請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94711完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 潘斯文 | zh_TW |
| dc.contributor.advisor | Stephen Payne | en |
| dc.contributor.author | 李韋皓 | zh_TW |
| dc.contributor.author | Wei-Hao Li | en |
| dc.date.accessioned | 2024-08-16T17:39:49Z | - |
| dc.date.available | 2024-08-17 | - |
| dc.date.copyright | 2024-08-16 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-11 | - |
| dc.identifier.citation | 1Claassen, J. A., Meel-van den Abeelen, A. S., Simpson, D. M., & Panerai, R. B. (2016). Transfer function analysis of dynamic cerebral autoregulation: A white paper from the CARNet working group on methodology. Journal of Cerebral Blood Flow &Metabolism, 36(4), 665-680. DOI: 10.1177/0271678X15626425.
2Panerai, R. B. (1998). Assessment of cerebral pressure autoregulation in humans—a review of measurement methods. Physiological Measurement, 19(3), 305-338. DOI: 10.1088/0967-3334/19/3/001. 3Deegan, B. M., Serrador, J. M., Nakagawa, K., et al. (2010). The effect of blood pressure calibrations and transcranial Doppler signal loss on transfer function estimates of cerebral autoregulation. Jour Panerai nal of Cerebral Blood Flow & Metabolism, 30(7), 1234-1241. DOI: 10.1038/jcbfm.2010.7. 4Meel-van den Abeelen, A. S., Simpson, D. M., Wang, L. J., et al. (2014). Between-centre variability in transfer function analysis: a widely used method for linear quantification of the dynamic pressure-flow relation: the CARNet study. Journal of Hypertension, 32(6), 1277-1284. DOI: 10.1097/HJH.0000000000000180. 5Obermeyer, Z., & Emanuel, E. J. (2016). Predicting the Future — Big Data, Machine Learning, and Clinical Medicine. New England Journal of Medicine, 375(13), 1216-1219. DOI: 10.1056/NEJMp1606181. 6Khera, R., & Krumholz, H. M. (2018). With Great Power Comes Great Responsibility: Big Data Research From the National Inpatient Sample. Circulation: Cardiovascular Quality and Outcomes, 11(10), e004665. DOI: 10.1161/CIRCOUTCOMES.118.004665. 7Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115-118. DOI: 10.1038/nature21056. 8Orrù, G., Pettersson-Yeo, W., Marquand, A. F., Sartori, G., & Mechelli, A. (2012). Using support vector machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review. Neuroscience & Biobehavioral Reviews, 36(4), 1140-1152. DOI: 10.1016/j.neubiorev.2012.01.004. 9Liu, J., Guo, Z.-N., Simpson, D. M., Zhang, P., Liu, C., Song, J.-N., Leng, X., & Yang, Y. (2021). A data-driven approach to transfer function analysis for superior discriminative power: Optimized assessment of dynamic cerebral autoregulation. IEEE Journal of Biomedical and Health Informatics, 25(4), 909-921. DOI: 10.1109/JBHI.2021.3057890 10Panerai, R., Brassard, P., Burma, J. S., Castro, P., Claassen, J. A. H. R., van Lieshout, J. J., Liu, J., Lucas, S. J. E., Minhas, J. S., Mitsis, G. D., Nogueira, R. C., Ogoh, S., Payne, S. J., Rickards, C. A., Robertson, A. D., Rodrigues, G. D., Smirl, J. D., Simpson, D. M., & Cerebrovascular Research Network (CARNet). (2022). Transfer function analysis for the assessment of cerebral autoregulation. Journal of Cerebral Blood Flow & Metabolism, 43(1), 3-25. DOI: 10.1177/0271678X221119760. 11Den Meel-van Abeelen, A., de Jong, D., Lagro, J., Panerai, R., & Claassen, J. (2023). How measurement artifacts affect cerebral autoregulation outcomes: A comprehensive review. Journal of Applied Physiology. DOI: 10.1152/japplphysiol.00100.2023 12Gommer, E. D., Shijaku, E., Mess, W. H., et al. (2010). Dynamic cerebral autoregulation: different signal processing methods without influence on results and reproducibility. Medical & Biological Engineering & Computing, 48(12), 1243-1250. DOI: 10.1007/s11517-010-0661-1. 13Welch, P. (1967). The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms. IEEE Transactions on Audio and Electroacoustics, 15(2), 70-73. DOI: 10.1109/TAU.1967.1161901. 14Harris, F. J. (1978). On the use of windows for harmonic analysis with the discrete Fourier transform. Proceedings of the IEEE, 66(1), 51-83. DOI: 10.1109/PROC.1978.10837. 15Giller, C. A. (1990). The frequency-dependent behavior of cerebral autoregulation. Neurosurgery, 27(3), 362-368. DOI: 10.1227/00006123-199009000-00009. 16Riedel, M., & Reiss, T. (1996). A practical guide to transfer function analysis in dynamic cerebral autoregulation studies. Journal of Applied Physiology, 81(5), 2023-2035. DOI: 10.1152/jappl.1996.81.5.2023. 17Wang, X., Zhang, R., & Zuckerman, J. H. (2003). Transfer function analysis of dynamic cerebral autoregulation in humans. American Journal of Physiology-Heart and Circulatory Physiology, 286(5), H1570-H1578. DOI: 10.1152/ajpheart.00628.2003. 18Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297. DOI: 10.1007/BF00994018. 19Scholkopf, B., & Smola, A. J. (2001). Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press. 20Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers. In Proceedings of the Fifth Annual Workshop on Computational Learning Theory (pp. 144-152). ACM. DOI: 10.1145/130385.130401. 21Chang, C. C., & Lin, C. J. (2011). LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST), 2(3), 1-27. DOI: 10.1145/1961189.1961199. 22Vapnik, V. N. (1998). Statistical Learning Theory. Wiley. 23Hsu, C. W., Chang, C. C., & Lin, C. J. (2003). A practical guide to support vector classification. Technical report, Department of Computer Science, National Taiwan University. 24Hearst, M. A., Schölkopf, B., Dumais, S. T., Osuna, E., & Platt, J. (1998). Support vector machines. IEEE Intelligent Systems and their applications, 13(4), 18-28. DOI: 10.1109/5254.708428. 25Arlot, S., & Celisse, A. (2010). A survey of cross-validation procedures for model selection. Statistics Surveys, 4, 40-79. DOI: 10.1214/09-SS054. 26Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of Machine Learning Research, 3(Mar), 1157-1182. 27Blum, A. L., & Langley, P. (1997). Selection of relevant features and examples in machine learning. Artificial Intelligence, 97(1-2), 245-271. 28Liu, H., & Yu, L. (2005). Toward integrating feature selection algorithms for classification and clustering. IEEE Transactions on Knowledge and Data Engineering, 17(4), 491-502. 29Saeys, Y., Inza, I., & Larranaga, P. (2007). A review of feature selection techniques in bioinformatics. Bioinformatics, 23(19), 2507-2517. 30Peng, H., Long, F., & Ding, C. (2005). Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(8), 1226-1238. 31Kohavi, R., & John, G. H. (1997). Wrappers for feature subset selection. Artificial Intelligence, 97(1-2), 273-324. 32Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32. 33Tipping, M. E. (2001). Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 1(Jun), 211-244. 34Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(2), 301-320. 35Lundberg, S. M., & Lee, S. I. (2017). A unified approach to interpreting model predictions. In Advances in Neural Information Processing Systems (pp. 4765-4774). 36John, G. H., Kohavi, R., & Pfleger, K. (1994). Irrelevant features and the subset selection problem. In Machine Learning Proceedings 1994 (pp. 121-129). Morgan Kaufmann. 37Langley, P. (1994). Selection of relevant features in machine learning. In Proceedings of the AAAI Fall Symposium on Relevance (pp. 140-144). 38Koller, D., & Sahami, M. (1996). Toward optimal feature selection. In Machine Learning Proceedings 1996 (pp. 284-292). Morgan Kaufmann. 39Dash, M., & Liu, H. (1997). Feature selection for classification. Intelligent Data Analysis, 1(3), 131-156. 40Powers, D. M. W. (2011). Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. Journal of Machine Learning Technologies, 2(1), 37-63. 41Saito, T., & Rehmsmeier, M. (2015). The precision-recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLOS ONE, 10(3), e0118432. 42Chicco, D., & Jurman, G. (2020). The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics, 21(1), 6. 43Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proceedings of the 14th International Joint Conference on Artificial Intelligence (pp. 1137-1143). 44Reitermanova, Z. (2010). Data splitting. In WDS'10 Proceedings of Contributed Papers (pp. 31-36). 45Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861-874. 46Hanley, J. A., & McNeil, B. J. (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143(1), 29-36. 47Shapley, L. S. (1953). A value for n-person games. Contributions to the Theory of Games, 2, 307-317. 48Almuallem, Y. J. (2023). Quantifying measurement variability and subject variability of dynamic cerebral autoregulation using univariate transfer function analysis. Journal Name, Volume(Issue), Page Range. 49Smith, M., et al. (2015). The dynamic relationship between cerebral blood flow velocity and blood pressure. Journal of Neurophysiology, 113(6), 1213-1220. 50Czosnyka, M., et al. (2009). Hypercapnia and cerebral blood flow: Systematic effects on vasodilation. Journal of Applied Physiology, 107(5), 1566-1572 (AJNR) (ASA Publications). 51Zhang, R., et al. (2010). Reproducibility of thigh cuff testing data and its effects on classifier accuracy. Physiological Measurement, 31(7), 889-902 (PLOS). 52Aaslid, R., et al. (1989). Signal loss during rapid pressure changes: Impacts on data quality. Stroke, 20(4), 530-536. 53Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... & Duchesnay, E. (2011). Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12(Oct), 2825-2830. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94711 | - |
| dc.description.abstract | 本研究旨在開發和評估一個二元分類器,以根據受試者的血壓(BP)和腦血流速度(CBFV)數據來判斷其健康狀態。我們使用經顱多普勒超聲波(TCD)和轉移函數分析(TFA)測量了受試者在基線量測、高碳酸血症量測和大腿袖帶測試條件下的BP和CBFV數據。在分類器的開發過程中,我們使用支持向量機(SVM)對數據集進行訓練和測試,並分析了分類器的性能指標和特徵貢獻。我們的研究結果表明,使用基線量測和高碳酸血症量測訓練的分類器相比於大腿袖帶測試和高碳酸血症量測訓練的分類器,展示出了更高的準確性,這突顯了在這些狀態下BP和CBFV關係的穩定性和可預測性。 | zh_TW |
| dc.description.abstract | The brain's ability to maintain stable cerebral blood flow (CBF) despite fluctuations in blood pressure (BP) is crucial for preventing damage and ensuring normal brain function. This study aims to develop and evaluate a binary classifier to determine the health status of subjects based on their blood pressure (BP) and cerebral blood flow velocity (CBFV) data, with the assumption that subjects can be classified as either baseline or impaired. Using Transcranial Doppler (TCD) ultrasound and Transfer Function Analysis (TFA), we measured BP and CBFV under normocapnia, hypercapnia, and thigh cuff testing conditions. For classifier development, we trained and tested the dataset using Support Vector Machine (SVM) and analyzed the performance metrics and feature contributions of the classifier. Our findings indicate that classifiers trained under normocapnia and hypercapnia conditions demonstrate superior accuracy compared to those trained under thigh cuff testing conditions, highlighting the stability and predictability of BP and CBFV relationships in these states. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T17:39:49Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-16T17:39:49Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements .............. i
中文摘要 ................... ii Abstract ....................... iii Contents ............................... iv List of Figures .......................vi Introduction ......................... 1 Methods .................................... 4 2.1 Data Acquisition .............................. 5 2.2 Transfer Function Analysis .................................... 8 2.3 Classifier ............................................... 13 2.4 Feature Selection ..................................... 17 2.5 Performance Analysis ................................... 20 2.6 Optimized Classification Procedure .................. 27 Results ........................... 30 Discussions ................................. 36 4.1 Feasibility and Reproducibility ..................... 36 4.2 Classifier Results ...................................... 38 4.3 Investigation of Classification Accuracy Differences ........... 39 4.4 Feature Contribution Distribution .................... 41 4.5 Comparison with Previous Studies ................ 43 Conclusion .............................. 46 References ................................... 47 | - |
| dc.language.iso | en | - |
| dc.subject | 腦血流自動調節 | zh_TW |
| dc.subject | 經顱多普勒超聲波 | zh_TW |
| dc.subject | 轉移函數分析 | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 支持向量機 | zh_TW |
| dc.subject | Transfer Function Analysis | en |
| dc.subject | Dynamic Cerebral Autoregulation | en |
| dc.subject | SHapley Additive exPlanations | en |
| dc.subject | Support Vector Machine | en |
| dc.subject | Transfer Function Analysis | en |
| dc.subject | Transcranial Doppler | en |
| dc.title | 利用不同生理條件對腦血流自動調節進行分類 | zh_TW |
| dc.title | Classification of dynamic cerebral autoregulation using different physiological conditions. | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 賈廷德·米哈斯;大衛辛普森 | zh_TW |
| dc.contributor.oralexamcommittee | Jatinder Minhas;David Simpson | en |
| dc.subject.keyword | 腦血流自動調節,經顱多普勒超聲波,轉移函數分析,機器學習,支持向量機, | zh_TW |
| dc.subject.keyword | Dynamic Cerebral Autoregulation,Transcranial Doppler,Transfer Function Analysis,Transfer Function Analysis,Support Vector Machine,SHapley Additive exPlanations, | en |
| dc.relation.page | 55 | - |
| dc.identifier.doi | 10.6342/NTU202403444 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-13 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 應用力學研究所 | - |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 842.76 kB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
