Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94928
Title: 人工智慧應用於錐狀射束電腦斷層掃描進行牙科植體治療規劃之研究
The Application of Artificial Intelligence for Dental Implant Treatment Planning via Cone Beam Computed Tomography
Authors: 尤俐文
Li-Wen Yu
Advisor: 張博鈞
Po-Chun Chang
Keyword: 齒槽嵴缺損,深度學習,人工植牙,錐狀射束電腦斷層掃描,影像辨識,
ridge deficency,deep learning,dental implant,CBCT,image recognition,
Publication Year : 2024
Degree: 碩士
Abstract: 研究目標
本研究目標為建立一個透過錐狀射束電腦斷層掃描cone-beam computerized tomography (CBCT) 影像自動判讀植牙骨缺損型態分類的深度學習模型,以提供植牙治療計畫建議。

研究方法
使用177名患者(83名男性和 94名女性,年齡 56.49 ± 12.76 歲)的 630 個下顎CBCT影像切片,虛擬植入植體(直徑 4-5 毫米,長度 10 毫米),切片皆根據虛擬植體的長軸定向並透過人工標記。齒槽嵴缺損型態分成五類,採用ResNet-50卷積神經網路模型進行訓練。

研究結果
該模型在未經預處理影像切片的準確度為98.91 ± 1.45%,優於經預處理影像的準確度92.85 ± 2.60%。以各缺損型態分類的模型性能而言,未經預處理的影像切片之準確率和 F1 分數分別為 99.05%–99.84% 和 97.30%–99.66%,經預處理的切片之準確度和 F1 分數分別為 96.03%–98.89% 和 87.92%–96.71%。

結論
透過深度學習判讀CBCT影像,無需經過預處理即可高準確率識別出植牙骨缺損型態分類。
Objectives
The aim of this study was to establish a deep learning model for the automatic identification of the ridge deficiency around dental implants based on an image slice from cone-beam computerized tomography (CBCT) in order to provide recommendations for dental implant treatment plan.

Materials and Methods
A total of 630 CBCT image slices of the mandible from respective implants in 117 patients (83 males and 94 females, age 56.49 ± 12.76 years) were used as the datasets in this study. Virtual implant fixtures (4-5 mm diameter, 10mm length) were placed in the implant treatment planning software. In each implant, one slice crossing the central long-axis implant was chosen and the classifications of edentulous ridges were labeled. Alveolar ridge defect types were divided into five classifications. A convolutional neural network with ResNet-50 architecture was employed for deep learning.

Results
The model achieved an accuracy of 98.91 ± 1.45% on the unpreprocessed image slices and was found to be superior to the accuracy of 92.85 ± 2.60% observed on the preprocessed slices. In terms of model performance for each defect type classification, the accuracy and F1 scores for unpreprocessed image slices were 99.05%–99.84% and 97.30%–99.66%, respectively, and 96.03%–98.89% and 87.92%–96.71%, respectively, for preprocessed slices.

Conclusion
By identifying CBCT images through deep learning, the ridge deficiency around dental implants could be correctly classified with high accuracy without preprocessing.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94928
DOI: 10.6342/NTU202403694
Fulltext Rights: 同意授權(全球公開)
Appears in Collections:臨床牙醫學研究所

Files in This Item:
File SizeFormat 
ntu-112-2.pdf6.79 MBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved