Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 食品科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94872
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor潘敏雄zh_TW
dc.contributor.advisorMin-Hsiung Panen
dc.contributor.author洪子貽zh_TW
dc.contributor.authorTzu-Yi Hungen
dc.date.accessioned2024-08-20T16:19:39Z-
dc.date.available2024-08-21-
dc.date.copyright2024-08-20-
dc.date.issued2024-
dc.date.submitted2024-08-09-
dc.identifier.citationAggarwal, B. B., Deb, L., & Prasad, S. (2014). Curcumin differs from tetrahydrocurcumin for molecular targets, signaling pathways and cellular responses. Molecules, 20(1), 185-205.
Al-Sadi, R., Khatib, K., Guo, S., Ye, D., Youssef, M., & Ma, T. (2011). Occludin regulates macromolecule flux across the intestinal epithelial tight junction barrier. American Journal of Physiology Gastrointestinal and Liver Physiology, 300(6), G1054-1064.
Al-Sadi, R., Ye, D., Dokladny, K., & Ma, T. Y. (2008). Mechanism of IL-1beta-induced increase in intestinal epithelial tight junction permeability. Journal of Immunology, 180(8), 5653-5661.
Amalraj, A., Pius, A., Gopi, S., & Gopi, S. (2017). Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives - A review. Journal of Traditional and Complementary Medicine, 7(2), 205-233.
Amamoto, R., Shimamoto, K., Suwa, T., Park, S., Matsumoto, H., Shimizu, K., Katto, M., Makino, H., Matsubara, S., & Aoyagi, Y. (2022). Relationships between dietary diversity and gut microbial diversity in the elderly. Benefical Microbes, 13(6), 453-464.
Amasheh, S., Meiri, N., Gitter, A. H., Schöneberg, T., Mankertz, J., Schulzke, J. D., & Fromm, M. (2002). Claudin-2 expression induces cation-selective channels in tight junctions of epithelial cells. Journal of Cell Science, 115(Pt 24), 4969-4976.
Andriamihaja, M., Davila, A. M., Eklou-Lawson, M., Petit, N., Delpal, S., Allek, F., Blais, A., Delteil, C., Tomé, D., & Blachier, F. (2010). Colon luminal content and epithelial cell morphology are markedly modified in rats fed with a high-protein diet. American Journal of Physiology Gastrointestinal and Liver Physiology, 299(5), G1030-1037.
Ashton, J. J., & Beattie, R. M. (2024). Inflammatory bowel disease: recent developments. Archives of Disease in Childhood, 109(5), 370-376.
Atarashi, K., Tanoue, T., Shima, T., Imaoka, A., Kuwahara, T., Momose, Y., Cheng, G., Yamasaki, S., Saito, T., Ohba, Y., Taniguchi, T., Takeda, K., Hori, S., Ivanov, II, Umesaki, Y., Itoh, K., & Honda, K. (2011). Induction of colonic regulatory T cells by indigenous Clostridium species. Science, 331(6015), 337-341.
Barone, M., Chain, F., Sokol, H., Brigidi, P., Bermúdez-Humarán, L. G., Langella, P., & Martín, R. (2018). A Versatile New Model of Chemically Induced Chronic Colitis Using an Outbred Murine Strain. Frontiers in Microbiology, 9, 565.
Baxt, L. A., & Xavier, R. J. (2015). Role of Autophagy in the Maintenance of Intestinal Homeostasis. Gastroenterology, 149(3), 553-562.
Bento, A. F., Leite, D. F., Marcon, R., Claudino, R. F., Dutra, R. C., Cola, M., Martini, A. C., & Calixto, J. B. (2012). Evaluation of chemical mediators and cellular response during acute and chronic gut inflammatory response induced by dextran sodium sulfate in mice. Biochemical Pharmacology, 84(11), 1459-1469.
Blair, S. A., Kane, S. V., Clayburgh, D. R., & Turner, J. R. (2006). Epithelial myosin light chain kinase expression and activity are upregulated in inflammatory bowel disease. Laboratory Investigation, 86(2), 191-201.
Buckley, A., & Turner, J. R. (2018). Cell Biology of Tight Junction Barrier Regulation and Mucosal Disease. Cold Spring Harbor Perspectives in Biology, 10(1).
Burge, K., Gunasekaran, A., Eckert, J., & Chaaban, H. (2019). Curcumin and Intestinal Inflammatory Diseases: Molecular Mechanisms of Protection. International Journal of Molecular Sciences, 20(8).
Canani, R. B., Costanzo, M. D., Leone, L., Pedata, M., Meli, R., & Calignano, A. (2011). Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World Journal of Gastroenterology, 17(12), 1519-1528.
Candelli, M., Franza, L., Pignataro, G., Ojetti, V., Covino, M., Piccioni, A., Gasbarrini, A., & Franceschi, F. (2021). Interaction between Lipopolysaccharide and Gut Microbiota in Inflammatory Bowel Diseases. International Journal of Molecular Sciences, 22(12).
Cani, P. D., Depommier, C., Derrien, M., Everard, A., & de Vos, W. M. (2022). Akkermansia muciniphila: paradigm for next-generation beneficial microorganisms. Nature Reviews Gastroenterology & Hepatology, 19(10), 625-637.
Cani, P. D., Possemiers, S., Van de Wiele, T., Guiot, Y., Everard, A., Rottier, O., Geurts, L., Naslain, D., Neyrinck, A., Lambert, D. M., Muccioli, G. G., & Delzenne, N. M. (2009). Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut, 58(8), 1091-1103.
Cao, Z., Gao, J., Huang, W., Yan, J., Shan, A., & Gao, X. (2022). Curcumin mitigates deoxynivalenol-induced intestinal epithelial barrier disruption by regulating Nrf2/p53 and NF-κB/MLCK signaling in mice. Food and Chemical Toxicology, 167, 113281.
Cerovic, V., Houston, S. A., Scott, C. L., Aumeunier, A., Yrlid, U., Mowat, A. M., & Milling, S. W. (2013). Intestinal CD103(-) dendritic cells migrate in lymph and prime effector T cells. Mucosal Immunology, 6(1), 104-113.
Cesta, M. F. (2006). Normal Structure, Function, and Histology of the Spleen. Toxicologic Pathology, 34(5), 455-465.
Chang, C. S., Liao, Y. C., Huang, C. T., Lin, C. M., Cheung, C. H. Y., Ruan, J. W., Yu, W. H., Tsai, Y. T., Lin, I. J., Huang, C. H., Liou, J. S., Chou, Y. H., Chien, H. J., Chuang, H. L., Juan, H. F., Huang, H. C., Chan, H. L., Liao, Y. C., Tang, S. C., Kao, C. Y. (2021). Identification of a gut microbiota member that ameliorates DSS-induced colitis in intestinal barrier enhanced Dusp6-deficient mice. Cell Reports, 37(8), 110016.
Chassaing, B., Aitken, J. D., Malleshappa, M., & Vijay-Kumar, M. (2014). Dextran sulfate sodium (DSS)-induced colitis in mice. Current Protocols in Immunology, 104, 15.25.11-15.25.14.
Chelakkot, C., Choi, Y., Kim, D. K., Park, H. T., Ghim, J., Kwon, Y., Jeon, J., Kim, M. S., Jee, Y. K., Gho, Y. S., Park, H. S., Kim, Y. K., & Ryu, S. H. (2018). Akkermansia muciniphila-derived extracellular vesicles influence gut permeability through the regulation of tight junctions. Experimental & Molecular Medicine, 50(2), e450.
Chelakkot, C., Ghim, J., & Ryu, S. H. (2018). Mechanisms regulating intestinal barrier integrity and its pathological implications. Experimental & Molecular Medicine, 50(8), 1-9.
Chelakkot, C., Ghim, J., & Ryu, S. H. (2018). Mechanisms regulating intestinal barrier integrity and its pathological implications. Experimental & Molecular Medicine, 50(8), 1-9.
Chen, Z., Luo, J., Li, J., Kim, G., Chen, E. S., Xiao, S., Snapper, S. B., Bao, B., An, D., Blumberg, R. S., Lin, C. H., Wang, S., Zhong, J., Liu, K., Li, Q., Wu, C., & Kuchroo, V. K. (2021). Foxo1 controls gut homeostasis and commensalism by regulating mucus secretion. Journal of Experimental Medicine, 218(9).
Cheng, M. L., Nakib, D., Perciani, C. T., & MacParland, S. A. (2021). The immune niche of the liver. Clinical Science (Lond), 135(20), 2445-2466.
Cooper, H. S., Murthy, S. N., Shah, R. S., & Sedergran, D. J. (1993). Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Laboratory Investigation, 69(2), 238-249.
Craig, E. A., Yan, Z., & Zhao, Q. J. (2015). The relationship between chemical-induced kidney weight increases and kidney histopathology in rats. Journal of Applied Toxicology, 35(7), 729-736.
Curkovic, I., Egbring, M., & Kullak Ublick, G. A. (2013). Risks of inflammatory bowel disease treatment with glucocorticosteroids and aminosalicylates. Digestive Disease, 31(3-4), 368-373.
Čužić, S., Antolić, M., Ognjenović, A., Stupin-Polančec, D., Petrinić Grba, A., Hrvačić, B., Dominis Kramarić, M., Musladin, S., Požgaj, L., Zlatar, I., Polančec, D., Aralica, G., Banić, M., Urek, M., Mijandrušić Sinčić, B., Čubranić, A., Glojnarić, I., Bosnar, M., & Eraković Haber, V. (2021). Claudins: Beyond Tight Junctions in Human IBD and Murine Models. Frontiers in Pharmacology, 12, 682614.
Deleu, S., Arnauts, K., Deprez, L., Machiels, K., Ferrante, M., Huys, G. R. B., Thevelein, J. M., Raes, J., & Vermeire, S. (2023). High Acetate Concentration Protects Intestinal Barrier and Exerts Anti-Inflammatory Effects in Organoid-Derived Epithelial Monolayer Cultures from Patients with Ulcerative Colitis. International Journal of Molecular Sciences, 24(1).
Deleu, S., Machiels, K., Raes, J., Verbeke, K., & Vermeire, S. (2021). Short chain fatty acids and its producing organisms: An overlooked therapy for IBD? EBioMedicine, 66, 103293.
Deng, L., Jian, Z., Xu, T., Li, F., Deng, H., Zhou, Y., Lai, S., Xu, Z., & Zhu, L. (2023). Macrophage Polarization: An Important Candidate Regulator for Lung Diseases. Molecules, 28(5).
Di Tommaso, N., Gasbarrini, A., & Ponziani, F. R. (2021). Intestinal Barrier in Human Health and Disease. International Journal of Environmental Research and Public Health, 18(23).
Dunleavy, K. A., Raffals, L. E., & Camilleri, M. (2023). Intestinal Barrier Dysfunction in Inflammatory Bowel Disease: Underpinning Pathogenesis and Therapeutics. Digestive Diseases and Sciences, 68(12), 4306-4320.
Eichele, D. D., & Kharbanda, K. K. (2017). Dextran sodium sulfate colitis murine model: An indispensable tool for advancing our understanding of inflammatory bowel diseases pathogenesis. World Journal of Gastroenterology, 23(33), 6016-6029.
Elhag, D. A., Kumar, M., Saadaoui, M., Akobeng, A. K., Al-Mudahka, F., Elawad, M., & Al Khodor, S. (2022). Inflammatory Bowel Disease Treatments and Predictive Biomarkers of Therapeutic Response. International Journal of Molecular Sciences, 23(13).
Feng, Y., Wang, Y., Wang, P., Huang, Y., & Wang, F. (2018). Short-Chain Fatty Acids Manifest Stimulative and Protective Effects on Intestinal Barrier Function Through the Inhibition of NLRP3 Inflammasome and Autophagy. Cell Physiology and Biochemistry, 49(1), 190-205.
Foerster, E. G., Mukherjee, T., Cabral-Fernandes, L., Rocha, J. D. B., Girardin, S. E., & Philpott, D. J. (2022). How autophagy controls the intestinal epithelial barrier. Autophagy, 18(1), 86-103.
Forster, R. P. (1965). KIDNEY, WATER, AND ELECTROLYTES. Annual Review of Biochemistry, 27, 183-232.
Gao, G., Sumrall, E. S., Pitchiaya, S., Bitzer, M., Alberti, S., & Walter, N. G. (2023). Biomolecular condensates in kidney physiology and disease. Nature Reviews Nephrology, 19(12), 756-770.
Ghelani, H., Adrian, T. E., Ho, S. B., Akhras, J., Azar, A. J., & Jan, R. K. (2023). Study protocol for a pilot randomized, double-blind, placebo-controlled trial to investigate the anti-inflammatory effects of Frondanol in adults with inflammatory bowel disease. Contermporary Clinical Trials Communications, 31, 101046.
Ghosh, S. S., He, H., Wang, J., Gehr, T. W., & Ghosh, S. (2018). Curcumin-mediated regulation of intestinal barrier function: The mechanism underlying its beneficial effects. Tissue Barriers, 6(1), e1425085.
Glick, D., Barth, S., & Macleod, K. F. (2010). Autophagy: cellular and molecular mechanisms. Journal of Pathology, 221(1), 3-12.
Goel, A., Kunnumakkara, A. B., & Aggarwal, B. B. (2008). Curcumin as “Curecumin”: From kitchen to clinic. Biochemical Pharmacology, 75(4), 787-809.
Gong, Z., Zhao, S., Zhou, J., Yan, J., Wang, L., Du, X., Li, H., Chen, Y., Cai, W., & Wu, J. (2018). Curcumin alleviates DSS-induced colitis via inhibiting NLRP3 inflammsome activation and IL-1β production. Molecular Immunology, 104, 11-19.
Graves, D. T., & Milovanova, T. N. (2019). Mucosal Immunity and the FOXO1 Transcription Factors. Frontiers in Immunology, 10, 2530.
Gu, W., Zhang, L., Han, T., Huang, H., & Chen, J. (2022). Dynamic Changes in Gut Microbiome of Ulcerative Colitis: Initial Study from Animal Model. Journal of Inflammation Research, 15, 2631-2647.
Guo, X., Huang, C., Xu, J., Xu, H., Liu, L., Zhao, H., Wang, J., Huang, W., Peng, W., Chen, Y., Nie, Y., Zhou, Y., & Zhou, Y. (2021). Gut Microbiota Is a Potential Biomarker in Inflammatory Bowel Disease. Frontiers in Nutrition, 8, 818902.
Guo, X., Xu, Y., Geng, R., Qiu, J., & He, X. (2022). Curcumin Alleviates Dextran Sulfate Sodium-Induced Colitis in Mice Through Regulating Gut Microbiota. Molecular Nutrition & Food Research, 66(8), e2100943.
Guo, X. Y., Liu, X. J., & Hao, J. Y. (2020). Gut microbiota in ulcerative colitis: insights on pathogenesis and treatment. Journal of Digestive and Diseases, 21(3), 147-159.
Gupta, S. C., Patchva, S., & Aggarwal, B. B. (2013). Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS Journal, 15(1), 195-218.
Hansson, G. C. (2020). Mucins and the Microbiome. Annual Review of Biochemistry, 89, 769-793.
Haq, S., Grondin, J., Banskota, S., & Khan, W. I. (2019). Autophagy: roles in intestinal mucosal homeostasis and inflammation. Journal of Biomedical Science, 26(1), 19.
Hardenberg, G., Steiner, T. S., & Levings, M. K. (2011). Environmental influences on T regulatory cells in inflammatory bowel disease. Seminars in Immunology, 23(2), 130-138.
Haroun, E., Kumar, P. A., Saba, L., Kassab, J., Ghimire, K., Dutta, D., & Lim, S. H. (2023). Intestinal barrier functions in hematologic and oncologic diseases. Journal of Translational Medicine, 21(1), 233.
He, J., Zhang, P., Shen, L., Niu, L., Tan, Y., Chen, L., Zhao, Y., Bai, L., Hao, X., Li, X., Zhang, S., & Zhu, L. (2020). Short-Chain Fatty Acids and Their Association with Signalling Pathways in Inflammation, Glucose and Lipid Metabolism. International Journal of Molecular Sciences, 21(17), 6356.
He, Z. Y., Shi, C. B., Wen, H., Li, F. L., Wang, B. L., & Wang, J. (2011). Upregulation of p53 expression in patients with colorectal cancer by administration of curcumin. Cancer Investigation, 29(3), 208-213.
Hidalgo-Cantabrana, C., Algieri, F., Rodriguez-Nogales, A., Vezza, T., Martinez-Camblor, P., Margolles, A., Ruas-Madiedo, P., & Galvez, J. (2016). Effect of a Ropy Exopolysaccharide-Producing Bifidobacterium animalis subsp. lactis Strain Orally Administered on DSS-Induced Colitis Mice Model. Frontiers in Microbiology, 7, 868.
Hoebler, C., Gaudier, E., De Coppet, P., Rival, M., & Cherbut, C. (2006). MUC Genes Are Differently Expressed During Onset and Maintenance of Inflammation in Dextran Sodium Sulfate-Treated Mice. Digestive Diseases and Sciences, 51(2), 381-389.
Hop, H. T., Arayan, L. T., Huy, T. X. N., Reyes, A. W. B., Vu, S. H., Min, W., Lee, H. J., Rhee, M. H., Chang, H. H., & Kim, S. (2018). The Key Role of c-Fos for Immune Regulation and Bacterial Dissemination in Brucella Infected Macrophage. Frontiers in Cellular and Infection Microbiology, 8, 287.
Huda-Faujan, N., Abdulamir, A. S., Fatimah, A. B., Anas, O. M., Shuhaimi, M., Yazid, A. M., & Loong, Y. Y. (2010). The impact of the level of the intestinal short chain Fatty acids in inflammatory bowel disease patients versus healthy subjects. Open Biochemistry Journal, 4, 53-58.
Huynh, U., & Zastrow, M. L. (2023). Metallobiology of Lactobacillaceae in the gut microbiome. Journal of Inorganic Biochemistry, 238, 112023.
Iablokov, S. N., Klimenko, N. S., Efimova, D. A., Shashkova, T., Novichkov, P. S., Rodionov, D. A., & Tyakht, A. V. (2020). Metabolic Phenotypes as Potential Biomarkers for Linking Gut Microbiome With Inflammatory Bowel Diseases. Frontiers in Molecular Biosciences, 7, 603740.
Ibrahim, S., Zhu, X., Luo, X., Feng, Y., & Wang, J. (2020). PIK3R3 regulates ZO-1 expression through the NF-kB pathway in inflammatory bowel disease. International Immunopharmacology, 85, 106610.
Ireson, C. R., Jones, D. J., Orr, S., Coughtrie, M. W., Boocock, D. J., Williams, M. L., Farmer, P. B., Steward, W. P., & Gescher, A. J. (2002). Metabolism of the cancer chemopreventive agent curcumin in human and rat intestine. Cancer Epidemiol Biomarkers and Prevention, 11(1), 105-111.
Jakobsson, H. E., Rodríguez-Piñeiro, A. M., Schütte, A., Ermund, A., Boysen, P., Bemark, M., Sommer, F., Bäckhed, F., Hansson, G. C., & Johansson, M. E. (2015). The composition of the gut microbiota shapes the colon mucus barrier. EMBO Reports, 16(2), 164-177.
Johansson, M. E., Larsson, J. M., & Hansson, G. C. (2011). The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. National Academy of Sciences of the United States of America, 108 Suppl 1(Suppl 1), 4659-4665.
Jones, J. F. (1983). Development of the spleen. Lymphology, 16(2), 83-89.
Kaminsky, L. W., Al-Sadi, R., & Ma, T. Y. (2021). IL-1β and the Intestinal Epithelial Tight Junction Barrier. Frontiers in Immunology, 12, 767456.
Kang, Z. P., Wang, M. X., Wu, T. T., Liu, D. Y., Wang, H. Y., Long, J., Zhao, H. M., & Zhong, Y. B. (2021). Curcumin Alleviated Dextran Sulfate Sodium-Induced Colitis by Regulating M1/M2 Macrophage Polarization and TLRs Signaling Pathway. Evidence-Based Complementary and Alternative Medicine, 2021, 3334994.
Kao, N. J., Hu, J. Y., Wu, C. S., & Kong, Z. L. (2016). Curcumin represses the activity of inhibitor-κB kinase in dextran sulfate sodium-induced colitis by S-nitrosylation. International Immunopharmacology, 38, 1-7.
Kaplan, G. G. (2015). The global burden of IBD: from 2015 to 2025. Nature Reviews Gastroenterology & Hepatology, 12(12), 720-727.
Kaplan, G. G., & Windsor, J. W. (2021). The four epidemiological stages in the global evolution of inflammatory bowel disease. Nature Reviews Gastroenterology & Hepatology, 18(1), 56-66.
Karthikeyan, A., Young, K. N., Moniruzzaman, M., Beyene, A. M., Do, K., Kalaiselvi, S., & Min, T. (2021). Curcumin and Its Modified Formulations on Inflammatory Bowel Disease (IBD): The Story So Far and Future Outlook. Pharmaceutics, 13(4).
Katsandegwaza, B., Horsnell, W., & Smith, K. (2022). Inflammatory Bowel Disease: A Review of Pre-Clinical Murine Models of Human Disease. International Journal of Molecular Sciences, 23(16).
Khatua, S., Simal-Gandara, J., & Acharya, K. (2022). Understanding immune-modulatory efficacy in vitro. Chemico-Biological Interactions, 352, 109776.
Kien, C. L. (1996). Digestion, absorption, and fermentation of carbohydrates in the newborn. Clinics in Perinatology, 23(2), 211-228.
Kiesler, P., Fuss, I. J., & Strober, W. (2015). Experimental Models of Inflammatory Bowel Diseases. Cellular and Molecular Gastroenterology and Hepatology, 1(2), 154-170.
Kim, J. J., Shajib, M. S., Manocha, M. M., & Khan, W. I. (2012). Investigating intestinal inflammation in DSS-induced model of IBD. Journal of Visualized Experiments, (60).
Kitajima, S., Takuma, S., & Morimoto, M. (2000). Histological analysis of murine colitis induced by dextran sulfate sodium of different molecular weights. Experimental Animals, 49(1), 9-15.
Kocaadam, B., & Şanlier, N. (2017). Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Critical Reviews in Food Science and Nutrition, 57(13), 2889-2895.
Koendjbiharie, J. G., Wevers, K., & van Kranenburg, R. (2019). Assessing Cofactor Usage in Pseudoclostridium thermosuccinogenes via Heterologous Expression of Central Metabolic Enzymes. Frontiers in Microbiology, 10, 1162.
Koh, Y. C., Liu, S. Y., Wu, J. C., Chou, Y. C., Nagabhushanam, K., Ho, C. T., & Pan, M.-H. (2021). A New Metabolite: The Effects of Aminated Tetrahydrocurcumin on Inducible Nitric Oxide Synthase and Cyclooxygenase-2. Journal of Cancer Research and Practice, 8(2), 41-53.
Koh, Y. C., Tsai, Y. W., Lee, P. S., Nagabhushanam, K., Ho, C. T., & Pan, M. H. (2022). Amination Potentially Augments the Ameliorative Effect of Curcumin on Inhibition of the IL-6/Stat3/c-Myc Pathway and Gut Microbial Modulation in Colitis-Associated Tumorigenesis. Journal of Agricultural and Food Chemistry, 70(46), 14744-14754.
Koh, Y. C., Tsai, Y. W., Lee, P. S., Nagabhushanam, K., Ho, C. T., & Pan, M. H. (2022). Amination Potentially Augments the Ameliorative Effect of Curcumin on Inhibition of the IL-6/Stat3/c-Myc Pathway and Gut Microbial Modulation in Colitis-Associated Tumorigenesis. Journal of Agricultural and Food Chemistry, 70(46), 14744-14754.
Kotha, R. R., & Luthria, D. L. (2019). Curcumin: Biological, Pharmaceutical, Nutraceutical, and Analytical Aspects. Molecules, 24(16).
Kuenzig, M. E., Fung, S. G., Marderfeld, L., Mak, J. W. Y., Kaplan, G. G., Ng, S. C., Wilson, D. C., Cameron, F., Henderson, P., Kotze, P. G., Bhatti, J., Fang, V., Gerber, S., Guay, E., Kotteduwa Jayawarden, S., Kadota, L., Maldonado D, F., Osei, J. A., Sandarage, R., . . . Benchimol, E. I. (2022). Twenty-first Century Trends in the Global Epidemiology of Pediatric-Onset Inflammatory Bowel Disease: Systematic Review. Gastroenterology, 162(4), 1147-1159.e1144.
Kunnumakkara, A. B., Bordoloi, D., Padmavathi, G., Monisha, J., Roy, N. K., Prasad, S., & Aggarwal, B. B. (2017). Curcumin, the golden nutraceutical: multitargeting for multiple chronic diseases. British Journal of Pharmacology, 174(11), 1325-1348.
Kwon, J., Lee, C., Heo, S., Kim, B., & Hyun, C. K. (2021). DSS-induced colitis is associated with adipose tissue dysfunction and disrupted hepatic lipid metabolism leading to hepatosteatosis and dyslipidemia in mice. Scientific Reports, 11(1), 5283.
Lao, C. D., Ruffin, M. T. t., Normolle, D., Heath, D. D., Murray, S. I., Bailey, J. M., Boggs, M. E., Crowell, J., Rock, C. L., & Brenner, D. E. (2006). Dose escalation of a curcuminoid formulation. BMC Complement and Alternative Medicine, 6, 10.
Lao, L., Yang, G., Zhang, A., Liu, L., Guo, Y., Lian, L., Pan, D., & Wu, Z. (2022). Anti-inflammation and gut microbiota regulation properties of fatty acids derived from fermented milk in mice with dextran sulfate sodium-induced colitis. Journal of Dairy Science, 105(10), 7865-7877.
Larabi, A., Barnich, N., & Nguyen, H. T. T. (2020). New insights into the interplay between autophagy, gut microbiota and inflammatory responses in IBD. Autophagy, 16(1), 38-51.
Lee, B., Moon, K. M., & Kim, C. Y. (2018). Tight Junction in the Intestinal Epithelium: Its Association with Diseases and Regulation by Phytochemicals. Journal of Immunology Research, 2018, 2645465.
Levine, B., & Kroemer, G. (2008). Autophagy in the pathogenesis of disease. Cell, 132(1), 27-42.
Li, C. P., Li, J. H., He, S. Y., Chen, O., & Shi, L. (2015). Effect of curcumin on p38MAPK expression in DSS-induced murine ulcerative colitis. Genetics and Molecular Research, 14(2), 3450-3458.
Li, D., Ding, S., Luo, M., Chen, J., Zhang, Q., Liu, Y., Li, A., Zhong, S., & Ding, J. (2022). Differential diagnosis of acute and chronic colitis in mice by optical coherence tomography. Quantitive Imaging in Medicine Surgery, 12(6), 3193-3203.
Li, H., Shen, L., Lv, T., Wang, R., Zhang, N., Peng, H., & Diao, W. (2019). Salidroside attenuates dextran sulfate sodium-induced colitis in mice via SIRT1/FoxOs signaling pathway. European Journal of Pharmacology, 861, 172591.
Li, H., Sheng, D., Jin, C., Zhao, G., & Zhang, L. (2023). Identifying and ranking causal microbial biomarkers for colorectal cancer at different cancer subsites and stages: a Mendelian randomization study. Frontiers in Oncology, 13, 1224705.
Li, P., Hao, Z., Wu, J., Ma, C., Xu, Y., Li, J., Lan, R., Zhu, B., Ren, P., Fan, D., & Sun, S. (2021). Comparative Proteomic Analysis of Polarized Human THP-1 and Mouse RAW264.7 Macrophages. Frontiers in Immunology, 12, 700009.
Li, X., Ma, S., Yang, P., Sun, B., Zhang, Y., Sun, Y., Hao, M., Mou, R., & Jia, Y. (2018). Anticancer effects of curcumin on nude mice bearing lung cancer A549 cell subsets SP and NSP cells. Oncology Letters, 16(5), 6756-6762.
Li, X., Sung, P., Zhang, D., & Yan, L. (2023). Curcumin in vitro Neuroprotective Effects Are Mediated by p62/keap-1/Nrf2 and PI3K/AKT Signaling Pathway and Autophagy Inhibition. Phytotherapy Research, 72(4), 497-510.
Li, X., Zhu, R., Jiang, H., Yin, Q., Gu, J., Chen, J., Ji, X., Wu, X., Fu, H., Wang, H., Tang, X., Gao, Y., Wang, B., Ji, Y., & Chen, H. (2022). Autophagy enhanced by curcumin ameliorates inflammation in atherogenesis via the TFEB-P300-BRD4 axis. Acta Pharmacetica Sinica B, 12(5), 2280-2299.
Li, Y., Liu, R., Wu, J., & Li, X. (2020). Self-eating: friend or foe? The emerging role of autophagy in fibrotic diseases. Theranostics, 10(18), 7993-8017.
Liddicoat, C., Sydnor, H., Cando-Dumancela, C., Dresken, R., Liu, J., Gellie, N. J. C., Mills, J. G., Young, J. M., Weyrich, L. S., Hutchinson, M. R., Weinstein, P., & Breed, M. F. (2020). Naturally-diverse airborne environmental microbial exposures modulate the gut microbiome and may provide anxiolytic benefits in mice. Science of The Total Environment, 701, 134684.
Lin, H. C., & Visek, W. J. (1991). Colon mucosal cell damage by ammonia in rats. Journal of Nutrition, 121(6), 887-893.
Lin, W. S., Cheng, W. C., & Pan, M. H. (2023). Virofree Associates with the Modulation of Gut Microbiomes and Alleviation of DSS-Induced IBD Symptoms in Mice. American Chemical Society Omega, 8(44), 41427-41437.
Liu, B., Ye, D., Yang, H., Song, J., Sun, X., Mao, Y., & He, Z. (2022). Two-Sample Mendelian Randomization Analysis Investigates Causal Associations Between Gut Microbial Genera and Inflammatory Bowel Disease, and Specificity Causal Associations in Ulcerative Colitis or Crohn's Disease. Frontiers in Immunology, 13, 921546.
Liu, J., Di, B., & Xu, L.-l. (2023). Recent advances in the treatment of IBD: Targets, mechanisms and related therapies. Cytokine & Growth Factor Reviews, 71-72, 1-12.
Liu, L., Liu, Y. L., Liu, G. X., Chen, X., Yang, K., Yang, Y. X., Xie, Q., Gan, H. K., Huang, X. L., & Gan, H. T. (2013). Curcumin ameliorates dextran sulfate sodium-induced experimental colitis by blocking STAT3 signaling pathway. International Immunopharmacology, 17(2), 314-320.
Louis, E., Paridaens, K., Al Awadhi, S., Begun, J., Cheon, J. H., Dignass, A. U., Magro, F., Márquez, J. R., Moschen, A. R., Narula, N., Rydzewska, G., Freddi, M. J., & Travis, S. P. (2022). Modelling the benefits of an optimised treatment strategy for 5-ASA in mild-to-moderate ulcerative colitis. BMJ Open Gastroenterol, 9(1).
Lu, Z., Ding, L., Lu, Q., & Chen, Y. H. (2013). Claudins in intestines: Distribution and functional significance in health and diseases. Tissue Barriers, 1(3), e24978.
Luo, D.-D., Chen, J.-F., Liu, J.-J., Xie, J.-H., Zhang, Z.-B., Gu, J.-Y., Zhuo, J.-Y., Huang, S., Su, Z.-R., & Sun, Z.-H. (2019). Tetrahydrocurcumin and octahydrocurcumin, the primary and final hydrogenated metabolites of curcumin, possess superior hepatic-protective effect against acetaminophen-induced liver injury: Role of CYP2E1 and Keap1-Nrf2 pathway. Food and Chemical Toxicology, 123, 349-362.
Ma, L., Yu, J., Zhang, H., Zhao, B., Zhang, J., Yang, D., Luo, F., Wang, B., Jin, B., & Liu, J. (2022). Effects of Immune Cells on Intestinal Stem Cells: Prospects for Therapeutic Targets. Stem Cell Reviews and Reports, 18(7), 2296-2314.
Machado, A., Geraldi, M. V., do Nascimento, R. P., Moya, A., Vezza, T., Diez-Echave, P., Gálvez, J. J., Cazarin, C. B. B., & Maróstica Júnior, M. R. (2021). Polyphenols from food by-products: An alternative or complementary therapy to IBD conventional treatments. Food Research International, 140, 110018.
Machiels, K., Joossens, M., Sabino, J., De Preter, V., Arijs, I., Eeckhaut, V., Ballet, V., Claes, K., Van Immerseel, F., Verbeke, K., Ferrante, M., Verhaegen, J., Rutgeerts, P., & Vermeire, S. (2014). A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut, 63(8), 1275-1283.
Maha M. Elbrashy, H. M., Tadamitsu Kishimoto. (2024). Guardians of Intestinal Homeostasis: Focus on Intestinal Epithelial Cells. Journal of Cellular Immunology., 6(1), 1-6.
Martín, R., Chain, F., Miquel, S., Motta, J.-P., Vergnolle, N., Sokol, H., & Langella, P. (2017). Using murine colitis models to analyze probiotics–host interactions. FEMS Microbiology Reviews, 41(Supp_1), S49-S70.
Matoori, S., & Leroux, J. C. (2015). Recent advances in the treatment of hyperammonemia. Advanced Drug Delivery Reviews, 90, 55-68.
Melgar, S., Karlsson, L., Rehnström, E., Karlsson, A., Utkovic, H., Jansson, L., & Michaëlsson, E. (2008). Validation of murine dextran sulfate sodium-induced colitis using four therapeutic agents for human inflammatory bowel disease. International Immunopharmacology. 8(6), 836-844.
Mentella, M. C., Scaldaferri, F., Pizzoferrato, M., Gasbarrini, A., & Miggiano, G. A. D. (2020). Nutrition, IBD and Gut Microbiota: A Review. Nutrients, 12(4).
Miyake, S., Ding, Y., Soh, M., & Seedorf, H. (2019). Complete Genome Sequence of Duncaniella muris Strain B8, Isolated from the Feces of C57/BL6 Mice. Microbiology Resource Announcements, 8(30).
Mohammad, S., & Thiemermann, C. (2020). Role of Metabolic Endotoxemia in Systemic Inflammation and Potential Interventions. Frontiers in Immunology, 11, 594150.
Moller, F. T., Andersen, V., Wohlfahrt, J., & Jess, T. (2015). Familial risk of inflammatory bowel disease: a population-based cohort study 1977-2011. American Journal of Gastroenterology, 110(4), 564-571.
Momozawa, Y., Dmitrieva, J., Théâtre, E., Deffontaine, V., Rahmouni, S., Charloteaux, B., Crins, F., Docampo, E., Elansary, M., Gori, A. S., Lecut, C., Mariman, R., Mni, M., Oury, C., Altukhov, I., Alexeev, D., Aulchenko, Y., Amininejad, L., Bouma, G., . . . Georges, M. (2018). IBD risk loci are enriched in multigenic regulatory modules encompassing putative causative genes. Nature Communications, 9(1), 2427.
Mondal, N. K., Behera, J., Kelly, K. E., George, A. K., Tyagi, P. K., & Tyagi, N. (2019). Tetrahydrocurcumin epigenetically mitigates mitochondrial dysfunction in brain vasculature during ischemic stroke. Neurochemistry International, 122, 120-138.
Morrison, D. J., & Preston, T. (2016). Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes, 7(3), 189-200.
Mosli, M. H., Feagan, B. G., Zou, G., Sandborn, W. J., D'Haens, G., Khanna, R., Shackelton, L. M., Walker, C. W., Nelson, S., Vandervoort, M. K., Frisbie, V., Samaan, M. A., Jairath, V., Driman, D. K., Geboes, K., Valasek, M. A., Pai, R. K., Lauwers, G. Y., Riddell, R., . . . Levesque, B. G. (2017). Development and validation of a histological index for UC. Gut, 66(1), 50-58.
Mota, C. M. D., & Madden, C. J. (2022). Neural control of the spleen as an effector of immune responses to inflammation: mechanisms and treatments. American Journal of Physiology Regulatory, Intergrative and Comparative Physiology, 323(4), R375-r384.
Naghavi, M., & Malekzadeh, R. (2020). The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterology and Hepatology, 5(1), 17-30.
Nascimento, R. P. D., Machado, A., Galvez, J., Cazarin, C. B. B., & Maróstica Junior, M. R. (2020). Ulcerative colitis: Gut microbiota, immunopathogenesis and application of natural products in animal models. Life Sciences, 258, 118129.
Navegantes, K. C., de Souza Gomes, R., Pereira, P. A. T., Czaikoski, P. G., Azevedo, C. H. M., & Monteiro, M. C. (2017). Immune modulation of some autoimmune diseases: the critical role of macrophages and neutrophils in the innate and adaptive immunity. Journal of Translational Medicine, 15(1), 36.
Nelson, K. M., Dahlin, J. L., Bisson, J., Graham, J., Pauli, G. F., & Walters, M. A. (2017). The Essential Medicinal Chemistry of Curcumin. Journal of Medicinal Chemistry, 60(5), 1620-1637.
Neurath, M. F. (2014). Cytokines in inflammatory bowel disease. Nature Reviews Immunology, 14(5), 329-342.
Ni, J., Wu, G. D., Albenberg, L., & Tomov, V. T. (2017). Gut microbiota and IBD: causation or correlation? Nature Reviews Gastroenterology & Hepatology, 14(10), 573-584.
Nighot, P. K., Hu, C. A., & Ma, T. Y. (2015). Autophagy enhances intestinal epithelial tight junction barrier function by targeting claudin-2 protein degradation. Journal of Biological Chemistry, 290(11), 7234-7246.
Okada, K., Wangpoengtrakul, C., Tanaka, T., Toyokuni, S., Uchida, K., & Osawa, T. (2001). Curcumin and Especially Tetrahydrocurcumin Ameliorate Oxidative Stress-Induced Renal Injury in Mice. The Journal of Nutrition, 131(8), 2090-2095.
Okayasu, I., Hatakeyama, S., Yamada, M., Ohkusa, T., Inagaki, Y., & Nakaya, R. (1990). A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology, 98(3), 694-702.
Okumura, R., & Takeda, K. (2017). Roles of intestinal epithelial cells in the maintenance of gut homeostasis. Experimental & Molecular Medicine, 49(5), e338-e338.
Ouyang, W., Liao, W., Luo, C. T., Yin, N., Huse, M., Kim, M. V., Peng, M., Chan, P., Ma, Q., Mo, Y., Meijer, D., Zhao, K., Rudensky, A. Y., Atwal, G., Zhang, M. Q., & Li, M. O. (2012). Novel Foxo1-dependent transcriptional programs control T(reg) cell function. Nature, 491(7425), 554-559.
Owczarek, D., Rodacki, T., Domagała-Rodacka, R., Cibor, D., & Mach, T. (2016). Diet and nutritional factors in inflammatory bowel diseases. World Journal of Gastroenterology, 22(3), 895-905.
Ozanne, J., Shek, B., Stephen, L. A., Novak, A., Milne, E., McLachlan, G., Midwood, K. S., & Farquharson, C. (2022). Tenascin-C is a driver of inflammation in the DSS model of colitis. Matrix Biology Plus, 14, 100112.
Pan, M. H., Huang, T. M., & Lin, J. K. (1999). Biotransformation of curcumin through reduction and glucuronidation in mice. Drug Metabolism & Disposition, 27(4), 486-494.
Pandey, A., Chaturvedi, M., Mishra, S., Kumar, P., Somvanshi, P., & Chaturvedi, R. (2020). Reductive metabolites of curcumin and their therapeutic effects. Heliyon, 6(11), e05469.
Paradis, T., Bègue, H., Basmaciyan, L., Dalle, F., & Bon, F. (2021). Tight Junctions as a Key for Pathogens Invasion in Intestinal Epithelial Cells. International Journal of Molecular Sciences, 22(5), 2506.
Paradis, T., Bègue, H., Basmaciyan, L., Dalle, F., & Bon, F. (2021). Tight Junctions as a Key for Pathogens Invasion in Intestinal Epithelial Cells. International Journal of Molecular Sciences, 22(5).
Park, H., Yeo, S., Kang, S., & Huh, C. S. (2021). Longitudinal Microbiome Analysis in a Dextran Sulfate Sodium-Induced Colitis Mouse Model. Microorganisms, 9(2).
Park, J., & Cheon, J. H. (2021). Incidence and Prevalence of Inflammatory Bowel Disease across Asia. Yonsei Medical Journal, 62(2), 99-108.
Patel, K. K., Miyoshi, H., Beatty, W. L., Head, R. D., Malvin, N. P., Cadwell, K., Guan, J. L., Saitoh, T., Akira, S., Seglen, P. O., Dinauer, M. C., Virgin, H. W., & Stappenbeck, T. S. (2013). Autophagy proteins control goblet cell function by potentiating reactive oxygen species production. EMBO Journal, 32(24), 3130-3144.
Peng, J., Liu, T., Meng, P., Luo, Y., Zhu, S., Wang, Y., Ma, M., Han, J., Zhou, J., Su, X., Li, S., Ho, C. T., & Lu, C. (2024). Gallic acid ameliorates colitis by trapping deleterious metabolite ammonia and improving gut microbiota dysbiosis. mBio, 15(2), e0275223.
Peng, Y., Ao, M., Dong, B., Jiang, Y., Yu, L., Chen, Z., Hu, C., & Xu, R. (2021). Anti-Inflammatory Effects of Curcumin in the Inflammatory Diseases: Status, Limitations and Countermeasures. Drug Design, Development and Therapy, 15, 4503-4525.
Perše, M., & Cerar, A. (2012). Dextran sodium sulphate colitis mouse model: traps and tricks. Journal of Biomedicine and Biotechnology, 2012, 718617.
Peterson, L. W., & Artis, D. (2014). Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nature Reviews Immunology, 14(3), 141-153.
Petersson, J., Schreiber, O., Hansson, G. C., Gendler, S. J., Velcich, A., Lundberg, J. O., Roos, S., Holm, L., & Phillipson, M. (2011). Importance and regulation of the colonic mucus barrier in a mouse model of colitis. American Journal of Physiology Gastrointestinal and Liver Physiology, 300(2), G327-333.
Plamada, D., & Vodnar, D. C. (2021). Polyphenols-Gut Microbiota Interrelationship: A Transition to a New Generation of Prebiotics. Nutrients, 14(1).
Pluta, R., Januszewski, S., & Ułamek-Kozioł, M. (2020). Mutual Two-Way Interactions of Curcumin and Gut Microbiota. International Journal of Molecular Sciences, 21(3).
Portincasa, P., Bonfrate, L., Vacca, M., De Angelis, M., Farella, I., Lanza, E., Khalil, M., Wang, D. Q., Sperandio, M., & Di Ciaula, A. (2022). Gut Microbiota and Short Chain Fatty Acids: Implications in Glucose Homeostasis. International Journal of Molecular Sciences, 23(3).
Prasad, S., Gupta, S. C., Tyagi, A. K., & Aggarwal, B. B. (2014). Curcumin, a component of golden spice: from bedside to bench and back. Biotechnol Advances, 32(6), 1053-1064.
Prasad, S., Mingrino, R., Kaukinen, K., Hayes, K. L., Powell, R. M., MacDonald, T. T., & Collins, J. E. (2005). Inflammatory processes have differential effects on claudins 2, 3 and 4 in colonic epithelial cells. Laboratory Investigation, 85(9), 1139-1162.
Priyadarsini, K. I. (2014). The chemistry of curcumin: from extraction to therapeutic agent. Molecules, 19(12), 20091-20112.
Quezada, S. M., McLean, L. P., & Cross, R. K. (2018). Adverse events in IBD therapy: the 2018 update. Expert Review of Gastroenterology & Hepatology, 12(12), 1183-1191.
Ramamoorthy, S., & Cidlowski, J. A. (2016). Corticosteroids: Mechanisms of Action in Health and Disease. Rheumatic Disease Clinics of North America, 42(1), 15-31, vii.
Randhawa, P. K., Singh, K., Singh, N., & Jaggi, A. S. (2014). A review on chemical-induced inflammatory bowel disease models in rodents. Korean Journal of Physiology & Pharmacology, 18(4), 279-288.
Rao, R. (2009). Occludin phosphorylation in regulation of epithelial tight junctions. Annals of the New York Academy of Sciences, 1165, 62-68.
Ravindranath, V., & Chandrasekhara, N. (1980). Absorption and tissue distribution of curcumin in rats. Toxicology, 16(3), 259-265.
Ravindranath, V., & Chandrasekhara, N. (1980). Absorption and tissue distribution of curcumin in rats. Toxicology, 16(3), 259-265.
Reunanen, J., Kainulainen, V., Huuskonen, L., Ottman, N., Belzer, C., Huhtinen, H., de Vos, W. M., & Satokari, R. (2015). Akkermansia muciniphila Adheres to Enterocytes and Strengthens the Integrity of the Epithelial Cell Layer. Applied and Environmental Microbiology, 81(11), 3655-3662.
Rodrigues, B. L., Mazzaro, M. C., Nagasako, C. K., Ayrizono, M. L. S., Fagundes, J. J., & Leal, R. F. (2020). Assessment of disease activity in inflammatory bowel diseases: Non-invasive biomarkers and endoscopic scores. World Journal of Gastrointestinal Endoscopy, 12(12), 504-520.
Rogler, G., Singh, A., Kavanaugh, A., & Rubin, D. T. (2021). Extraintestinal Manifestations of Inflammatory Bowel Disease: Current Concepts, Treatment, and Implications for Disease Management. Gastroenterology, 161(4), 1118-1132.
Rosenthal, R., Milatz, S., Krug, S. M., Oelrich, B., Schulzke, J. D., Amasheh, S., Günzel, D., & Fromm, M. (2010). Claudin-2, a component of the tight junction, forms a paracellular water channel. Journal of Cell Science, 123(Pt 11), 1913-1921.
Rui, L. (2014). Energy metabolism in the liver. Compr Physiol, 4(1), 177-197.
Saez, A., Herrero-Fernandez, B., Gomez-Bris, R., Sánchez-Martinez, H., & Gonzalez-Granado, J. M. (2023). Pathophysiology of Inflammatory Bowel Disease: Innate Immune System. International Journal of Molecular Sciences, 24(2).
Saitou, M., Furuse, M., Sasaki, H., Schulzke, J. D., Fromm, M., Takano, H., Noda, T., & Tsukita, S. (2000). Complex phenotype of mice lacking occludin, a component of tight junction strands. Molecular Biology of The Cell, 11(12), 4131-4142.
Salazar, J. H. (2014). Overview of Urea and Creatinine. Laboratory Medicine, 45(1), e19-e20.
Samak, G., Chaudhry, K. K., Gangwar, R., Narayanan, D., Jaggar, J. H., & Rao, R. (2015). Calcium/Ask1/MKK7/JNK2/c-Src signalling cascade mediates disruption of intestinal epithelial tight junctions by dextran sulfate sodium. Biochemical Journal, 465(3), 503-515.
Sayed, A. M., Abdel-Fattah, M. M., Arab, H. H., Mohamed, W. R., & Hassanein, E. H. M. (2022). Targeting inflammation and redox aberrations by perindopril attenuates methotrexate-induced intestinal injury in rats: Role of TLR4/NF-κB and c-Fos/c-Jun pro-inflammatory pathways and PPAR-γ/SIRT1 cytoprotective signals. Chemico-Biological Interactions, 351, 109732.
Schirmer, M., Garner, A., Vlamakis, H., & Xavier, R. J. (2019). Microbial genes and pathways in inflammatory bowel disease. Nature Reviews Microbiology, 17(8), 497-511.
Schreiber, O., Petersson, J., Waldén, T., Ahl, D., Sandler, S., Phillipson, M., & Holm, L. (2013). iNOS-dependent increase in colonic mucus thickness in DSS-colitic rats. PLoS One, 8(8), e71843.
Sellers, R. S., Mortan, D., Michael, B., Roome, N., Johnson, J. K., Yano, B. L., Perry, R., & Schafer, K. (2007). Society of Toxicologic Pathology Position Paper: Organ Weight Recommendations for Toxicology Studies. Toxicologic Pathology, 35(5), 751-755.
Sharma, J. N., Al-Omran, A., & Parvathy, S. S. (2007). Role of nitric oxide in inflammatory diseases. Inflammopharmacology, 15(6), 252-259.
Siddiqui, M. T., & Cresci, G. A. M. (2021). The Immunomodulatory Functions of Butyrate. Journal of Inflammation Research, 14, 6025-6041.
Stellingwerf, M. E. (2020). Surgery in Inflammatory Bowel Disease: A different point of view.
Strauss, J. C., Haskey, N., Ramay, H. R., Ghosh, T. S., Taylor, L. M., Yousuf, M., Ohland, C., McCoy, K. D., Ingram, R. J. M., Ghosh, S., Panaccione, R., & Raman, M. (2023). Weighted Gene Co-Expression Network Analysis Identifies a Functional Guild and Metabolite Cluster Mediating the Relationship between Mucosal Inflammation and Adherence to the Mediterranean Diet in Ulcerative Colitis. International Journal of Molecular Sciences, 24(8)
Su, L., Nalle, S. C., Shen, L., Turner, E. S., Singh, G., Breskin, L. A., Khramtsova, E. A., Khramtsova, G., Tsai, P. Y., Fu, Y. X., Abraham, C., & Turner, J. R. (2013). TNFR2 activates MLCK-dependent tight junction dysregulation to cause apoptosis-mediated barrier loss and experimental colitis. Gastroenterology, 145(2), 407-415.
Süren, D., Yıldırım, M., Kaya, V., Alikanoğlu, A. S., Bülbüller, N., Yıldız, M., & Sezer, C. (2014). Loss of tight junction proteins (Claudin 1, 4, and 7) correlates with aggressive behavior in colorectal carcinoma. Medical Science Monitor, 20, 1255-1262.
Tagesson, C., Sjödahl, R., & Thorén, B. (1978). Passage of Molecules through the Wall of the Gastrointestinal Tract. Scandinavian Journal of Gastroenterology, 13(5), 519-524.
Tang, X., Li, X., Wang, Y., Zhang, Z., Deng, A., Wang, W., Zhang, H., Qin, H., & Wu, L. (2019). Butyric Acid Increases the Therapeutic Effect of EHLJ7 on Ulcerative Colitis by Inhibiting JAK2/STAT3/SOCS1 Signaling Pathway. Frontiers in Pharmacology, 10, 1553.
Taras, D., Simmering, R., Collins, M. D., Lawson, P. A., & Blaut, M. (2002). Reclassification of Eubacterium formicigenerans Holdeman and Moore 1974 as Dorea formicigenerans gen. nov., comb. nov., and description of Dorea longicatena sp. nov., isolated from human faeces. International Journal of Systematic and Evolutionary Microbiology, 52(Pt 2), 423-428.
Tiwari, S., Begum, S., Moreau, F., Gorman, H., & Chadee, K. (2021). Autophagy is required during high MUC2 mucin biosynthesis in colonic goblet cells to contend metabolic stress. American Journal of Physiology Gastrointestinal and Liver Physiology, 321(5), G489-g499.
Toden, S., Theiss, A. L., Wang, X., & Goel, A. (2017). Essential turmeric oils enhance anti-inflammatory efficacy of curcumin in dextran sulfate sodium-induced colitis. Scientific Reports, 7(1), 814.
Torres, J., Burisch, J., Riddle, M., Dubinsky, M., & Colombel, J. F. (2016). Preclinical disease and preventive strategies in IBD: perspectives, challenges and opportunities. Gut, 65(7), 1061-1069.
Trefts, E., Gannon, M., & Wasserman, D. H. (2017). The liver. Current Biology, 27(21), R1147-r1151.
Tsuboi, K., Nishitani, M., Takakura, A., Imai, Y., Komatsu, M., & Kawashima, H. (2015). Autophagy Protects against Colitis by the Maintenance of Normal Gut Microflora and Secretion of Mucus. Journal of Biological Chemistry, 290(33), 20511-20526.
Tsukita, S., Katsuno, T., Yamazaki, Y., Umeda, K., Tamura, A., & Tsukita, S. (2009). Roles of ZO-1 and ZO-2 in Establishment of the Belt-like Adherens and Tight Junctions with Paracellular Permselective Barrier Function. Annals of the New York Academy of Sciences, 1165(1), 44-52.
Umeda, K., Matsui, T., Nakayama, M., Furuse, K., Sasaki, H., Furuse, M., & Tsukita, S. (2004). Establishment and Characterization of Cultured Epithelial Cells Lacking Expression of ZO-1. Journal of Biological Chemistry, 279(43), 44785-44794.
Ungurianu, A., Zanfirescu, A., & Margină, D. (2022). Regulation of Gene Expression through Food—Curcumin as a Sirtuin Activity Modulator. Plants, 11(13), 1741.
Van der Sluis, M., De Koning, B. A. E., De Bruijn, A. C. J. M., Velcich, A., Meijerink, J. P. P., Van Goudoever, J. B., Büller, H. A., Dekker, J., Van Seuningen, I., Renes, I. B., & Einerhand, A. W. C. (2006). Muc2-Deficient Mice Spontaneously Develop Colitis, Indicating That MUC2 Is Critical for Colonic Protection. Gastroenterology, 131(1), 117-129.
Van Itallie, C., Rahner, C., & Anderson, J. M. (2001). Regulated expression of claudin-4 decreases paracellular conductance through a selective decrease in sodium permeability. Journal of Clinical Investigation, 107(10), 1319-1327.
Veltkamp, C., Anstaett, M., Wahl, K., Möller, S., Gangl, S., Bachmann, O., Hardtke-Wolenski, M., Länger, F., Stremmel, W., Manns, M. P., Schulze-Osthoff, K., & Bantel, H. (2011). Apoptosis of regulatory T lymphocytes is increased in chronic inflammatory bowel disease and reversed by anti-TNFα treatment. Gut, 60(10), 1345-1353.
Vezza, T., Rodríguez-Nogales, A., Algieri, F., Utrilla, M. P., Rodriguez-Cabezas, M. E., & Galvez, J. (2016). Flavonoids in Inflammatory Bowel Disease: A Review. Nutrients, 8(4).
Vijaya Saradhi, U. V., Ling, Y., Wang, J., Chiu, M., Schwartz, E. B., Fuchs, J. R., Chan, K. K., & Liu, Z. (2010). A liquid chromatography-tandem mass spectrometric method for quantification of curcuminoids in cell medium and mouse plasma. Journal of Chromatography B: Analytical Technologies in the Biomedical Life Sciences, 878(30), 3045-3051.
Voetmann, L. M., Rolin, B., Kirk, R. K., Pyke, C., & Hansen, A. K. (2023). The intestinal permeability marker FITC-dextran 4kDa should be dosed according to lean body mass in obese mice. Nutrition & Diabetes, 13(1), 1.
Volynets, V., Reichold, A., Bárdos, G., Rings, A., Bleich, A., & Bischoff, S. C. (2016). Assessment of the Intestinal Barrier with Five Different Permeability Tests in Healthy C57BL/6J and BALB/cJ Mice. Digestive Diseases and Sciences, 61(3), 737-746.
Waljee, A. K., Wiitala, W. L., Govani, S., Stidham, R., Saini, S., Hou, J., Feagins, L. A., Khan, N., Good, C. B., Vijan, S., & Higgins, P. D. (2016). Corticosteroid Use and Complications in a US Inflammatory Bowel Disease Cohort. PLoS One, 11(6), e0158017.
Wallace, K. L., Zheng, L. B., Kanazawa, Y., & Shih, D. Q. (2014). Immunopathology of inflammatory bowel disease. World Journal of Gastroenterology, 20(1), 6-21.
Wan Mohd Tajuddin, W. N. B., Lajis, N. H., Abas, F., Othman, I., & Naidu, R. (2019). Mechanistic Understanding of Curcumin's Therapeutic Effects in Lung Cancer. Nutrients, 11(12).
Wang, F., Schwarz, B. T., Graham, W. V., Wang, Y., Su, L., Clayburgh, D. R., Abraham, C., & Turner, J. R. (2006). IFN-gamma-induced TNFR2 expression is required for TNF-dependent intestinal epithelial barrier dysfunction. Gastroenterology, 131(4), 1153-1163.
Wang, J. L., Han, X., Li, J. X., Shi, R., Liu, L. L., Wang, K., Liao, Y. T., Jiang, H., Zhang, Y., Hu, J. C., Zhang, L. M., & Shi, L. (2022). Differential analysis of intestinal microbiota and metabolites in mice with dextran sulfate sodium-induced colitis. World Journal of Gastroenterology, 28(43), 6109-6130.
Wang, R., Li, Z., Liu, S., & Zhang, D. (2023). Global, regional and national burden of inflammatory bowel disease in 204 countries and territories from 1990 to 2019: a systematic analysis based on the Global Burden of Disease Study 2019. BMJ Open, 13(3), e065186.
Wang, X., Wang, P., Li, Y., Guo, H., Wang, R., Liu, S., Qiu, J., Wang, X., Hao, Y., Zhao, Y., Liao, H., Zou, Z., Thinwa, J., & Liu, R. (2024). Procyanidin C1 Modulates the Microbiome to Increase FOXO1 Signaling and Valeric Acid Levels to Protect the Mucosal Barrier in Inflammatory Bowel Disease. Engineering.
Wang, Y., Zhou, Y., & Graves, D. T. (2014). FOXO transcription factors: their clinical significance and regulation. Biomed Research International, 2014, 925350.
Wang, Y. J., Pan, M. H., Cheng, A. L., Lin, L. I., Ho, Y. S., Hsieh, C. Y., & Lin, J. K. (1997). Stability of curcumin in buffer solutions and characterization of its degradation products. Journal of Pharmaceutical and Biomedical Analysis, 15(12), 1867-1876.
Weber, C. R., Raleigh, D. R., Su, L., Shen, L., Sullivan, E. A., Wang, Y., & Turner, J. R. (2010). Epithelial myosin light chain kinase activation induces mucosal interleukin-13 expression to alter tight junction ion selectivity. Journal of Biological Chemistry, 285(16), 12037-12046.
Wei, C., Wang, J. Y., Xiong, F., Wu, B. H., Luo, M. H., Yu, Z. C., Liu, T. T., Li, D. F., Tang, Q., Li, Y. X., Zhang, D. G., Xu, Z. L., Jin, H. T., Wang, L. S., & Yao, J. (2021). Curcumin ameliorates DSS‑induced colitis in mice by regulating the Treg/Th17 signaling pathway. Molecular Medicine Reports, 23(1).
Wei, M., Zhang, Y., Yang, X., Ma, P., Li, Y., Wu, Y., Chen, X., Deng, X., Yang, T., Mao, X., Qiu, L., Meng, W., Zhang, B., Wang, Z., & Han, J. (2021). Claudin-2 promotes colorectal cancer growth and metastasis by suppressing NDRG1 transcription. Clinical and Translational Medicine, 11(12), e667.
Wirtz, S., & Neurath, M. F. (2007). Mouse models of inflammatory bowel disease. Advanced Drug Delivery Reviews, 59(11), 1073-1083.
Wirtz, S., Popp, V., Kindermann, M., Gerlach, K., Weigmann, B., Fichtner-Feigl, S., & Neurath, M. F. (2017). Chemically induced mouse models of acute and chronic intestinal inflammation. Nature Protocols, 12(7), 1295-1309.
Wong, J. M., de Souza, R., Kendall, C. W., Emam, A., & Jenkins, D. J. (2006). Colonic health: fermentation and short chain fatty acids. Journal of Clinical Gastroenterology, 40(3), 235-243.
Woo, S. H., Lee, S. H., Park, J. W., Go, D. M., & Kim, D. Y. (2019). Osteopontin Protects Colonic Mucosa from Dextran Sodium Sulfate-Induced Acute Colitis in Mice by Regulating Junctional Distribution of Occludin. Digestive Disease and Sciences, 64(2), 421-431.
Woting, A., & Blaut, M. (2018). Small Intestinal Permeability and Gut-Transit Time Determined with Low and High Molecular Weight Fluorescein Isothiocyanate-Dextrans in C3H Mice. Nutrients, 10(6), 685.
Wu, H., Chen, Q.-Y., Wang, W.-Z., Chu, S., Liu, X.-X., Liu, Y.-J., Tan, C., Zhu, F., Deng, S.-J., Dong, Y.-L., Yu, T., Gao, F., He, H.-X., Leng, X.-Y., & Fan, H. (2021). Compound sophorae decoction enhances intestinal barrier function of dextran sodium sulfate induced colitis via regulating notch signaling pathway in mice. Biomedicine & Pharmacotherapy, 133, 110937.
Wu, N., Mah, C., Koentgen, S., Zhang, L., Grimm, M. C., El-Omar, E., & Hold, G. L. (2021). Inflammatory bowel disease and the gut microbiota. Proceedings of the Nutrition Society, 80(4), 424-434.
Xie, Q. F., Cheng, J. J., Chen, J. F., Feng, Y. C., Lin, G. S., & Xu, Y. (2020). Comparation of Anti-Inflammatory and Antioxidantactivities of Curcumin, Tetrahydrocurcuminand Octahydrocurcuminin LPS-Stimulated RAW264.7 Macrophages. Evidence-Based Complementary and Alternative Medicine, 2020, 8856135.
Xu, H.-M., Huang, H.-L., Liu, Y.-D., Zhu, J.-Q., Zhou, Y.-L., Chen, H.-T., Xu, J., Zhao, H.-L., Guo, X., Shi, W., Nie, Y.-Q., & Zhou, Y.-J. (2021). Selection strategy of dextran sulfate sodium-induced acute or chronic colitis mouse models based on gut microbial profile. BMC Microbiology, 21(1), 279.
Yan, Y. X., Shao, M. J., Qi, Q., Xu, Y. S., Yang, X. Q., Zhu, F. H., He, S. J., He, P. L., Feng, C. L., Wu, Y. W., Li, H., Tang, W., & Zuo, J. P. (2018). Artemisinin analogue SM934 ameliorates DSS-induced mouse ulcerative colitis via suppressing neutrophils and macrophages. Acta Pharmacol Sinica, 39(10), 1633-1644.
Yao, C. K., Muir, J. G., & Gibson, P. R. (2016). Review article: insights into colonic protein fermentation, its modulation and potential health implications. Alimentary Pharmacology and Therapeutics, 43(2), 181-196.
Yen, H. H., Weng, M. T., Tung, C. C., Wang, Y. T., Chang, Y. T., Chang, C. H., Shieh, M. J., Wong, J. M., & Wei, S. C. (2019). Epidemiological trend in inflammatory bowel disease in Taiwan from 2001 to 2015: a nationwide populationbased study. Intestinal Research, 17(1), 54-62.
Yeshi, K., Ruscher, R., Hunter, L., Daly, N. L., Loukas, A., & Wangchuk, P. (2020). Revisiting Inflammatory Bowel Disease: Pathology, Treatments, Challenges and Emerging Therapeutics Including Drug Leads from Natural Products. Journal of Clinical Medicine, 9(5).
Yong, H. Y., Koh, M. S., & Moon, A. (2009). The p38 MAPK inhibitors for the treatment of inflammatory diseases and cancer. Expert Opinion on Investigational Drugs, 18(12), 1893-1905.
Yu, Y., Yang, W., Li, Y., & Cong, Y. (2020). Enteroendocrine Cells: Sensing Gut Microbiota and Regulating Inflammatory Bowel Diseases. Inflammatory Bowel Disease, 26(1), 11-20.
Zeissig, S., Bürgel, N., Günzel, D., Richter, J., Mankertz, J., Wahnschaffe, U., Kroesen, A. J., Zeitz, M., Fromm, M., & Schulzke, J. D. (2007). Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn's disease. Gut, 56(1), 61-72.
Zhang, F., Li, Y., Wang, X., Wang, S., & Bi, D. (2019). The Impact of Lactobacillus plantarum on the Gut Microbiota of Mice with DSS-Induced Colitis. Biomed Research International, 2019, 3921315.
Zhang, S., Wang, R., Zhao, Y., Tareq, F. S., & Sang, S. (2019). Biotransformation of Myricetin: A Novel Metabolic Pathway to Produce Aminated Products in Mice. Molecular Nutrition & Food Research, 63(14), e1900203.
Zhang, S., Zhao, Y., Ohland, C., Jobin, C., & Sang, S. (2019). Microbiota facilitates the formation of the aminated metabolite of green tea polyphenol (-)-epigallocatechin-3-gallate which trap deleterious reactive endogenous metabolites. Free Radical Biology and Medicine, 131, 332-344.
Zhang, S. L., Wang, S. N., & Miao, C. Y. (2017). Influence of Microbiota on Intestinal Immune System in Ulcerative Colitis and Its Intervention. Frontiers in Immunology, 8, 1674.
Zhang, Y., Liu, Y., Zou, J., Yan, L., Du, W., Zhang, Y., Sun, H., Lu, P., Geng, S., Gu, R., Zhang, H., & Bi, Z. (2017). Tetrahydrocurcumin induces mesenchymal-epithelial transition and suppresses angiogenesis by targeting HIF-1α and autophagy in human osteosarcoma. Oncotarget, 8(53), 91134-91149.
Zhang, Y. Z., & Li, Y. Y. (2014). Inflammatory bowel disease: pathogenesis. World Journal of Gastroenterology, 20(1), 91-99.
Zhao, M., & Burisch, J. (2019). Impact of Genes and the Environment on the Pathogenesis and Disease Course of Inflammatory Bowel Disease. Digestive Disease and Sciences, 64(7), 1759-1769.
Zhao, Y., Yang, J., Liao, W., Liu, X., Zhang, H., Wang, S., Wang, D., Feng, J., Yu, L., & Zhu, W. G. (2010). Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity. Nature Cell Biology, 12(7), 665-675.
Zheng, B., Morgan, M. E., van de Kant, H. J. G., Garssen, J., Folkerts, G., & Kraneveld, A. D. (2017). Transcriptional modulation of pattern recognition receptors in chronic colitis in mice is accompanied with Th1 and Th17 response. Biochemistry and Biophysics Reports, 12, 29-39.
Zhou, F., Mai, T., Wang, Z., Zeng, Z., Shi, J., Zhang, F., Kong, N., Jiang, H., Guo, L., Xu, M., & Lin, J. (2023). The improvement of intestinal dysbiosis and hepatic metabolic dysfunction in dextran sulfate sodium-induced colitis mice: effects of curcumin. Journal of Gastroenterology and Hepatology, 38(8), 1333-1345.
Zhou, M., Li, R., Hua, H., Dai, Y., Yin, Z., Li, L., Zeng, J., Yang, M., Zhao, J., & Tan, R. (2024). The role of tetrahydrocurcumin in disease prevention and treatment. Food and Function.
Zhou, M., Wang, Z., Chen, J., Zhan, Y., Wang, T., Xia, L., Wang, S., Hua, Z., & Zhang, J. (2014). Supplementation of the diet with Salecan attenuates the symptoms of colitis induced by dextran sulphate sodium in mice. British Journal of Nutrition, 111(10), 1822-1829.
Zhu, L., Han, J., Li, L., Wang, Y., Li, Y., & Zhang, S. (2019). Claudin Family Participates in the Pathogenesis of Inflammatory Bowel Diseases and Colitis-Associated Colorectal Cancer. Frontiers in Immunology, 10, 1441.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94872-
dc.description.abstract發炎性腸道疾病 (inflammatory bowel disease, IBD) 為一種慢性、復發性的腸胃道失衡情形,由於工業化發展與飲食及生活模式西化等環境因子,使其在全球的盛行率大幅提升。而腸道屏障功能受損發生早於疾病症狀的出現,腸道通透性的增加造成大量食物抗原、微生物及其毒性產物滲漏,可能進一步引起黏膜免疫系統失衡,最終導致慢性發炎及併發症的發生。雖目前已有多種藥物可改善疾病臨床表徵,但長期使用可能出現許多副作用,因此尋求具保護腸道屏障功能及改善菌群失調的植化素已成為當今預防 IBD 的重要目標。薑黃素 (curcumin, CUR) 為天然存在於薑黃中的多酚色素,已被證實具抗氧化、抗發炎及抗癌等多種藥理活性。然而較低的生體可利用率可能限制其化學預防功效,故其代謝物或結構類似物亦開始廣泛被研究,然而 CUR 及其衍生物的生理活性比較仍有待釐清。因此本實驗旨在探討 CUR 和其代謝物四氫薑黃素 (tetrahydrocurcumin, THC) 與氨化類似物,包含氨化薑黃素 (aminated-curcumin, AC) 及氨化四氫薑黃素 (aminated-tetrahydrocurcumin, ATHC) 之屏障保護及發炎減緩潛力,並進一步了解不同劑量 AC 產生抗發炎活性差異之原因。首先利用 LPS 誘導 RAW 264.7 細胞發炎的模式初步比較樣品抗發炎的能力,再透過 dextran sulfate sodium (DSS) 誘導 ICR 小鼠慢性腸炎模式以評估樣品對腸道屏障功能、發炎反應、腸道菌相組成的影響及相關調節機制。細胞實驗結果顯示,AC 可最顯著降低一氧化氮生成,展現調節免疫潛力。而在動物實驗結果發現,相同劑量條件下,THC 及 CUR 可能透過改善自噬受損來促進黏液分泌,並顯著恢復緊密結合蛋白表現及排列失調,從而維持較佳的屏障完整性,更可抑制 TLR4/p38 MAPK/AP-1 路徑來減緩發炎情形,而 AC 的給予在較低劑量條件下亦展現相似於 THC 及 CUR 的抗發炎效果。由腸道菌相結果分析可知所有樣品皆具有改變菌群組成的能力,可增加 Duncaniella、Muribaculum 及 Kineothrix 相對豐度。此外,相較於較高劑量的 AC 組別,低劑量的 AC 可顯著增加 Akkermansia muciniphila、Eubacterium ventriosum 及 Dorea longicatena 等有益菌,藉此增加短鏈脂肪酸 (short chain fatty acid, SCFA) 生成來發揮屏障保護及腸道發炎減緩之功效。綜合上述,THC、CUR 及低劑量 AC 皆具預防腸炎進程之潛力。zh_TW
dc.description.abstractInflammatory bowel disease (IBD), which is defined as a chronic relapsing gastrointestinal disorder, is on the rise globally due to industrialization and changes in environmental factors such as westernized lifestyle. The impairment of the intestinal barrier function precedes the onset of the symptoms of IBD. Increased intestinal permeability allows the leakage of food antigens, microorganisms, and their toxic products, potentially leading to mucosal immune system imbalance and eventually causing chronic inflammation and several complications. Although many synthetic drugs could improve the clinical signs of the disease, long-term use of these drugs may result in numerous side effects. Therefore, exploring phytochemicals that can protect the intestinal barrier function and avoid dysbiosis has become an important goal in preventing IBD today. Curcumin (CUR), a naturally occurring polyphenol pigment in Turmeric, has been shown to possess several pharmacological activities, including antioxidant, anti-inflammatory, and anti-cancer. However, the shortcomings of curcumin, such as poor bioavailability, may curtail its chemopreventive effects on diseases, and thus, its metabolites or structural analogs have also begun to be widely studied. Nevertheless, comparing the physiological activities of CUR and its derivatives remains unclear. Therefore, this study aims to investigate the barrier protection and anti-inflammatory potential of CUR and its metabolite tetrahydrocurcumin (THC) as well as aminated analogs, including aminated-curcumin (AC) and aminated-tetrahydrocurcumin (ATHC), and to further understand the reasons for the differences in anti-inflammatory activity produced by different doses of AC. First, the anti-inflammatory ability of the samples was preliminarily compared using an LPS-induced inflammation model in RAW 264.7 cells, and then a chronic colitis model induced by dextran sulfate sodium (DSS) in ICR mice was used to evaluate the effects of the samples on intestinal barrier function, inflammatory response, gut microbiota composition, and related regulatory mechanisms. The results of the cell experiments showed that AC could most significantly reduce nitric oxide production, demonstrating immunomodulatory potential. In the animal experiment results, it was found that under the same dosage conditions, THC and CUR might promote mucus secretion by improving autophagy impairment and significantly restoring the expression and arrangement of tight junction proteins, thereby maintaining better barrier integrity. They can also inhibit the TLR4/p38 MAPK/AP-1 pathway to reduce inflammation, and the administration of AC at a lower dosage also showed anti-inflammatory effects similar to those of THC and CUR. Analysis of gut microbiota results showed that all samples could change the composition of the microbiota, increasing the relative abundance of Duncaniella, Muribaculum, and Kineothrix. Additionally, compared to the high-dose AC group, the low-dose AC group could significantly increase beneficial bacteria such as Akkermansia muciniphila, Eubacterium ventriosum, and Dorea longicatena, thereby increasing the production of short-chain fatty acids (SCFAs) to exert barrier protection and alleviate intestinal inflammation. In summary, THC, CUR, and low-dose AC all have the potential to prevent the progression of colitis.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-20T16:19:39Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-20T16:19:39Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 I
謝誌 II
摘要 VI
Abstract VIII
Graphic abstract X
目次 XI
附圖次 XVI
附表次 XVII
圖次 XVIII
表次 XX
縮寫表 XXI
第一章、文獻回顧 1
第一節、發炎性腸道疾病 1
(一)、發炎性腸道疾病之概述 1
(二)、流行病學概論 2
(三)、致病因素及發展過程 5
(四)、腸道發炎之免疫反應及機制 7
(五)、腸道屏障 9
(六)、腸道屏障受損機制 13
(七)、自噬作用對腸道屏障之影響 15
(八)、FOXO1對腸道平衡之影響 18
(九)、腸道菌群及短鏈脂肪酸與發炎性腸道疾病之關聯性 19
(十)、發炎性腸道疾病之治療方法 20
第二節、誘導慢性腸炎之動物模式 23
(一)、腸炎誘導之動物模式分類 23
(二)、DSS的特性及作用機制 24
(三)、DSS誘導之慢性腸炎模式 25
第三節、樣品介紹 26
(一)、薑黃素 (curcumin, CUR) 26
(二)、薑黃素對疾病治療及預防之限制 29
(三)、薑黃素之代謝作用及產物 30
(四)、氨化衍生物 32
第二章、實驗目的與架構 34
第一節、實驗目的 34
第二節、實驗架構 36
(一)、細胞實驗 36
(二)、動物實驗 36
第三章、材料與方法 37
第一節、實驗材料與儀器 37
(一)、樣品與誘導劑 37
(二)、藥品試劑 37
(三)、分析套組 38
(四)、實驗耗材 38
(五)、抗體 39
(六)、儀器設備 40
第二節、細胞實驗 (in vitro) 方法 42
(一)、細胞株 42
(二)、培養液及試藥製備 42
(三)、細胞培養 42
(四)、樣品製備 44
(五)、細胞存活率試驗 (MTT assay) 44
(六)、一氧化氮之測定 (Nitrite assay) 45
第三節、動物實驗 (in vivo) 48
(一)、實驗動物品系與飼養環境 48
(二)、動物實驗組別設計 48
(三)、體重、攝食及飲水測量 50
(四)、疾病活動指數測量 (Disease activity index, DAI) 50
(五)、腸道通透性試驗 52
(六)、動物犧牲及臟器觀察 52
(七)、血液生化數值分析 53
(八)、細胞激素與趨化因子含量分析 53
(九)、組織包埋及切片 55
(十)、蘇木精-伊紅染色 (Hematoxylin and eosin stain, H&E stain) 56
(十一)、免疫螢光染色 (Immunofluorescence, IF) 58
(十二)、PAS 染色法 (Periodic Acid-Schiff stain) 61
(十三)、組織均質及蛋白質萃取 62
(十四)、蛋白質定量 63
(十五)、西方墨點法 64
(十六)、糞便 DNA 萃取與微生物體全長 16S 定序分析 68
(十七)、短鏈脂肪酸分析 71
第四節、統計分析 73
第四章、結果與討論 74
第一節、細胞實驗 74
(一)、不同濃度之 CUR、AC、THC、ATHC 對 RAW 264.7 細胞存活率之影響 74
(二)、CUR、AC、THC、ATHC 抑制 LPS 誘導 RAW 264.7 細胞發炎反應 76
第二節、 動物實驗 78
(一)、CUR 及其類似物對 DSS 誘導之 ICR 小鼠外觀、體重、攝食及飲水量影響 78
(二)、CUR 及其類似物對 DSS 誘導之 ICR 小鼠血清生化數值影響 83
(三)、CUR 及其類似物對 DSS 誘導之 ICR 小臟器重量之影響 85
(四)、CUR 及其類似物改善 DSS 誘導之 ICR 小鼠疾病活動指數及結腸受損情形 87
(五)、CUR 及其類似物逆轉 DSS 誘導之 ICR 小鼠腸道黏膜屏障及自噬作用受損 94
(六)、CUR 及其類似物保護 DSS 誘導之 ICR 小鼠腸道屏障完整 99
(七)、CUR 及其類似物減緩 DSS 誘導之 ICR 小鼠結腸發炎反應 105
(八)、CUR 及其類似物對 DSS 誘導之 ICR 小鼠腸道菌相多樣性之影響 110
(九)、CUR 及其類似物對 DSS 誘導之 ICR 小鼠腸道菌相組成之影響 114
(十)、不同劑量 AC 對 DSS 誘導之 ICR 小鼠腸道菌相組成之影響 117
(十一)、CUR 及其類似物提升 DSS 誘導之 ICR 小鼠結腸糞便短鏈脂肪酸含量 120
第五章、結論 122
參考文獻 126
附錄 147
-
dc.language.isozh_TW-
dc.subject薑黃素zh_TW
dc.subject黏液分泌zh_TW
dc.subject緊密連接zh_TW
dc.subject腸道屏障zh_TW
dc.subject發炎性腸道疾病zh_TW
dc.subject腸道菌群zh_TW
dc.subjectcurcuminen
dc.subjectinflammatory bowel diseaseen
dc.subjectintestinal barrieren
dc.subjecttight junctionen
dc.subjectgut microbiotaen
dc.subjectmucin secretionen
dc.title薑黃素及其類似物改善腸道屏障功能與腸道菌相組成以緩解葡聚醣硫酸鈉誘導慢性腸炎之功效zh_TW
dc.titleEffects of curcumin and its analogs on ameliorating dextran sodium sulfate-induced chronic colitis by improving intestinal barrier function and gut microbiotaen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee王朝鐘;何元順;王應然;黃步敏zh_TW
dc.contributor.oralexamcommitteeChau-Jong Wang;Yuan-Soon Ho;Ying-Jan Wang;Bu-Miin Huangen
dc.subject.keyword發炎性腸道疾病,腸道屏障,緊密連接,腸道菌群,黏液分泌,薑黃素,zh_TW
dc.subject.keywordinflammatory bowel disease,intestinal barrier,tight junction,gut microbiota,mucin secretion,curcumin,en
dc.relation.page147-
dc.identifier.doi10.6342/NTU202402979-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-12-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept食品科技研究所-
dc.date.embargo-lift2029-08-06-
顯示於系所單位:食品科技研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  此日期後於網路公開 2029-08-06
8.21 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved