請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94800
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 翁德怡 | zh_TW |
dc.contributor.advisor | Te-I Weng | en |
dc.contributor.author | 張晏維 | zh_TW |
dc.contributor.author | Yen-Wei Chang | en |
dc.date.accessioned | 2024-08-19T16:34:36Z | - |
dc.date.available | 2024-08-20 | - |
dc.date.copyright | 2024-08-19 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-07-17 | - |
dc.identifier.citation | (1) Ruszkiewicz, D. M.; Sanders, D.; O'Brien, R.; Hempel, F.; Reed, M. J.; Riepe, A. C.; Bailie, K.; Brodrick, E.; Darnley, K.; Ellerkmann, R.; et al. Diagnosis of COVID-19 by analysis of breath with gas chromatography-ion mobility spectrometry - a feasibility study. EClinicalMedicine 2020, 29-30, 100609-100609. DOI: 10.1016/j.eclinm.2020.100609.
(2) Buszewski, B.; Ulanowska, A.; Kowalkowski, T.; Cieśliński, K. Investigation of lung cancer biomarkers by hyphenated separation techniques and chemometrics. Clin Chem Lab Med 2011, 50 (3), 573-581. DOI: 10.1515/cclm.2011.769 From NLM. (3) Ligor, T.; Szeliga, J.; Jackowski, M.; Buszewski, B. Preliminary study of volatile organic compounds from breath and stomach tissue by means of solid phase microextraction and gas chromatography–mass spectrometry. Journal of breath research 2007, 1 (1), 016001-016001. DOI: 10.1088/1752-7155/1/1/016001. (4) Van den Velde, S.; Nevens, F.; Van hee, P.; van Steenberghe, D.; Quirynen, M. GC–MS analysis of breath odor compounds in liver patients. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences 2008, 875 (2), 344-348. DOI: 10.1016/j.jchromb.2008.08.031. (5) Phillips, M.; Basa-Dalay, V.; Bothamley, G.; Cataneo, R. N.; Lam, P. K.; Natividad, M. P. R.; Schmitt, P.; Wai, J. Breath biomarkers of active pulmonary tuberculosis. Tuberculosis (Edinburgh, Scotland) 2010, 90 (2), 145-151. DOI: 10.1016/j.tube.2010.01.003. (6) Cristescu, S. M.; Gietema, H. A.; Blanchet, L.; Kruitwagen, C. L. J. J.; Munnik, P.; van Klaveren, R. J.; Lammers, J. W. J.; Buydens, L.; Harren, F. J. M.; Zanen, P. Screening for emphysema via exhaled volatile organic compounds. Journal of breath research 2011, 5 (4), 046009-046009. DOI: 10.1088/1752-7155/5/4/046009. (7) Song, G.; Qin, T.; Liu, H.; Xu, G.-B.; Pan, Y.-Y.; Xiong, F.-X.; Gu, K.-S.; Sun, G.-P.; Chen, Z.-D. Quantitative breath analysis of volatile organic compounds of lung cancer patients. Lung cancer (Amsterdam, Netherlands) 2010, 67 (2), 227-231. DOI: 10.1016/j.lungcan.2009.03.029. (8) Kischkel, S.; Miekisch, W.; Sawacki, A.; Straker, E. M.; Trefz, P.; Amann, A.; Schubert, J. K. Breath biomarkers for lung cancer detection and assessment of smoking related effects — confounding variables, influence of normalization and statistical algorithms. Clinica chimica acta 2010, 411 (21), 1637-1644. DOI: 10.1016/j.cca.2010.06.005. (9) Fuchs, P.; Loeseken, C.; Schubert, J. K.; Miekisch, W. Breath gas aldehydes as biomarkers of lung cancer. International journal of cancer 2010, 126 (11), 2663-2670. DOI: 10.1002/ijc.24970. (10) Cazzola, M.; Segreti, A.; Capuano, R.; Bergamini, A.; Martinelli, E.; Calzetta, L.; Rogliani, P.; Ciaprini, C.; Ora, J.; Paolesse, R.; et al. Analysis of exhaled breath fingerprints and volatile organic compounds in COPD. COPD research and practice 2015, 1 (1). DOI: 10.1186/s40749-015-0010-1. (11) Shestivska, V.; Nemec, A.; Dřevínek, P.; Sovová, K.; Dryahina, K.; Španěl, P. Quantification of methyl thiocyanate in the headspace of Pseudomonas aeruginosa cultures and in the breath of cystic fibrosis patients by selected ion flow tube mass spectrometry. Rapid communications in mass spectrometry 2011, 25 (17), 2459-2467. DOI: 10.1002/rcm.5146. (12) Enderby, B.; Smith, D.; Carroll, W.; Lenney, W. Hydrogen cyanide as a biomarker for Pseudomonas aeruginosa in the breath of children with cystic fibrosis. Pediatric pulmonology 2009, 44 (2), 142-147. DOI: 10.1002/ppul.20963. (13) Gilchrist, F. J.; Razavi, C.; Webb, A. K.; Jones, A. M.; Špan l, P.; Smith, D.; Lenney, W. An investigation of suitable bag materials for the collection and storage of breath samples containing hydrogen cyanide. Journal of breath research 2012, 6 (3), 036004-036004. DOI: 10.1088/1752-7155/6/3/036004. (14) Zhang, Y.; Guo, L.; Qiu, Z.; Lv, Y.; Chen, G.; Li, E. Early diagnosis of breast cancer from exhaled breath by gas chromatography‐mass spectrometry (GC/MS) analysis: A prospective cohort study. Journal of clinical laboratory analysis 2020, 34 (12), e23526-n/a. DOI: 10.1002/jcla.23526. (15) Raninen, K.; Nenonen, R.; Järvelä-Reijonen, E.; Poutanen, K.; Mykkänen, H.; Raatikainen, O. Comprehensive Two-Dimensional Gas Chromatography–Mass Spectrometry Analysis of Exhaled Breath Compounds after Whole Grain Diets. Molecules (Basel, Switzerland) 2021, 26 (9), 2667. DOI: 10.3390/molecules26092667. (16) Phillips, M.; Cataneo, R. N.; Cummin, A. R. C.; Gagliardi, A. J.; Gleeson, K.; Greenberg, J.; Maxfield, R. A.; Rom, W. N. Detection of Lung Cancer With Volatile Markers in the Breath. Chest 2003, 123 (6), 2115-2123. DOI: 10.1378/chest.123.6.2115. (17) Phillips, M.; Greenberg, J.; Cataneo, R. N. Effect of age on the profile of alkanes in normal human breath. Free radical research 2000, 33 (1), 57-63. DOI: 10.1080/10715760000300611. (18) Phillips, M.; Boehmer, J. P.; Cataneo, R. N.; Cheema, T.; Eisen, H. J.; Fallon, J. T.; Fisher, P. E.; Gass, A.; Greenberg, J.; Kobashigawa, J.; et al. Heart allograft rejection: detection with breath alkanes in low levels (the HARDBALL study). The Journal of heart and lung transplantation 2004, 23 (6), 701-708. DOI: 10.1016/j.healun.2003.07.017. (19) Phillips, M.; Cataneo, R. N.; Cheema, T.; Greenberg, J. Increased breath biomarkers of oxidative stress in diabetes mellitus. Clinica chimica acta 2004, 344 (1), 189-194. DOI: 10.1016/j.cccn.2004.02.025. (20) Phillips, M. Method for the Collection and Assay of Volatile Organic Compounds in Breath. Analytical biochemistry 1997, 247 (2), 272-278. DOI: 10.1006/abio.1997.2069. (21) Phillips, M.; Cataneo, R. N.; Ditkoff, B. A.; Fisher, P.; Greenberg, J.; Gunawardena, R.; Stephan Kwon, C.; Tietje, O.; Wong, C. Prediction of breast cancer using volatile biomarkers in the breath. Breast cancer research and treatment 2006, 99 (1), 19-21. DOI: 10.1007/s10549-006-9176-1. (22) Phillips, M.; Herrera, J.; Krishnan, S.; Zain, M.; Greenberg, J.; Cataneo, R. N. Variation in volatile organic compounds in the breath of normal humans. J Chromatogr B Biomed Sci Appl 1999, 729 (1-2), 75-88. DOI: 10.1016/s0378-4347(99)00127-9 From NLM Medline. (23) Phillips, M.; Cataneo, R. N.; Condos, R.; Ring Erickson, G. A.; Greenberg, J.; La Bombardi, V.; Munawar, M. I.; Tietje, O. Volatile biomarkers of pulmonary tuberculosis in the breath. Tuberculosis (Edinburgh, Scotland) 2007, 87 (1), 44-52. DOI: 10.1016/j.tube.2006.03.004. (24) Phillips, M.; Gleeson, K.; Hughes, J. M. B.; Greenberg, J.; Cataneo, R. N.; Baker, L.; McVay, W. P. Volatile organic compounds in breath as markers of lung cancer: a cross-sectional study. The Lancet (British edition) 1999, 353 (9168), 1930-1933. DOI: 10.1016/S0140-6736(98)07552-7. (25) Statheropoulos, M.; Agapiou, A.; Georgiadou, A. Analysis of expired air of fasting male monks at Mount Athos. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences 2006, 832 (2), 274-279. DOI: 10.1016/j.jchromb.2006.01.017. (26) Martin, A. N.; Farquar, G. R.; Jones, A. D.; Frank, M. Human breath analysis: methods for sample collection and reduction of localized background effects. Analytical and bioanalytical chemistry 2010, 396 (2), 739-750. DOI: 10.1007/s00216-009-3217-7. (27) Zamuruyev, K. O.; Aksenov, A. A.; Pasamontes, A.; Brown, J. F.; Pettit, D. R.; Foutouhi, S.; Weimer, B. C.; Schivo, M.; Kenyon, N. J.; Delplanque, J.-P.; et al. Human breath metabolomics using an optimized non-invasive exhaled breath condensate sampler. Journal of breath research 2016, 11 (1), 016001-016001. DOI: 10.1088/1752-7163/11/1/016001. (28) Hüttmann, E.-M.; Greulich, T.; Hattesohl, A.; Schmid, S.; Noeske, S.; Herr, C.; John, G.; Jörres, R. A.; Müller, B.; Vogelmeier, C.; et al. Comparison of two devices and two breathing patterns for exhaled breath condensate sampling. PloS one 2011, 6 (11), e27467-e27467. DOI: 10.1371/journal.pone.0027467. (29) Choueiry, F.; Zhu, J. Secondary electrospray ionization-high resolution mass spectrometry (SESI-HRMS) fingerprinting enabled treatment monitoring of pulmonary carcinoma cells in real time. Analytica chimica acta 2022, 1189, 339230-339230. DOI: 10.1016/j.aca.2021.339230. (30) Eckert, K.; Carter, D.; Perrault, K. Sampling Dynamics for Volatile Organic Compounds Using Headspace Solid-Phase Microextraction Arrow for Microbiological Samples. Separations 2018, 5 (3), 45. DOI: 10.3390/separations5030045. (31) Statheropoulos, M.; Spiliopoulou, C.; Agapiou, A. A study of volatile organic compounds evolved from the decaying human body. Forensic science international 2005, 153 (2), 147-155. DOI: 10.1016/j.forsciint.2004.08.015. (32) Cernosek, T.; Eckert, K. E.; Carter, D. O.; Perrault, K. A. Volatile Organic Compound Profiling from Postmortem Microbes using Gas Chromatography–Mass Spectrometry. Journal of forensic sciences 2020, 65 (1), 134-143. DOI: 10.1111/1556-4029.14173. (33) Stadler, S.; Focant, J.-F.; Forbes, S. L. Forensic Analysis of Volatile Organic Compounds from Decomposed Remains in a Soil Environment. Soil Forensics, Springer International Publishing, 2016; pp 297-316. (34) Gherghel, S.; Morgan, R. M.; Arrebola-Liébanas, J.; Romero-González, R.; Blackman, C. S.; Garrido-Frenich, A.; Parkin, I. P. Development of a HS-SPME/GC–MS method for the analysis of volatile organic compounds from fabrics for forensic reconstruction applications. Forensic science international 2018, 290, 207-218. DOI: 10.1016/j.forsciint.2018.07.015. (35) Brown, J. S.; Prada, P. A.; Curran, A. M.; Furton, K. G. Applicability of emanating volatile organic compounds from various forensic specimens for individual differentiation. Forensic science international 2013, 226 (1), 173-182. DOI: 10.1016/j.forsciint.2013.01.008. (36) Colón-Crespo, L. J.; Herrera-Hernández, D.; Holness, H.; Furton, K. G. Determination of VOC marker combinations for the classification of individuals by gender and race/ethnicity. Forensic science international 2017, 270, 193-199. DOI: 10.1016/j.forsciint.2016.09.011. (37) 劉蓓蓓,夏志遠,馬錦琦,李朴,呂坪,周海梅. 大鼠肌肉揮發性有機化合物變化規律與死亡時間的關係. 法醫學雜誌 2017, 33 (2), 120-124. DOI: 10.3969/j.issn.1004-5619.2017.02.003. (38) Bioanalytical Method Validation Guidance for Industry; U.S. Dept. of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research, 2018. (39) Yu, J.; Xu, X.-B.; Murtada, K.; Pawliszyn, J. Untargeted analysis of microbial metabolites and unsaturated fatty acids in salmon via hydrophilic-lipophilic balanced solid-phase microextraction arrow. Food chemistry 2022, 380, 132219-132219. DOI: 10.1016/j.foodchem.2022.132219. (40) 劉良,任亮. 死亡時間推斷法醫學研究; 華中科技大學出版社, 2022. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94800 | - |
dc.description.abstract | 揮發性有機分子 (volatile organic compounds, VOC) 是一群具有高蒸氣壓和低水溶性之化合物,充斥於整個環境當中。而人體體內所存在的各種菌相,依據其不同的代謝途徑,會產生各式各樣的 VOC,在過去已陸續針對人體所呼出 VOC 以及人體死後所產生的 VOC 進行研究分析。本研究使用近年來新發展出的箭型頭固相微萃取法 (SPME arrow) 進行實驗及開發分析平台。在建立 VOC 的萃取方法後,實際應用在法醫層面,分析不同環境或不同時間作用下,其微生物相所產生的 VOC 亦不盡相同,亦針對同個環境下比較不同器官所產生 VOC 的差異性,建立其所產生的 VOC 種類,並討論可能影響的變因。此外使用人體組織進行實驗,試圖找出潛在 VOC 用於對死後時間間隔的研判。然而實際法醫檢體有取得上的困難及相關資訊的不足,以及影響死後變化的變因過多,尚未能有效找出合適於判斷死後時間間隔之 VOC。 | zh_TW |
dc.description.abstract | Volatile organic compounds (VOCs) are a group of compounds with high vapor pressure and low water solubility, prevalent in the environment. Various microbial communities within the human body produce diverse VOCs through different metabolic pathways. Previous studies have systematically analyzed VOCs exhaled by humans and those produced post-mortem. This study employs the recently developed solid-phase microextraction arrow (SPME arrow) method to experimentally develop an analysis platform. After establishing methods for VOC extraction, practical applications in forensic science involve analyzing VOCs produced by microbial communities under different environmental conditions and over time. The study also compares VOCs produced by different organs within the same environment, categorizing their types and discussing influencing factors. Additionally, experiments using human tissues aim to identify potential VOCs for estimating post-mortem intervals. Challenges in obtaining forensic samples and insufficient related information, coupled with numerous variables affecting post-mortem changes, have hindered the effective identification of VOCs suitable for determining post-mortem intervals. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-19T16:34:35Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-19T16:34:36Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 中文摘要 iII 英文摘要 iv 目錄 v 圖片目錄 viii 表格目錄 xii 第一章 緒論 1 1.1 固相微萃取法 SPME (Solid-phase microextraction) 原理 5 1.2 固相微萃取法纖維頭 SPME Fiber 5 1.3 箭型頭固相微萃取法 SPME arrow 7 1.4 氣相層析質譜儀 GC-MS (Gas chromatography-Mass spectrometry) 8 第二章 材料與方法 9 2.1 材料 9 2.1.1 不同吸附材質的纖維頭 (SPME Fiber) 9 2.1.2 箭型頭 (SPME Arrow) 9 2.1.3 收集容器 9 2.1.4 標準品 11 2.1.5 研究設備 12 2.1.5.1 頂空進樣氣相層析質譜儀 HS-GC-MS 12 2.1.5.2 氣相層析質譜儀參數設定 12 2.1.6 分析軟體 14 2.2 實驗方法 14 2.2.1 建立固相微萃取法萃取揮發性有機化合物 (VOC) 的實驗流程 14 2.2.1.1 比較不同吸附材質纖維頭 15 2.2.1.2 比較相同吸附材質的纖維頭及箭型頭 15 2.2.1.3 優化萃取時間 15 2.2.1.4 頂空瓶的保存效果 16 2.2.1.5 分析方法的確效 16 2.2.2 實際應用 17 2.2.2.1 食物的氣味 17 2.2.2.2 人體呼出氣體 VOC 17 2.2.2.3 飲食前後的 VOC 18 2.2.2.4 不同地點屍體氣味 18 2.2.3 死後時間間隔分析 19 第三章 結果 20 3.1 建立並優化固相微萃取法 20 3.1.1 標準品 EPA及 Alkanes 的遲滯時間 20 3.1.2 不同吸附材質的纖維頭 22 3.1.3 相同吸附材質的纖維頭與箭型頭 23 3.1.4 優化萃取時間 24 3.1.5 頂空瓶的保存效果 25 3.2 實際應用 36 3.2.1 食物的氣味 36 3.2.2 人體呼出的氣體 39 3.2.3 飲食前後的 VOC 40 3.2.4 不同屍體的氣味 40 3.2.4.1 水浮屍的氣味的比較 40 3.2.4.2 山林間屍體的氣味 49 3.2.4.3 家中屍體的氣味 52 3.2.4.4 相同臟器但不同陳屍處的氣味比較 54 3.3 死後時間間隔分析 59 第四章 討論 66 第五章 結論 71 第六章 限制 71 第七章 參考文獻 72 | - |
dc.language.iso | zh_TW | - |
dc.title | 利用箭型頭固相微萃取技術開發有機性揮發物分析平台與法醫應用可行性評估 | zh_TW |
dc.title | Development of an analytical method for volatile organic compounds using a novel solid-phase microextraction arrow approach and assessment of its feasibility on forensic investigations | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 陳冠元;廖曉偉 | zh_TW |
dc.contributor.oralexamcommittee | Guan-Yuan Chen;Hsiao-Wei Liao | en |
dc.subject.keyword | 揮發性有機化合物 (VOC),箭型頭固相微萃取法 (SPME arrow),氣相層析質譜儀,法醫檢體及死後時間間隔, | zh_TW |
dc.subject.keyword | Volatile organic compounds (VOCs),Solid phase microextraction arrow (SPME arrow),Gas Chromatography Mass Spectrometry (GC-MS),Forensic,Post-Mortem Interval (PMI), | en |
dc.relation.page | 76 | - |
dc.identifier.doi | 10.6342/NTU202401817 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-07-18 | - |
dc.contributor.author-college | 醫學院 | - |
dc.contributor.author-dept | 法醫學研究所 | - |
顯示於系所單位: | 法醫學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf | 3.8 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。