請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94722完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳燕惠 | zh_TW |
| dc.contributor.advisor | Yen-Hui Chen | en |
| dc.contributor.author | 程崇智 | zh_TW |
| dc.contributor.author | Chung-Chih Cheng | en |
| dc.date.accessioned | 2024-08-16T17:44:33Z | - |
| dc.date.available | 2024-08-17 | - |
| dc.date.copyright | 2024-08-16 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-06 | - |
| dc.identifier.citation | 1. Christenson, S. A., Smith, B. M., Bafadhel, M., & Putcha, N. (2022). Chronic obstructive pulmonary disease. Lancet, 399(10342), 2227-2242. https://doi.org/10.1016/S0140-6736(22)00470-6
2. Prevalence and attributable health burden of chronic respiratory diseases, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. (2020). Lancet Respir Med, 8(6), 585-596. https://doi.org/10.1016/s2213-2600(20)30105-3 3. Cho, M. H., Boutaoui, N., Klanderman, B. J., Sylvia, J. S., Ziniti, J. P., Hersh, C. P., DeMeo, D. L., Hunninghake, G. M., Litonjua, A. A., Sparrow, D., Lange, C., Won, S., Murphy, J. R., Beaty, T. H., Regan, E. A., Make, B. J., Hokanson, J. E., Crapo, J. D., Kong, X., Silverman, E. K. (2010). Variants in FAM13A are associated with chronic obstructive pulmonary disease. Nat Genet, 42(3), 200-202. https://doi.org/10.1038/ng.535 4. Hogg, J. C., Paré, P. D., & Hackett, T. L. (2017). The Contribution of Small Airway Obstruction to the Pathogenesis of Chronic Obstructive Pulmonary Disease. Physiol Rev, 97(2), 529-552. https://doi.org/10.1152/physrev.00025.2015 5. Plasschaert, L. W., Žilionis, R., Choo-Wing, R., Savova, V., Knehr, J., Roma, G., Klein, A. M., & Jaffe, A. B. (2018). A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte. Nature, 560(7718), 377-381. https://doi.org/10.1038/s41586-018-0394-6 6. Branchfield, K., Nantie, L., Verheyden, J. M., Sui, P., Wienhold, M. D., & Sun, X. (2016). Pulmonary neuroendocrine cells function as airway sensors to control lung immune response. Science, 351(6274), 707-710. https://doi.org/10.1126/science.aad7969 7. Zuo, W. L., Yang, J., Gomi, K., Chao, I., Crystal, R. G., & Shaykhiev, R. (2017). EGF-Amphiregulin Interplay in Airway Stem/Progenitor Cells Links the Pathogenesis of Smoking-Induced Lesions in the Human Airway Epithelium. Stem Cells, 35(3), 824-837. https://doi.org/10.1002/stem.2512 8. Seemungal, T. A., Donaldson, G. C., Paul, E. A., Bestall, J. C., Jeffries, D. J., & Wedzicha, J. A. (1998). Effect of exacerbation on quality of life in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 157(5 Pt 1), 1418-1422. https://doi.org/10.1164/ajrccm.157.5.9709032 9. Bafadhel, M., McKenna, S., Terry, S., Mistry, V., Reid, C., Haldar, P., McCormick, M., Haldar, K., Kebadze, T., Duvoix, A., Lindblad, K., Patel, H., Rugman, P., Dodson, P., Jenkins, M., Saunders, M., Newbold, P., Green, R. H., Venge, P., . . . Brightling, C. E. (2011). Acute exacerbations of chronic obstructive pulmonary disease: identification of biologic clusters and their biomarkers. Am J Respir Crit Care Med, 184(6), 662-671. https://doi.org/10.1164/rccm.201104-0597OC 10. Criner, G. J., Sue, R., Wright, S., Dransfield, M., Rivas-Perez, H., Wiese, T., Sciurba, F. C., Shah, P. L., Wahidi, M. M., de Oliveira, H. G., Morrissey, B., Cardoso, P. F. G., Hays, S., Majid, A., Pastis, N., Jr., Kopas, L., Vollenweider, M., McFadden, P. M., Machuzak, M., . . . Slebos, D. J. (2018). A Multicenter Randomized Controlled Trial of Zephyr Endobronchial Valve Treatment in Heterogeneous Emphysema (LIBERATE). Am J Respir Crit Care Med, 198(9), 1151-1164. https://doi.org/10.1164/rccm.201803-0590OC 11. Lipson, D. A., Barnhart, F., Brealey, N., Brooks, J., Criner, G. J., Day, N. C., Dransfield, M. T., Halpin, D. M. G., Han, M. K., Jones, C. E., Kilbride, S., Lange, P., Lomas, D. A., Martinez, F. J., Singh, D., Tabberer, M., Wise, R. A., & Pascoe, S. J. (2018). Once-Daily Single-Inhaler Triple versus Dual Therapy in Patients with COPD. N Engl J Med, 378(18), 1671-1680. https://doi.org/10.1056/NEJMoa1713901 12. Durazzo, T. C., Meyerhoff, D. J., & Nixon, S. J. (2010). Chronic cigarette smoking: implications for neurocognition and brain neurobiology. Int J Environ Res Public Health, 7(10), 3760-3791. https://doi.org/10.3390/ijerph7103760 13. Fried, P. A., Watkinson, B., & Gray, R. (2006). Neurocognitive consequences of cigarette smoking in young adults--a comparison with pre-drug performance. Neurotoxicol Teratol, 28(4), 517-525. https://doi.org/10.1016/j.ntt.2006.06.003 14. Weiser, M., Zarka, S., Werbeloff, N., Kravitz, E., & Lubin, G. (2010). Cognitive test scores in male adolescent cigarette smokers compared to non-smokers: a population-based study. Addiction, 105(2), 358-363. https://doi.org/10.1111/j.1360-0443.2009.02740. 15. Durazzo, T. C., Mattsson, N., & Weiner, M. W. (2014). Smoking and increased Alzheimer's disease risk: a review of potential mechanisms. Alzheimers Dement, 10(3 Suppl), S122-145. https://doi.org/10.1016/j.jalz.2014.04.009 16. 2013 Alzheimer's disease facts and figures. (2013). Alzheimers Dement, 9(2), 208-245. https://doi.org/10.1016/j.jalz.2013.02.003 17. Scheltens, P., De Strooper, B., Kivipelto, M., Holstege, H., Chételat, G., Teunissen, C. E., Cummings, J., & van der Flier, W. M. (2021). Alzheimer's disease. Lancet, 397(10284), 1577-1590. https://doi.org/10.1016/s0140-6736(20)32205-4 18. Barnes, P. J., Burney, P. G., Silverman, E. K., Celli, B. R., Vestbo, J., Wedzicha, J. A., & Wouters, E. F. (2015). Chronic obstructive pulmonary disease. Nat Rev Dis Primers, 1, 15076. https://doi.org/10.1038/nrdp.2015.76 19. Hashizume, T., Ishikawa, S., Matsumura, K., Ito, S., & Fukushima, T. (2023). Chemical and in vitro toxicological comparison of emissions from a heated tobacco product and the 1R6F reference cigarette. Toxicol Rep, 10, 281-292. https://doi.org/10.1016/j.toxrep.2023.02.005 20. Barnes, P. J. (2008). Immunology of asthma and chronic obstructive pulmonary disease. Nat Rev Immunol, 8(3), 183-192. https://doi.org/10.1038/nri2254 21. Davis, B., To, V., & Talbot, P. (2019). Comparison of cytotoxicity of IQOS aerosols to smoke from Marlboro Red and 3R4F reference cigarettes. Toxicol In Vitro, 61, 104652. https://doi.org/10.1016/j.tiv.2019.104652 22. Yang, J., Zuo, W. L., Fukui, T., Chao, I., Gomi, K., Lee, B., Staudt, M. R., Kaner, R. J., Strulovici-Barel, Y., Salit, J., Crystal, R. G., & Shaykhiev, R. (2017). Smoking-Dependent Distal-to-Proximal Repatterning of the Adult Human Small Airway Epithelium. Am J Respir Crit Care Med, 196(3), 340-352. https://doi.org/10.1164/rccm.201608-1672OC 23. Hogg, J. C., Paré, P. D., & Hackett, T. L. (2017). The Contribution of Small Airway Obstruction to the Pathogenesis of Chronic Obstructive Pulmonary Disease. Physiol Rev, 97(2), 529-552. https://doi.org/10.1152/physrev.00025.2015 24. Rahman, I. (2005). Oxidative stress in pathogenesis of chronic obstructive pulmonary disease: cellular and molecular mechanisms. Cell Biochem Biophys, 43(1), 167-188. https://doi.org/10.1385/cbb:43:1:167 25. Wang, H., Yu, M., Ochani, M., Amella, C. A., Tanovic, M., Susarla, S., Li, J. H., Wang, H., Yang, H., Ulloa, L., Al-Abed, Y., Czura, C. J., & Tracey, K. J. (2003). Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature, 421(6921), 384-388. https://doi.org/10.1038/nature01339 26. Zheng, C. M., Lee, Y. H., Chiu, I. J., Chiu, Y. J., Sung, L. C., Hsu, Y. H., & Chiu, H. W. (2020). Nicotine Causes Nephrotoxicity through the Induction of NLRP6 Inflammasome and Alpha7 Nicotinic Acetylcholine Receptor. Toxics, 8(4). https://doi.org/10.3390/toxics8040092 27. Hajiasgharzadeh, K., Somi, M. H., Mansoori, B., Doustvandi, M. A., Vahidian, F., Alizadeh, M., Mokhtarzadeh, A., Shanehbandi, D., & Baradaran, B. (2020). Alpha7 Nicotinic Acetylcholine Receptor Mediates Nicotine-induced Apoptosis and Cell Cycle Arrest of Hepatocellular Carcinoma HepG2 Cells. Adv Pharm Bull, 10(1), 65-71. https://doi.org/10.15171/apb.2020.008 28. Rom, O., Pecorelli, A., Valacchi, G., & Reznick, A. Z. (2015). Are E-cigarettes a safe and good alternative to cigarette smoking? Ann N Y Acad Sci, 1340, 65-74. https://doi.org/10.1111/nyas.12609 29. Başaran, R., Güven, N. M., & Eke, B. C. (2019). An Overview of iQOS(®) as a New Heat-Not-Burn Tobacco Product and Its Potential Effects on Human Health and the Environment. Turk J Pharm Sci, 16(3), 371-374. https://doi.org/10.4274/tjps.galenos.2018.79095 30. Auer, R., Concha-Lozano, N., Jacot-Sadowski, I., Cornuz, J., & Berthet, A. (2017). Heat-Not-Burn Tobacco Cigarettes: Smoke by Any Other Name. JAMA Intern Med, 177(7), 1050-1052. https://doi.org/10.1001/jamainternmed.2017.1419 31. Bekki, K., Inaba, Y., Uchiyama, S., & Kunugita, N. (2017). Comparison of Chemicals in Mainstream Smoke in Heat-not-burn Tobacco and Combustion Cigarettes. J uoeh, 39(3), 201-207. https://doi.org/10.7888/juoeh.39.201 32. St Helen, G., Jacob Iii, P., Nardone, N., & Benowitz, N. L. (2018). IQOS: examination of Philip Morris International's claim of reduced exposure. Tob Control, 27(Suppl 1), s30-s36. https://doi.org/10.1136/tobaccocontrol-2018-054321 33. Schaller, J. P., Keller, D., Poget, L., Pratte, P., Kaelin, E., McHugh, D., Cudazzo, G., Smart, D., Tricker, A. R., Gautier, L., Yerly, M., Reis Pires, R., Le Bouhellec, S., Ghosh, D., Hofer, I., Garcia, E., Vanscheeuwijck, P., & Maeder, S. (2016). Evaluation of the Tobacco Heating System 2.2. Part 2: Chemical composition, genotoxicity, cytotoxicity, and physical properties of the aerosol. Regul Toxicol Pharmacol, 81 Suppl 2, S27-s47. https://doi.org/10.1016/j.yrtph.2016.10.001 34. Uguna, C. N., & Snape, C. E. (2022). Should IQOS Emissions Be Considered as Smoke and Harmful to Health? A Review of the Chemical Evidence. ACS Omega, 7(26), 22111-22124. https://doi.org/10.1021/acsomega.2c01527 35. Salman, R., Talih, S., El-Hage, R., Haddad, C., Karaoghlanian, N., El-Hellani, A., Saliba, N. A., & Shihadeh, A. (2019). Free-Base and Total Nicotine, Reactive Oxygen Species, and Carbonyl Emissions From IQOS, a Heated Tobacco Product. Nicotine Tob Res, 21(9), 1285-1288. https://doi.org/10.1093/ntr/nty235 36. Uguna, C. N., & Snape, C. E. (2022). Should IQOS Emissions Be Considered as Smoke and Harmful to Health? A Review of the Chemical Evidence. ACS Omega, 7(26), 22111-22124. https://doi.org/10.1021/acsomega.2c01527 37. Davis, B., Williams, M., & Talbot, P. (2019). iQOS: evidence of pyrolysis and release of a toxicant from plastic. Tob Control, 28(1), 34-41. https://doi.org/10.1136/tobaccocontrol-2017-054104 38. US Food & Drug Administration. Scientific Review of Modified Risk Tobacco Product Application. https://www.fda.gov/media/ 139796/download 39. Zar, T., Graeber, C., & Perazella, M. A. (2007). Recognition, treatment, and prevention of propylene glycol toxicity. Semin Dial, 20(3), 217-219. https://doi.org/10.1111/j.1525-139X.2007.00280.x 40. Laino, T., Tuma, C., Moor, P., Martin, E., Stolz, S., & Curioni, A. (2012). Mechanisms of propylene glycol and triacetin pyrolysis. J Phys Chem A, 116(18), 4602-4609. https://doi.org/10.1021/jp300997d 41. Tran, L. N., Chiu, E. Y., Hunsaker, H. C., Wu, K. C., Poulin, B. A., Madl, A. K., Pinkerton, K. E., & Nguyen, T. B. (2023). Carbonyls and Aerosol Mass Generation from Vaping Nicotine Salt Solutions Using Fourth- and Third-Generation E-Cigarette Devices: Effects of Coil Resistance, Coil Age, and Coil Metal Material. Chem Res Toxicol, 36(10), 1599-1610. https://doi.org/10.1021/acs.chemrestox.3c00172 42. Błach, J., Siedliński, M., & Sydor, W. (2023). Immunology in COPD and the use of combustible cigarettes and heated tobacco products. Eur J Med Res, 28(1), 397. https://doi.org/10.1186/s40001-023-01374-2 43. Leigh, N. J., Tran, P. L., O'Connor, R. J., & Goniewicz, M. L. (2018). Cytotoxic effects of heated tobacco products (HTP) on human bronchial epithelial cells. Tob Control, 27(Suppl 1), s26-s29. https://doi.org/10.1136/tobaccocontrol-2018-054317 44. Bhat, T. A., Kalathil, S. G., Leigh, N., Muthumalage, T., Rahman, I., Goniewicz, M. L., & Thanavala, Y. M. (2021). Acute Effects of Heated Tobacco Product (IQOS) Aerosol Inhalation on Lung Tissue Damage and Inflammatory Changes in the Lungs. Nicotine Tob Res, 23(7), 1160-1167. https://doi.org/10.1093/ntr/ntaa267 45. Sohal, S. S., Eapen, M. S., Naidu, V. G. M., & Sharma, P. (2019). IQOS exposure impairs human airway cell homeostasis: direct comparison with traditional cigarette and e-cigarette. ERJ Open Res, 5(1). https://doi.org/10.1183/23120541.00159-2018 46. Nishimura, M., Asai, K., Tabuchi, T., Toyokura, E., Kawai, T., Miyamoto, A., Watanabe, T., & Kawaguchi, T. (2023). Association of combustible cigarettes and heated tobacco products use with SARS-CoV-2 infection and severe COVID-19 in Japan: a JASTIS 2022 cross-sectional study. Sci Rep, 13(1), 1120. https://doi.org/10.1038/s41598-023-28006-3 47. Sawa, M., Ushiyama, A., Inaba, Y., & Hattori, K. (2022). Increased oxidative stress and effects on inflammatory cytokine secretion by heated tobacco products aerosol exposure to mice. Biochem Biophys Res Commun, 610, 43-48. https://doi.org/10.1016/j.bbrc.2022.04.042 48. Chen, R., Kang, R., & Tang, D. (2022). The mechanism of HMGB1 secretion and release. Exp Mol Med, 54(2), 91-102. https://doi.org/10.1038/s12276-022-00736-w 49. Kwak, M. S., Kim, H. S., Lee, B., Kim, Y. H., Son, M., & Shin, J. S. (2020). Immunological Significance of HMGB1 Post-Translational Modification and Redox Biology. Front Immunol, 11, 1189. https://doi.org/10.3389/fimmu.2020.01189 50. Tang, D., Shi, Y., Kang, R., Li, T., Xiao, W., Wang, H., & Xiao, X. (2007). Hydrogen peroxide stimulates macrophages and monocytes to actively release HMGB1. J Leukoc Biol, 81(3), 741-747. https://doi.org/10.1189/jlb.0806540 51. Chen, G., Li, J., Ochani, M., Rendon-Mitchell, B., Qiang, X., Susarla, S., Ulloa, L., Yang, H., Fan, S., Goyert, S. M., Wang, P., Tracey, K. J., Sama, A. E., & Wang, H. (2004). Bacterial endotoxin stimulates macrophages to release HMGB1 partly through CD14- and TNF-dependent mechanisms. J Leukoc Biol, 76(5), 994-1001. https://doi.org/10.1189/jlb.0404242 52. New, J., & Thomas, S. M. (2019). Autophagy-dependent secretion: mechanism, factors secreted, and disease implications. Autophagy, 15(10), 1682-1693. https://doi.org/10.1080/15548627.2019.1596479 53. Ding, J., Cui, X., & Liu, Q. (2017). Emerging role of HMGB1 in lung diseases: friend or foe. J Cell Mol Med, 21(6), 1046-1057. https://doi.org/10.1111/jcmm.13048 54. Qin, M. Z., Gu, Q. H., Tao, J., Song, X. Y., Gan, G. S., Luo, Z. B., & Li, B. X. (2015). Ketamine effect on HMGB1 and TLR4 expression in rats with acute lung injury. Int J Clin Exp Pathol, 8(10), 12943-12948. 55. Ko, H. K., Hsu, W. H., Hsieh, C. C., Lien, T. C., Lee, T. S., & Kou, Y. R. (2014). High expression of high-mobility group box 1 in the blood and lungs is associated with the development of chronic obstructive pulmonary disease in smokers. Respirology, 19(2), 253-261. https://doi.org/10.1111/resp.12209 56. Di Stefano, A., Caramori, G., Barczyk, A., Vicari, C., Brun, P., Zanini, A., Cappello, F., Garofano, E., Padovani, A., Contoli, M., Casolari, P., Durham, A. L., Chung, K. F., Barnes, P. J., Papi, A., Adcock, I., & Balbi, B. (2014). Innate immunity but not NLRP3 inflammasome activation correlates with severity of stable COPD. Thorax, 69(6), 516-524. https://doi.org/10.1136/thoraxjnl-2012-203062 57. Fang, P., Schachner, M., & Shen, Y. Q. (2012). HMGB1 in development and diseases of the central nervous system. Mol Neurobiol, 45(3), 499-506. https://doi.org/10.1007/s12035-012-8264-y 58. Kawabata, H., Setoguchi, T., Yone, K., Souda, M., Yoshida, H., Kawahara, K., Maruyama, I., & Komiya, S. (2010). High mobility group box 1 is upregulated after spinal cord injury and is associated with neuronal cell apoptosis. Spine (Phila Pa 1976), 35(11), 1109-1115. https://doi.org/10.1097/BRS.0b013e3181bd14b6 59. Mazarati, A., Maroso, M., Iori, V., Vezzani, A., & Carli, M. (2011). High-mobility group box-1 impairs memory in mice through both toll-like receptor 4 and Receptor for Advanced Glycation End Products. Exp Neurol, 232(2), 143-148. https://doi.org/10.1016/j.expneurol.2011.08.012 60. Pouwels, S. D., Heijink, I. H., ten Hacken, N. H., Vandenabeele, P., Krysko, D. V., Nawijn, M. C., & van Oosterhout, A. J. (2014). DAMPs activating innate and adaptive immune responses in COPD. Mucosal Immunol, 7(2), 215-226. https://doi.org/10.1038/mi.2013.77 61. Mizushima, N., & Komatsu, M. (2011). Autophagy: renovation of cells and tissues. Cell, 147(4), 728-741. https://doi.org/10.1016/j.cell.2011.10.026 62. Kim, Y. H., Kwak, M. S., Lee, B., Shin, J. M., Aum, S., Park, I. H., Lee, M. G., & Shin, J. S. (2021). Secretory autophagy machinery and vesicular trafficking are involved in HMGB1 secretion. Autophagy, 17(9), 2345-2362. https://doi.org/10.1080/15548627.2020.1826690 63. Tang, D., Kang, R., Livesey, K. M., Cheh, C. W., Farkas, A., Loughran, P., Hoppe, G., Bianchi, M. E., Tracey, K. J., Zeh, H. J., 3rd, & Lotze, M. T. (2010). Endogenous HMGB1 regulates autophagy. J Cell Biol, 190(5), 881-892. https://doi.org/10.1083/jcb.200911078 64. Racanelli, A. C., Kikkers, S. A., Choi, A. M. K., & Cloonan, S. M. (2018). Autophagy and inflammation in chronic respiratory disease. Autophagy, 14(2), 221-232. https://doi.org/10.1080/15548627.2017.1389823 65. Ito, S., Araya, J., Kurita, Y., Kobayashi, K., Takasaka, N., Yoshida, M., Hara, H., Minagawa, S., Wakui, H., Fujii, S., Kojima, J., Shimizu, K., Numata, T., Kawaishi, M., Odaka, M., Morikawa, T., Harada, T., Nishimura, S. L., Kaneko, Y., . . . Kuwano, K. (2015). PARK2-mediated mitophagy is involved in regulation of HBEC senescence in COPD pathogenesis. Autophagy, 11(3), 547-559. https://doi.org/10.1080/15548627.2015.1017190 66. Fujii, S., Hara, H., Araya, J., Takasaka, N., Kojima, J., Ito, S., Minagawa, S., Yumino, Y., Ishikawa, T., Numata, T., Kawaishi, M., Hirano, J., Odaka, M., Morikawa, T., Nishimura, S., Nakayama, K., & Kuwano, K. (2012). Insufficient autophagy promotes bronchial epithelial cell senescence in chronic obstructive pulmonary disease. Oncoimmunology, 1(5), 630-641. https://doi.org/10.4161/onci.20297 67. Matsuda, N., Sato, S., Shiba, K., Okatsu, K., Saisho, K., Gautier, C. A., Sou, Y. S., Saiki, S., Kawajiri, S., Sato, F., Kimura, M., Komatsu, M., Hattori, N., & Tanaka, K. (2010). PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol, 189(2), 211-221. https://doi.org/10.1083/jcb.200910140 68. Murao, A., Aziz, M., Wang, H., Brenner, M., & Wang, P. (2021). Release mechanisms of major DAMPs. Apoptosis, 26(3-4), 152-162. https://doi.org/10.1007/s10495-021-01663-3 69. Cheng, Y., Wang, D., Wang, B., Li, H., Xiong, J., Xu, S., Chen, Q., Tao, K., Yang, X., Zhu, Y., & He, S. (2017). HMGB1 translocation and release mediate cigarette smoke-induced pulmonary inflammation in mice through a TLR4/MyD88-dependent signaling pathway. Mol Biol Cell, 28(1), 201-209. https://doi.org/10.1091/mbc.E16-02-0126 70. Ferhani, N., Letuve, S., Kozhich, A., Thibaudeau, O., Grandsaigne, M., Maret, M., Dombret, M. C., Sims, G. P., Kolbeck, R., Coyle, A. J., Aubier, M., & Pretolani, M. (2010). Expression of high-mobility group box 1 and of receptor for advanced glycation end products in chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 181(9), 917-927. https://doi.org/10.1164/rccm.200903-0340OC 71. Nilsson, P., Loganathan, K., Sekiguchi, M., Matsuba, Y., Hui, K., Tsubuki, S., Tanaka, M., Iwata, N., Saito, T., & Saido, T. C. (2013). Aβ secretion and plaque formation depend on autophagy. Cell Rep, 5(1), 61-69. https://doi.org/10.1016/j.celrep.2013.08.042 72. Zhao, M., Zhang, Y., Jiang, Y., Wang, K., Wang, X., Zhou, D., Wang, Y., Yu, R., & Zhou, X. (2021). YAP promotes autophagy and progression of gliomas via upregulating HMGB1. J Exp Clin Cancer Res, 40(1), 99. https://doi.org/10.1186/s13046-021-01897-8 73. Zhang, S., Hu, L., Jiang, J., Li, H., Wu, Q., Ooi, K., Wang, J., Feng, Y., Zhu, D., & Xia, C. (2020). HMGB1/RAGE axis mediates stress-induced RVLM neuroinflammation in mice via impairing mitophagy flux in microglia. J Neuroinflammation, 17(1), 15. https://doi.org/10.1186/s12974-019-1673-3 74. Le Foll, B., Piper, M. E., Fowler, C. D., Tonstad, S., Bierut, L., Lu, L., Jha, P., & Hall, W. D. (2022). Tobacco and nicotine use. Nat Rev Dis Primers, 8(1), 19. https://doi.org/10.1038/s41572-022-00346-w | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94722 | - |
| dc.description.abstract | 研究背景
吸菸被視為造成許多疾病的來源之一,如慢性阻塞性肺病(chronic obstructive pulmonary disease, COPD),以及神經退化性疾病。加熱菸被希望成為傳統香煙的替代品,然而在菸品成分方面,加熱菸與香菸的組成結構相似,所以仍可能造成損傷。至目前為止尚未有明確實驗說明加熱菸與香菸的危害不同之處及發炎反應的相關機制。高遷移率族蛋白1(high-mobility group box 1)為一廣泛存之蛋白,在細胞受損傷時可作為損傷相關分子模式(damage-associated molecular pattern molecules, DAMPs)誘導發炎相關反應,可能作為菸品對人體造成的損傷途徑之一。 研究目的 本研究探討加熱菸氣霧對於肺上皮細胞和神經母細胞之細胞毒性,以及是否能引響細胞之HMGB1與自噬作用的表現。並比較單支香菸與加熱菸的尼古丁含量以及對細胞造成的傷害。另外比較具調味之加熱菸對細胞產生細胞毒性相較於無調味之加熱菸之程度是否較大。 研究方法 本研究利用MTT assay檢測加熱菸氣霧提取物(heated tobacco product extract, HTE)、香菸煙霧提取物(cigarette smoke extract, CSE)對肺上皮細胞A549和神經母細胞N2a之細胞毒性,再利用西方墨點法與ELISA偵測HMGB1與自噬作用標記蛋白之表現,以及利用HPLC檢測各提取物中尼古丁之含量。 研究結果 研究結果顯示HTE與CSE對A549上皮細胞及N2a神經細胞皆具有細胞毒性。在實驗濃度與時間上升時皆能影響此二細胞釋出HMGB1蛋白;在N2a神經細胞中HMGB1蛋白釋出受HTE與CSE的濃度影響;細胞內自噬作用標記蛋白LC3B-II的量也受HTE與CSE的影響。而HPLC分析結果顯示HTE與CSE中尼古丁之含量存在差異,單支香菸中尼古丁的含量較加熱菸與調味加熱菸高。另外分別測定尼古丁、HTE、CSE及調味加熱菸對A549上皮細胞及N2a神經細胞之細胞毒性,顯示在相當於單支菸尼古丁含量的HTE或CSE,造成細胞毒性皆大於等量純尼古丁的作用。 結論 本研究結果顯示HTE也會對細胞造成毒性,雖然比CSE所造成之細胞毒性低。同時HTE與CSE皆可促使A549上皮細胞釋放HMGB1,可能參與發炎反應之發生。HTE與CSE也可促使N2a神經細胞釋放HMGB1增加,導致自噬作用活化,說明加熱菸與香菸皆可導致細胞受損。,由於相對於純尼古丁,HTE及CSE對細胞造成的毒性較大,因此尼古丁可能非造成細胞毒性之主要成分。而調味加熱菸,相較於原味加熱菸,會產生較大之細胞毒性,亦暗示加熱菸氣霧中的其他添加成份可能會造成之潛在危害,未來需要更進一步探討。 | zh_TW |
| dc.description.abstract | Background
Smoking is considered as one of the causes of many diseases, such as chronic obstructive pulmonary disease (COPD) and neurodegenerative diseases. Heated tobacco products are thought to be a harmless alternative to traditional cigarettes. Although heated at lower temperature, heated tobacco products may be still harmful with regard to the similar composition to traditional cigarettes. However, the biohazards and the mechanisms of inflammatory effect caused by the heated tobacco products remain unclear. High-mobility group box 1 (HMGB1) is a widely present protein that can act as a damage-associated molecular pattern molecule (DAMP) to induce inflammatory responses when cells are damaged, potentially serving as one of the pathways through which tobacco products cause harm to the human body. Objective This study investigates the cytotoxicity of heated tobacco aerosols to lung epithelial cells and neuroblastoma cells, as well as the effect on the expression of HMGB1 and autophagy. The effects are compared between heated tobacco product extract (HTE) and cigarette smoke extract (CSE). The cytotoxicity of CSE, HTE with different flavors and the equivalent nicotine is compared in neuroblastoma cells to elucidate the potential toxic components in the extracts in addition to nicotine. Methods The cytotoxicity of HTE and CSE on lung epithelial cells and neuroblastoma cells was measured by MTT assay. The expression and release of HMGB1 and autophagy marker proteins were measured by western blot and ELISA assay. The nicotine contents of the extracts were measured by HPLC. Results Both HTE and CSE caused cytotoxicity on A549 epithelial cells and N2a neuroblastoma cells. As the experimental concentration and time increased, both types of cells released HMGB1 protein. In N2a neuroblastoma cells, HMGB1 protein release was caused by the increased concentration of HTE and CSE. The autophagy marker protein LC3B-II is also affected by the exposure to HTE and CSE. HPLC analysis results reveal differences in nicotine content between HTE and CSE, with a single cigarette containing higher nicotine levels than heated tobacco product and flavored heated tobacco product. Additionally, the cytotoxicity of nicotine, HTE, CSE, and flavored heated tobacco product on A549 epithelial cells and N2a neuroblastoma cells was measured, revealing that HTE or CSE at nicotine levels equivalent to a single cigarette induced greater cytotoxicity than an equivalent amount of pure nicotine. Conclusion The results of this study show that HTE also causes cytotoxicity, although it is lower than the cytotoxicity caused by CSE. Both HTE and CSE can promote the release of HMGB1 from A549 epithelial cells, which may be involved in the inflammatory response. HTE and CSE can also increase the release of HMGB1 from N2a neuroblastoma cells, which may be related to the activation of autophagy, leading to cell damage. Furthermore, nicotine is not the primary cause of cytotoxicity, as HTE and CSE have a greater toxic impact on cells compared to pure nicotine. Additionally, flavored heated tobacco product shows greater cytotoxicity compared to original heated tobacco product. Future research is needed to further investigate the potential hazards caused by other toxic substances in heated tobacco aerosols. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T17:44:33Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-16T17:44:33Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 中文摘要 I
英文摘要 III 目次 V 圖次 VIII 表次 IX 縮寫對照表 X 第一章 緒論 1 1-1 香菸造成之相關疾病 1 1-1-1 慢性阻塞性肺病 (Chronic obstructive pulmonary disease, COPD) 1 1-1-2 神經相關疾病 1 1-1-3 香菸之危害成分 2 1-1-4 香菸導致之上皮細胞與神經細胞異常 2 1-2 加熱菸(heated tobacco products, HTPs) 3 1-2-1 加熱菸之發展 3 1-2-2 加熱菸之成分 4 1-2-3 加熱菸造成之肺部與神經傷害 5 1-2-4 加熱菸產生之潛在危害 5 1-3 高遷移率族蛋白1(High mobility group box 1, HMGB1) 5 1-3-1 HMGB1的結構與功能 5 1-3-2 HMGB1與相關疾病 6 1-4 自噬作用(Autophagy) 7 1-4-1 自噬作用與HMGB1之關聯 7 1-4-2 自噬作用與相關疾病之關聯 8 第二章 材料與研究方法 10 2-1 實驗儀器 10 2-2 實驗材料 11 2-2-1 細胞株 11 2-2-2 實驗藥品與材料試劑 11 2-3 實驗方法 12 2-3-1 細胞培養基與緩衝溶液配製 12 2-3-2 水性氣溶膠提取物(Aqueous aerosol extracts, Aae)收集 14 2-3-3 細胞培養 (Cell culture) 15 2-3-4 細胞存活分析 (MTT assay) 15 2-3-5 西方墨點法 (Western blot) 15 2-3-6 酵素連結免疫分析法 (Enzyme Linked Immunosorbent Assay Kit, ELISA) 18 2-3-7 高效液相層析儀 (High Performance Liquid Chromatography, HPLC) 19 2-3-8 統計檢定 20 第三章 實驗結果 21 3-1 A549上皮細胞暴露於HTE、CSE後之結果 21 3-2 N2a神經細胞暴露於HTE、CSE後之結果 22 3-3 分析HTE與CSE中尼古丁之含量與細胞毒性影響 23 第四章 討論 39 4-1 香菸煙霧與加熱菸氣霧造成上皮細胞產生HMGB1釋放與疾病發展 39 4-2 加熱菸氣霧、香菸煙霧與神經細胞自噬作用 40 4-3 尼古丁與加熱菸之成分對細胞毒性的影響 41 第五章 結論與未來展望 44 參考文獻 45 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 香菸 | zh_TW |
| dc.subject | 加熱菸 | zh_TW |
| dc.subject | 尼古丁 | zh_TW |
| dc.subject | 高遷移率族蛋白1 | zh_TW |
| dc.subject | 肺上皮細胞 | zh_TW |
| dc.subject | 神經細胞 | zh_TW |
| dc.subject | high mobility group box 1 | en |
| dc.subject | cigarettes | en |
| dc.subject | nicotine | en |
| dc.subject | nerve cell | en |
| dc.subject | lung epithelial cell | en |
| dc.subject | heated tobacco products | en |
| dc.title | 香菸與加熱菸誘發發炎反應與細胞毒性之研究 | zh_TW |
| dc.title | In vitro evaluation of inflammation and cytotoxicity induced by regular cigarettes and heated tobacco products | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 許麗卿;林琬琬;蔡幸真 | zh_TW |
| dc.contributor.oralexamcommittee | Li-Ching Hsu;Wan-Wan Lin;Hsing-Chen Tsai | en |
| dc.subject.keyword | 香菸,加熱菸,尼古丁,高遷移率族蛋白1,肺上皮細胞,神經細胞, | zh_TW |
| dc.subject.keyword | cigarettes,heated tobacco products,high mobility group box 1,lung epithelial cell,nerve cell,nicotine, | en |
| dc.relation.page | 52 | - |
| dc.identifier.doi | 10.6342/NTU202403711 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-07 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 藥學研究所 | - |
| 顯示於系所單位: | 藥學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 4.12 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
