone deacetylases. Handb Exp Pharmacol. 2011, 206, 225–240. Seale, P.; Conroe, H. M.; Estall, J.; Kajimura, S.; Frontini, A.; Ishibashi, J.; Cohen, P.; Cinti, S.; Spiegelman, B. M. Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J Clin Invest. 2011, 121, 96–105. Sebaa, R.; Johnson, J.; Pileggi, C.; Norgren, M.; Xuan, J.; Sai, Y.; Tong, Q.; Krystkowiak, I.; Bondy-Chorney, E.; Davey, N.; Krogan, N.; Downey, M.; Harper, M.-E. Sirt3 controls brown fat thermogenesis by deacetylation regulation of pathways upstream of ucp1. Mol. Metab. 2019, 25. Sellers, R. S.; Morton, D.; Michael, B.; Roome, N.; Johnson, J. K.; Yano, B. L.; Perry, R.; Schafer, K. Society of toxicologic pathology position paper: Organ weight recommendations for toxicology studies. Toxicol Pathol. 2007, 35, 751–755. Seto, E.; Yoshida, M. Erasers of histone acetylation: The histone deacetylase enzymes. Cold Spring Harb Perspect Biol. 2014, 6, a018713. Shabalina, I. G.; Petrovic, N.; de Jong, J. M. A.; Kalinovich, A. V.; Cannon, B.; Nedergaard, J. Ucp1 in brite/beige adipose tissue mitochondria is functionally thermogenic. Cell Reports. 2013, 5, 1196–1203. Shao, M.; Ishibashi, J.; Kusminski, C. M.; Wang, Q. A.; Hepler, C.; Vishvanath, L.; MacPherson, K. A.; Spurgin, S. B.; Sun, K.; Holland, W. L.; Seale, P.; Gupta, R. K. Zfp423 maintains white adipocyte identity through suppression of the beige cell thermogenic gene program. Cell Metab. 2016, 23, 1167–1184. Shao, M.; Wang, Q. A.; Song, A.; Vishvanath, L.; Busbuso, N. C.; Scherer, P. E.; Gupta, R. K. Cellular origins of beige fat cells revisited. Diabetes. 2019, 68, 1874–1885. Siddiqui, S. A.; Azmy Harahap, I.; Suthar, P.; Wu, Y.-S.; Ghosh, N.; Castro-Muñoz, R. A comprehensive review of phytonutrients as a dietary therapy for obesity. Foods. 2023, 12. Singh, R. P.; Halaka, D. A.; Hayouka, Z.; Tirosh, O. High-fat diet induced alteration of mice microbiota and the functional ability to utilize fructooligosaccharide for ethanol production. Front Cell Infect Microbiol. 2020, 10, 376. Sodum, N.; Mattila, O.; Sharma, R.; Kamakura, R.; Lehto, V. P.; Walkowiak, J.; Herzig, K. H.; Raza, G. S. Nutrient combinations sensed by l-cell receptors potentiate glp-1 secretion. Int. J. Mol. Sci. 2024, 25. Son, S. I.; Su, D.; Ho, T. T.; Lin, H. Garcinol is an hdac11 inhibitor. ACS Chem Biol. 2020, 15, 2866–2871. Stuby, J.; Gravestock, I.; Wolfram, E.; Pichierri, G.; Steurer, J.; Burgstaller, J. M. Appetite-suppressing and satiety-increasing bioactive phytochemicals: A systematic review. Nutrients. 2019, 11. Sun, D.; Zhang, L.; Chen, H.; Feng, R.; Cao, P.; Liu, Y. Effects of antarctic krill oil on lipid and glucose metabolism in c57bl/6j mice fed with high fat diet. Lipids Health Dis. 2017, 16, 218. Sun, L.; Marin de Evsikova, C.; Bian, K.; Achille, A.; Telles, E.; Pei, H.; Seto, E. Programming and regulation of metabolic homeostasis by hdac11. EBioMedicine. 2018, 33, 157–168. Takaeko, Y.; Matsui, S.; Kajikawa, M.; Maruhashi, T.; Kishimoto, S.; Hashimoto, H.; Kihara, Y.; Hida, E.; Chayama, K.; Goto, C.; Aibara, Y.; Yusoff, F. M.; Noma, K.; Nakashima, A.; Higashi, Y. Association of extremely high levels of high-density lipoprotein cholesterol with endothelial dysfunction in men. J Clin Lipidol. 2019, 13, 664–672. Tauchen, J.; Frankova, A.; Manourova, A.; Valterova, I.; Lojka, B.; Leuner, O. Garcinia kola: A critical review on chemistry and pharmacology of an important west african medicinal plant. Phytochem Rev. 2023, 1–47. Thangapandian, S.; John, S.; Lee, Y.; Arulalapperumal, V.; Lee, K. W. Molecular modeling study on tunnel behavior in different histone deacetylase isoforms. PLoS One. 2012, 7, e49327. Tucker, L. A.; Kano, M. J. Dietary fat and body fat: A multivariate study of 205 adult females. Am J Clin Nutr. 1992, 56, 616–622. Tung, Y. C.; Hsieh, P. H.; Pan, M. H.; Ho, C. T. Cellular models for the evaluation of the antiobesity effect of selected phytochemicals from food and herbs. J Food Drug Anal. 2017, 25, 100–110. Unger, R. H. Minireview: Weapons of lean body mass destruction: The role of ectopic lipids in the metabolic syndrome. Endocrinology. 2003, 144, 5159–5165. van der Steeg, W. A.; Holme, I.; Boekholdt, S. M.; Larsen, M. L.; Lindahl, C.; Stroes, E. S. G.; Tikkanen, M. J.; Wareham, N. J.; Faergeman, O.; Olsson, A. G.; Pedersen, T. R.; Khaw, K.-T.; Kastelein, J. J. P. High-density lipoprotein cholesterol, high-density lipoprotein particle size, and apolipoprotein a-i: Significance for cardiovascular risk: The ideal and epic-norfolk studies. J. Am. Coll. Cardiol. 2008, 51, 634–642. Wang, H.; Storlien, L. H.; Huang, X. F. Effects of dietary fat types on body fatness, leptin, and arc leptin receptor, npy, and agrp mrna expression. Am J Physiol Endocrinol Metab. 2002, 282, E1352–1359. Wang, Q.; Zhang, M.; Xu, M.; Gu, W.; Xi, Y.; Qi, L.; Li, B.; Wang, W. Brown adipose tissue activation is inversely related to central obesity and metabolic parameters in adult human. PLoS One. 2015, 10, e0123795. Wang, S.; Pan, M. H.; Hung, W. L.; Tung, Y. C.; Ho, C. T. From white to beige adipocytes: Therapeutic potential of dietary molecules against obesity and their molecular mechanisms. Food Funct. 2019, 10, 1263–1279. Wang, W.; Seale, P. Control of brown and beige fat development. Nat Rev Mol Cell Biol. 2016, 17, 691–702. Wang, X. C.; Ma, B. W.; Chen, J. Q.; You, H.; Sheng, C. J.; Yang, P.; Qu, S. Glucagon-like peptide-1 improves fatty liver and enhances thermogenesis in brown adipose tissue via inhibiting bmp4-related signaling pathway in high-fat-diet-induced obese mice. Int J Endocrinol. 2021, 2021. Warwick, Z. S.; Schiffman, S. S. Role of dietary fat in calorie intake and weight gain. Neurosci Biobehav Rev. 1992, 16, 585–596. Yang, Q.; Liang, X.; Sun, X.; Zhang, L.; Fu, X.; Rogers, C. J.; Berim, A.; Zhang, S.; Wang, S.; Wang, B.; Foretz, M.; Viollet, B.; Gang, D. R.; Rodgers, B. D.; Zhu, M.-J.; Du, M. Ampk/alpha-ketoglutarate axis dynamically mediates DNA demethylation in the prdm16 promoter and brown adipogenesis. Cell Metab. 2016, 24, 542–554. Yoneshiro, T.; Aita, S.; Matsushita, M.; Kayahara, T.; Kameya, T.; Kawai, Y.; Iwanaga, T.; Saito, M. Recruited brown adipose tissue as an antiobesity agent in humans. J Clin Invest. 2013, 123, 3404–3408. Yoon, H. S.; Cho, C. H.; Yun, M. S.; Jang, S. J.; You, H. J.; Kim, J. H.; Han, D.; Cha, K. H.; Moon, S. H.; Lee, K.; Kim, Y. J.; Lee, S. J.; Nam, T. W.; Ko, G. Akkermansia muciniphila secretes a glucagon-like peptide-1-inducing protein that improves glucose homeostasis and ameliorates metabolic disease in mice. Nat. Microbiol. 2021, 6, 563–573. Zhao, J.; Yang, Q.; Zhang, L.; Liang, X.; Sun, X.; Wang, B.; Chen, Y.; Zhu, M.; Du, M. Ampkalpha1 deficiency suppresses brown adipogenesis in favor of fibrogenesis during brown adipose tissue development. Biochem Biophys Res Commun. 2017, 491, 508–514. Zhao, X.; Wang, M. H.; Wen, Z. T.; Lu, Z. H.; Cui, L. J.; Fu, C.; Xue, H.; Liu, Y. F.; Zhang, Y. Glp-1 receptor agonists: Beyond their pancreatic effects. Front. Endocrinol. 2021, 12. Zolkiewicz, J.; Marzec, A.; Ruszczynski, M.; Feleszko, W. Postbiotics-a step beyond pre- and probiotics. Nutrients. 2020, 12. Zuriaga, M. A.; Fuster, J. J.; Gokce, N.; Walsh, K. Humans and mice display opposing patterns of "browning" gene expression in visceral and subcutaneous white adipose tissue depots. Front Cardiovasc Med. 2017, 4. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94990 | - |
| dc.description.abstract | 肥胖現今已是全球性的代謝疾病,過量脂肪蓄積可能造成心血管疾病,因此研究改善肥胖的手段是重要的議題。植化素預防肥胖的分子機制當中,包含了調控食慾、誘發米色與棕色脂肪非顫抖性產熱作用 (non-shivering thermogenesis, NST),以及調節腸道菌相 (gut microbiota, GM)。山竹子素 (garcinol) 是一由印度鳳果 (Garcinia indica) 分離出的植化素。已有文獻證實garcinol 可降低組蛋白去乙醯酶11 (histone deacetylase 11, HDAC11) 的催化活性;先前文獻亦證實 HDAC11 的表現量與肥胖呈正相關、且與 NST 活性呈負相關。本實驗室先前研究指出,餵食 C57BL/6 小鼠混入 garcinol 粉末的飼料,可透過調節脂肪細胞相關因子表現量、增加 GM 中 Akarnania muciniphila 比例,減緩高脂飲食誘導的肥胖。因此,本研究將進一步探討降低 HDAC11 活性、促進 NST 活化與增加 GM 代謝物短鏈脂肪酸 (short chain fatty acids, SCFAs),是否為 garcinol 抗肥胖的分子機制。本研究的動物實驗中,給予 0.25% 的 garcinol 具有減少攝食量並減緩攝食高脂飲食小鼠體重上升的效果,此現象可能與血清中升高的類升糖素胜肽-1 (Glucagon-like peptide-1, GLP-1) 與降低的瘦素 (leptin) 相關。garcinol 介入能有效降低肝臟重量,在 H&E 染色的影像中也能觀察出減少油滴累積的現象。另外,在白色脂肪相關實驗數據中,可觀察到 garcinol 顯著降低其重量與細胞粒徑大小,western blot 結果顯示,促進 ACC 磷酸化和 ATGL 蛋白表現量為其中機轉。經實驗測定,garcinol 使糞便中的丙酸 (propionic acid) 及丁酸 (butyric acid) 含量顯著增加。在細胞實驗模式下,3T3-L1 脂肪細胞在15 μM garcinol 介入後,不但能從油紅染色實驗觀察到油滴蓄積顯著降低,亦能從蛋白表現量的分析中得知 garcinol 透過活化 AMPK 促進 UCP1 與 PRDM16 之表現。綜上所述,本研究證實 garcinol 可透過抑制食慾、調節脂肪細胞代謝與促進 GM 生成 SCFAs,達到抗肥胖的效果。 | zh_TW |
| dc.description.abstract | Obesity is a global metabolic disease characterized by dysfunctional adipose tissue. Many phytochemicals prevent obesity by enhancing satiety, inducing non-shivering thermogenesis (NST) in adipocytes and regulating gut microbiota (GM) composition. garcinol, a polyisoprenylated benzophenone compound isolated from Garcinia indica, has been proven to inhibit histone deacetylase 11 (HDAC11), which positively correlates with obesity with its NST downregulating ability. A previous study also indicated garcinol could curb high-fat diet (HFD)-induced obesity in mice by affecting the expression of adipose associated factors and increasing Akkermansia muciniphila in GM. Whereas, whether garcinol exerts its anti-obesity ability via binding HDAC11, activating NST and increasing short-chain fatty acids (SCFAs) needs further research. Therefore, we aim to study the underlying anti-obesity molecular mechanisms of garcinol, especially lipids metabolism and NST activity in adipocytes and SCFAs generated by GM in mice.
Our results show that 0.25% oral garcinol supplementation significantly decreases body weight and energy intake with higher GLP-1 and lower leptin levels in serum. garcinol reduces lipids accumulation in liver, and decreases the sizes of white adipocytes by upregulating phosphorylation levels of ACC and ATGL expressions in HFD-induced obese mice. Additionally, garcinol also increases fecal propionic and butyric acids. In vitro experiments indicate less triglyceride accumulation, and upregulate UCP1 and PRDM16 protein expression by AMPK activation within adipocytes with a 15 μM garcinol intervention in 3T3-L1 adipocytes. In conclusion, our study demonstrates that garcinol prevents obesity by suppressing appetite, modulating adipocyte metabolism and enhancing SCFAs synthesis. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-23T16:19:22Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-23T16:19:22Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
謝辭 II 中文摘要 IV Abstract V 目次 VII 圖次 XI 表次 XIII 附圖次 XIV 縮寫表 XV 第一章、緒論 1 第二章、文獻回顧 3 第一節、肥胖 3 一、流行病學定義與盛行率 3 二、肥胖的成因與高脂飲食 (High-fat diet, HFD) 5 三、肥胖與脂肪代謝異常 6 四、肥胖的危害及預防治療手段 6 五、膳食因子抗肥胖的機制 7 六、肥胖與腸道菌相代謝物 8 第二節、脂肪組織與脂肪細胞株 11 一、脂肪組織之生理功能 11 二、脂肪組織之種類 13 三、3T3-L1 脂肪細胞株 15 四、非顫抖性產熱 (Non-shivering thermogenesis, NST) 16 第三節、組蛋白去乙醯酶 11 (Histone deacetylase 11, HDAC11) 19 一、HDAC11之概述 19 二、HDAC11與肥胖 20 第四節、山竹子素 (garcinol) 21 一、garcinol 之特性 21 二、garcinol與肥胖 22 第三章、研究目的與實驗架構 23 第一節、研究目的 23 第二節、實驗架構 24 一、動物實驗 24 二、細胞實驗 25 第四章、實驗材料與方法 26 第一節、儀器與材料 26 一、儀器設備 26 二、樣品來源 27 三、藥品與試劑 27 四、分析套組 29 五、抗體 29 六、RT-qPCR 使用之引子 (Primers) 31 第二節、動物實驗方法 31 一、實驗動物來源 31 二、動物飼育管理 31 三、飼料成分與配製 32 四、犧牲程序 33 五、血清生化值測定 34 六、組織切片 34 七、組織蘇木精—伊紅染色 (Hematoxylin and eosin stain, H&E stain) 35 八、組織免疫組織化學染色法 (Immunohistochemistry stain, IHC stain) 37 九、組織均質與蛋白質萃取 39 十、蛋白質定量 40 十一、西方墨點法 (Western blot) 41 十二、糞便 SCFAs 含量測定 44 十三、圖像定量 45 十四、統計分析 46 第三節、細胞實驗方法 47 一、細胞株來源 47 二、細胞培養 47 三、樣品配製 48 四、細胞存活率實驗 (MTT assay) 48 五、細胞誘導分化 49 六、油紅染色 (Oil red O stain) 51 七、細胞蛋白質萃取 51 八、西方墨點法 (western blot) 52 九、mRNA 萃取 52 十、即時定量聚合酶連鎖反應 (RT-qPCR) 53 十一、粒線體質量測定 (mitochondrial mass) 55 十二、圖像定量 56 十三、統計分析 56 第五章、結果與討論 57 第一節、動物實驗結果 57 一、garcinol 對 C57BL/6 小鼠體重之影響 57 二、garcinol 對 C57BL/6 小鼠飲水量及攝食量之影響 59 三、garcinol 對C57BL/6 小鼠血清類升糖素胜肽-1 與瘦素之影響 61 四、garcinol 對 C57BL/6 小鼠臟器重量及肝臟油脂蓄積之影響 65 五、garcinol 對C57BL/6 小鼠肥胖相關血清生化值之影響 68 六、garcinol 對 C57BL/6 小鼠脂肪組織重量與細胞大小之影響 70 七、garcinol 對 C57BL/6 小鼠脂肪組織中脂質代謝之影響 75 八、garcinol 對 C57BL/6 小鼠脂肪組織中 NST 活性之影響 80 九、garcinol 對 C57BL/6 小鼠脂肪組織中 AMPKα 表現量之影響 85 十、garcinol 對 C57BL/6 小鼠脂肪組織中 HDAC11 表現量與反應活性之影響 87 十一、garcinol 對 C57BL/6 小鼠糞便中 SCFAs 之影響 90 第二節、細胞實驗結果 93 一、garcinol 對 3T3-L1 脂肪細胞生存率之影響 93 二、garcinol 對 3T3-L1 脂肪細胞油滴累積之影響 94 三、garcinol 對 3T3-L1 脂肪細胞中脂質代謝之影響 96 四、garcinol 對 3T3-L1 脂肪細胞粒線體生合成之影響 98 五、garcinol 對 3T3-L1 脂肪細胞中 NST 活性之影響 100 六、garcinol 對 3T3-L1 脂肪細胞去乙醯活性與 HDAC11表現之影響 104 第六章、結論 106 參考文獻 109 附錄 121 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 山竹子素 | zh_TW |
| dc.subject | 肥胖 | zh_TW |
| dc.subject | 食慾調控 | zh_TW |
| dc.subject | 短鏈脂肪酸 | zh_TW |
| dc.subject | NST | zh_TW |
| dc.subject | UCP1 | zh_TW |
| dc.subject | HDAC11 | zh_TW |
| dc.subject | obesity | en |
| dc.subject | HDAC11 | en |
| dc.subject | SCFA | en |
| dc.subject | UCP1 | en |
| dc.subject | non-shivering thermogenesis | en |
| dc.subject | appetite-regulating | en |
| dc.subject | garcinol | en |
| dc.title | 山竹子素透過抑制 HDAC11 表現減緩高脂飲食誘導之小鼠肥胖 | zh_TW |
| dc.title | Garcinol alleviates obesity through suppressing HDAC11 expression in high-fat diet-fed mice | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃步敏;何元順;洪偉倫 | zh_TW |
| dc.contributor.oralexamcommittee | Bu-Miin Huang;Yuan-Soon Ho;Wei-Lun Hung | en |
| dc.subject.keyword | 山竹子素,肥胖,食慾調控,短鏈脂肪酸,NST,UCP1,HDAC11, | zh_TW |
| dc.subject.keyword | garcinol,obesity,appetite-regulating,non-shivering thermogenesis,UCP1,SCFA,HDAC11, | en |
| dc.relation.page | 124 | - |
| dc.identifier.doi | 10.6342/NTU202402350 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-10 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 食品科技研究所 | - |
| 顯示於系所單位: | 食品科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 7.65 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
