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中文摘要 

本研究旨在開發和評估一個二元分類器，以根據受試者的血壓（BP）和腦血流速

度（CBFV）數據來判斷其健康狀態。我們使用經顱多普勒超聲波（TCD）和轉

移函數分析（TFA）測量了受試者在基線量測、高碳酸血症量測和大腿袖帶測試

條件下的BP和CBFV數據。在分類器的開發過程中，我們使用支持向量機（SVM）

對數據集進行訓練和測試，並分析了分類器的性能指標和特徵貢獻。我們的研究

結果表明，使用基線量測和高碳酸血症量測訓練的分類器相比於大腿袖帶測試和

高碳酸血症量測訓練的分類器，展示出了更高的準確性，這突顯了在這些狀態下

BP和CBFV關係的穩定性和可預測性。 

 

 

關鍵字： 腦血流自動調節; 經顱多普勒超聲波；轉移函數分析；機器學習；支持

向量機 
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Abstract 

The brain's ability to maintain stable cerebral blood flow (CBF) despite fluctuations in 

blood pressure (BP) is crucial for preventing damage and ensuring normal brain 

function. This study aims to develop and evaluate a binary classifier to determine the 

health status of subjects based on their blood pressure (BP) and cerebral blood flow 

velocity (CBFV) data, with the assumption that subjects can be classified as either 

baseline or impaired. Using Transcranial Doppler (TCD) ultrasound and Transfer 

Function Analysis (TFA), we measured BP and CBFV under normocapnia, hypercapnia, 

and thigh cuff testing conditions. For classifier development, we trained and tested the 

dataset using Support Vector Machine (SVM) and analyzed the performance metrics 

and feature contributions of the classifier. Our findings indicate that classifiers trained 

under normocapnia and hypercapnia conditions demonstrate superior accuracy 

compared to those trained under thigh cuff testing conditions, highlighting the stability 

and predictability of BP and CBFV relationships in these states. 

 

Keywords: Dynamic Cerebral Autoregulation, Transcranial Doppler, Transfer 

Function Analysis, Machine Learning, Support Vector Machine, SHapley Additive 

exPlanations.  
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Chapter 1 

Introduction 

 

Dynamic Cerebral Autoregulation (dCA) refers to the brain's ability to maintain 

relatively stable cerebral blood flow (CBF) despite fluctuations in blood pressure (BP). 

This mechanism is crucial for maintaining normal brain function and preventing 

damage. dCA involves multiple physiological processes, including chemoregulation, 

autoregulation, and neurovascular coupling, which together ensure that the brain meets 

its metabolic needs1. By measuring BP and CBF under different physiological 

conditions, researchers can assess the effectiveness and stability of dCA. 

 

 Common techniques for measuring dCA include the Valsalva maneuver, squat-to-

stand, sit-to-stand, and thigh cuff deflation, all of which induce BP changes to observe 

their effects on CBF2. Transcranial Doppler (TCD) ultrasound, a non-invasive method, 

measures blood flow velocity in major intracranial arteries, providing high temporal 

resolution CBFV data crucial for dCA research3. For accurate BP measurement, 

arterial pressure monitoring and volume clamping methods are used. Volume 

clamping involves adjusting cuff pressure based on the pulse waveform's systolic and 
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diastolic phases, yielding high-resolution BP data. When combined with TCD, this 

data helps elucidate the BP-CBFV relationship4. 

 

Regarding how to process the measured data, we employ the commonly used Transfer 

Function Analysis (TFA) method, which quantifies the dynamic relationship between 

BP and CBF by calculating parameters such as gain, phase, and coherence1.  To 

further enhance the analysis, recent medical research increasingly integrates machine 

learning classifiers, which can analyze and predict health status. These classifiers are 

widely applied in fields like cardiovascular disease risk prediction6, tumuor diagnosis7, 

and neurological disorder early warning8. In dCA research, machine learning 

classifiers show significant potential by utilizing BP and cerebral blood flow velocity 

(CBFV) data to distinguish between baseline and impaired states5.  

 

To obtain the data required for developing our classifiers, we utilized pre-existing data 

collected by other researchers. These data were obtained following the 

recommendations from the CARNet white paper, which involved five measurements 

on 20 healthy subjects using TCD under normocapnia, hypercapnia, and thigh cuff 

testing conditions1. Next, we processed the data to eliminate noise and artifacts, and 
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then interpolated and filtered the data to ensure continuity and accuracy. The 

processed signals were analyzed using Transfer Function Analysis (TFA) to obtain 

parameters such as gain, phase, and coherence1,2. Finally, to improve the consistency 

and comparability of research results1, we standardized the data for classifier training. 
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Chapter 2 

Methods 

 

In this study, our objective is to develop and evaluate a binary classifier to determine 

the health status of subjects based on their BP and CBFV data, with a focus on using 

classifiers between the normocapnia/ hypercapnia and thigh cuff testing/ hypercapnia 

conditions. 

 

To achieve this, we used existing datasets and adopted standardized data processing 

and analysis methods to ensure the accuracy and reliability of the data. Following the 

recommendations of the CARNet white paper10, we used TCD ultrasound technology 

for data collection and applied TFA to quantify the dynamic relationship between BP 

and CBFV. 

 

In the following sections, we will provide a detailed description of the data collection, 

preprocessing, and analysis steps. Subsequently, we trained the classifier using the 

collected data and evaluated its performance metrics. Finally, we analyzed the 

variables to elucidate their relationship with dCA. 
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2.1 Data Acquisition 
 

To collect data for training and evaluating the classifier, we designed and implemented 

a series of rigorous experimental procedures. We selected TCD technology as the 

primary data collection tool and, based on CARNet white paper recommendations, 

adopted various methods to induce BP changes, including normocapnia, hypercapnia, 

and thigh cuff testing. The detailed steps of the experimental design, subject recruitment, 

data collection, and experimental procedures are described below. 

 

In this experiment, we used existing data, which were obtained as follows: First, by 

measuring the volume control of the digital artery, we used arterial volume clamping 

devices to adjust cuff pressure in response to changes in arterial volume during systole 

and diastole. This method provides high-precision BP data2,3. Simultaneously, we 

recorded CBFV data using TCD technology as a proxy for direct CBF measurement. 

These data were recorded in cm/s4. 

 

It is important to note that the gain, phase, and coherence measured by different devices 

may vary. To ensure data consistency and comparability, we followed the standardized 

equipment and methods recommended in the CARNet white papers9,10. Finally, during 
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TFA, spontaneous BP and CBFV fluctuations should be recorded for at least 5 minutes 

to ensure sufficient data for accurate frequency domain analysis11. These steps ensure 

the accuracy and consistency of experimental data, providing a reliable foundation for 

subsequent data processing and classifier training. 

 

In the data preparation and preprocessing phase, we followed recommendations to 

ensure data quality and reliability. The minimum recommended sampling frequency is 

50Hz, twice the maximum signal frequency (Nyquist theorem). Researchers however 

often use sampling frequencies 4-5 times higher to improve accuracy11. We processed 

raw waveforms and beat-to-beat data, with beat-to-beat data averaging BP and CBFV 

per pulse. While both formats correlate well, beat-to-beat data is preferred for TFA due 

to its lower sensitivity to interference. The method involves using the diastolic period of 

BP as cycle endpoints to calculate average BP and CBFV through waveform 

integration2,3. Before analysis, signals were visually inspected for noise. Short-term 

interference was corrected with linear interpolation; longer-lasting interference led to 

data exclusion4. 

 

Averaging BP and CBFV per pulse using the beat-to-beat method yields several data 
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points. We used cubic polynomial interpolation to create equally spaced data points, 

ensuring a minimum frequency of 4Hz after resampling to prevent high heart rate 

interference9. Detrending does not affect TFA results and helps reduce very low 

frequency (VLF) power, improving accuracy10. Data normalization is recommended to 

reduce individual variability and enhance analysis consistency; filtering methods are 

avoided as they may alter signal characteristics. These steps ensure high-quality, 

reliable data for TFA. 

 

Conclusion. In the data acquisition section, we designed and implemented a series of 

rigorous experimental procedures using Transcranial Doppler (TCD) ultrasound 

technology to collect blood pressure (BP) and cerebral blood flow velocity (CBFV) data. 

By following standardized methods for data processing and preprocessing, we ensured 

the accuracy and reliability of the collected data. These steps provided a solid 

foundation for subsequent analysis and classifier development. 
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2.2 Transfer Function Analysis 
 

Transfer Function Analysis (TFA) is a method to analyze the relationship between 

BP and CBFV1. The preprocessed standardized beat-to-beat BP and CBFV data are 

time-domain signals. First, both are transformed into frequency-domain signals 

using Fast Fourier Transform (FFT) and then subjected to cross-spectral analysis to 

calculate gain, phase, and coherence. Detailed explanations are provided below. 

 

Usually, during spectral analysis, FFT is used to convert time-domain signals into 

frequency-domain signals. However, the coefficient of variation (CoV = standard 

deviation/mean) of a single FFT of the complete time-domain signal (single 

window) is about 1, indicating that using the entire measurement signal for FFT 

will result in unstable and unreliable outcomes. Therefore, the Welch method is 

needed to improve analysis accuracy12. 

 

The Welch method is an improved spectral estimation method designed to reduce 

spectral leakage and improve estimation reliability. Its main principle is to segment 

the signal, apply windowing to each segment, perform Fourier transform, and then 
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average the results of each segment. This method reduces random errors introduced 

by a single FFT. The calculation formula of the Welch method is as follows: 

𝑃𝑥𝑥(𝑓) =
1

𝐿
∑

1

𝑈
|∑ 𝑥𝑖(𝑛)𝜔(𝑛)𝑒

−𝑗
2𝜋𝑓𝑛
𝑁

𝑁−1

𝑛=0

|

2𝐿−1

𝑖=0

 (1) 

Where 𝐿 is the number of segments, 𝑈 is the energy of the window function, 𝑥𝑖(𝑛) 

is the signal of the 𝑖 -th segment, and is the window function13,14. 

 

According to standardized procedure recommendations1, when using the Welch 

method, too short a window length will lead to insufficient frequency resolution; 

typically, a window length of more than 100 seconds is used, and if the total 

recording time exceeds 5 minutes, the window length should not be increased but 

rather the number of windows. Windows are not aligned side by side; some overlap 

increases smoothness. Previous studies indicate that a 50% overlap is most 

commonly used. Spectral leakage occurs in spectral analysis when the signal is 

truncated in a finite observation window, producing unreal spectral components. 

 

To reduce spectral leakage, window functions such as the Hanning window 

(recommended), Hamming window, or Tukey window, or increasing signal length 
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are applied2. The Hanning window function gradually reduces the signal amplitude 

at both ends, and its formula is as follows: 

𝜔(𝑛) = 0.5(1 − 𝑐𝑜𝑠⁡(2𝜋𝑛/(𝑁 − 1))⁡),⁡⁡⁡⁡0 ≤ 𝑛 ≤ 𝑁 − 1 (2) 

where 𝜔(𝑛) is the value of the window function, and 𝑁 is the window length1. By 

using the Welch method with the Hanning window, we can more accurately 

quantify frequency domain parameters (gain and phase) and reduce estimation 

errors due to spectral leakage16. 

 

After obtaining the frequency spectra of BP and CBFV for each window, we 

average the windows to get the frequency spectra instead of using a single FFT. 

After obtaining the frequency-domain signals of BP ((𝑃(𝑓))) and CBFV (𝐹(𝑓)), 

we assume their relationship is linear and calculate their gain, phase, and coherence 

directly: 

𝑆𝑃𝑃(𝑓) = 𝑃(𝑓) ∙ 𝑃∗(𝑓) (3) 

𝑆𝐹𝐹(𝑓) = 𝐹(𝑓) ∙ 𝐹∗(𝑓) (4) 

𝑆𝑃𝐹(𝑓) = 𝑃(𝑓) ∙ 𝐹∗(𝑓) (5) 

𝐺𝑎𝑖𝑛(𝑓) = |
⁡𝑆𝑃𝐹(𝑓)

𝑆𝑃𝑃(𝑓)
| (6) 
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𝑃ℎ𝑎𝑠𝑒(𝑓) = 𝑎𝑟𝑔(⁡𝑆𝑃𝐹(𝑓)) (7) 

𝐶𝑜ℎ(𝑓) =
|⁡𝑆𝑃𝐹(𝑓)|

2

𝑆𝑃𝑃(𝑓) ∙ ⁡𝑆𝐹𝐹(𝑓)
 (8) 

 

The coherence function is a dimensionless indicator that effectively measures the 

reliability of these estimates. Checking if the coherence value exceeds the 95% 

confidence limit (i.e., the 5% critical value) for zero coherence is a simple method 

to assess the validity of gain and phase. If coherence remains low (insignificant) 

across all frequency bands, the record should be excluded from analysis due to poor 

data quality and unreliable results. 

 

Finally, we segment the data by frequency; commonly used frequency bands 

include vlf (0.02-0.07Hz), lf (0.07-0.2Hz), and hf (0.2-0.5Hz). For standardization 

purposes, we set these as the segmentation points to distinguish the effects of 

different frequencies on dCA. 

 

Conclusion. In the transfer function analysis section, we applied the Welch method 

to convert time-domain signals into frequency-domain signals and calculated the 
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gain, phase, and coherence between BP and CBFV. This method reduced spectral 

leakage and improved the reliability of the analysis. By segmenting data by 

frequency bands, we were able to better understand the dynamic relationship 

between BP and CBFV under different physiological conditions. 
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2.3 Classifier 
 

In machine learning, classifiers are essential algorithms for predicting category labels 

based on input features, widely used in image recognition, text classification, and 

medical diagnosis. Classifier design and application involve supervised learning, which 

trains models using labeled data to make accurate predictions on new data. The model 

iteratively adjusts parameters to minimize prediction errors. A well-trained model 

effectively classifies new data to meet application goals. Model selection aims to choose 

the optimal algorithm with the best classification capability, evaluated by excess loss. 

 

In this section, we utilize post-TFA data and labels to establish a binary classifier to 

determine whether subjects are in an impaired dCA state. We use the Python 

programming language and employ its powerful machine learning library, scikit-learn, 

for data analysis and model training53. 

 

Due to the advantages of handling small sample datasets and high-dimensional data, we 

chose Support Vector Machines (SVM) as the classification algorithm18. Our dataset has 

more samples than features, but the numbers are relatively close, making SVM a 
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suitable choice. SVM is particularly effective in situations where the number of 

dimensions approaches the number of samples. Additionally, SVM has a strong 

theoretical foundation and provides robust performance even when the data are not 

linearly separable by using kernel tricks to transform the original feature space into a 

higher-dimensional space. This flexibility allows SVM to model complex relationships 

in the data19. 

 

The basic idea of SVM is to find an optimal hyperplane in high-dimensional space to 

separate data points into different categories. This optimal hyperplane maximizes the 

margin between two categories, thereby improving classification accuracy and 

stability19. The goal of SVM is to find a separating hyperplane such that the distance 

between the hyperplane and the nearest data points (support vectors) is maximized. The 

mathematical formulation is as follows: 

 

Given a set of training data (𝑥𝑖, 𝑦𝑖)，where 𝑥𝑖 ∈ 𝑅𝑛，𝑦𝑖 ∈ {1,−1}，SVM solves the 

following optimization problem: 

𝑚𝑖𝑛𝑤,𝑏
1

2
‖𝑤‖2 

(9) 
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𝑠𝑢𝑏𝑗𝑒𝑐𝑡⁡𝑡𝑜⁡𝑦𝑖 ∙ (𝑤 ∙ 𝑥𝑖 + 𝑏) ≥ 1, ∀𝑖 

where 𝑤 is the weight vector, and 𝑏 is the bias term. This optimization can be solved by 

converting to a dual problem using Lagrange multipliers, ultimately determined by the 

support vectors20,21. 

 

SVM can also handle nonlinear classification problems through the kernel function. The 

basic idea of the kernel function is to map the original data into high-dimensional space 

so that data can be linearly separated in that space. The mathematical representation of 

the kernel function is: 

𝐾(𝑥𝑖, 𝑥𝑗) = ∅(𝑥𝑖) ∙ ∅(𝑥𝑗) (10) 

Where 𝐾 is the kernel function, and ∅ is the mapping function that maps input data 𝑥𝑖 

and 𝑥𝑗 into high-dimensional space23. 

 

Common kernel functions include linear, polynomial, and Gaussian (RBF) kernels22. In 

this study, we chose the linear kernel, which mathematical representation is: 

𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑥𝑖 ∙ 𝑥𝑗 (11) 
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For several reasons, we chose the linear kernel. It is computationally efficient, making it 

suitable for datasets with a large number of features. Additionally, the linear kernel is 

easier to interpret, as the resulting model coefficients can directly indicate the 

importance of each feature. These advantages make the linear kernel a practical choice 

for our classification task. 

 

Conclusion. In the classifier development section, we utilized Support Vector Machines 

(SVM) to build a binary classifier capable of distinguishing between baseline and 

impaired states based on BP and CBFV data. The use of a linear kernel allowed for 

efficient computation and interpretability of the model. The classifier's performance was 

evaluated using various metrics, demonstrating its effectiveness in classifying different 

physiological states. 
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2.4 Feature Selection 
 

Feature selection is crucial in machine learning and data mining, as it identifies the most 

informative features from a large dataset. This process not only improves model 

accuracy but also reduces computational costs and boosts interpretability26. Eliminating 

redundant features helps to minimize overfitting and improve the model's generalization 

capabilities27. A reduced feature set also lowers computational demands, which 

accelerates both training and prediction times28. Moreover, a simplified feature set 

renders the model more comprehensible and interpretable, emphasizing the most 

significant factors29. In the context of high-dimensional datasets, feature selection helps 

to overcome the "curse of dimensionality," thereby increasing processing efficiency30. 

 

Feature selection methods include filter, wrapper, embedded, and exhaustive search 

techniques. Filter methods, such as t-tests and chi-square tests, evaluate the correlation 

between each feature and the target variable, while mutual information techniques 

measure the relevance of features to the target variable18,31,32. These methods are simple 

and fast but often ignore feature interactions. Wrapper methods, like genetic algorithms 

and recursive feature elimination (RFE), iteratively select optimal feature subsets to 
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improve model performance33,34,35. Embedded methods, including decision tree-based 

selection and regularization techniques like Lasso regression, evaluate feature 

importance directly during model training36,37. Exhaustive search, though 

computationally expensive, evaluates all feature subsets to find the globally optimal 

combination, making it suitable for datasets with fewer features38,39. 

Different feature selection techniques have unique advantages and disadvantages, 

making them suitable for various datasets. Statistical tests are simple but may miss 

complex feature interactions, while mutual information methods handle nonlinear 

relationships well but are computationally intensive. Genetic algorithms are ideal for 

high-dimensional datasets but require longer computation times. Model-based methods 

like RFE and decision trees consider feature interactions but need more computational 

resources. Exhaustive search, though computationally expensive, guarantees finding the 

globally optimal feature combination and is suitable for datasets with fewer 

features31,33,38. Based on our data characteristics and research objectives, this study will 

use the exhaustive search method to ensure optimal classification performance. 

Employing multiple feature selection techniques can also enhance robustness39. 

 

Conclusion. In the feature selection section, we employed an exhaustive search method 
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to identify the optimal subset of features that contributed the most to the classifier's 

performance. This approach helped improve the model's accuracy, reduce 

computational costs, and enhance interpretability. By eliminating redundant features, we 

minimized the risk of overfitting and improved the generalization capabilities of the 

classifier. 
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2.5 Performance Analysis 
 

To evaluate our classifier's performance, we use various indicators and methods to 

ensure its stability and accuracy. These metrics help identify the model's strengths and 

weaknesses, guiding improvements. Accurate evaluation is crucial for reliable clinical 

diagnosis and treatment, revealing subtle differences in dCA mechanisms and enabling 

personalized medical recommendations. 

 

First, when discussing classifier performance, the confusion matrix is a direct way to 

display the classification results. In a binary classification task, the confusion matrix 

includes four parts: True Positive (TP), False Positive (FP), True Negative (TN), and 

False Negative (FN)40. From this matrix, we can calculate several important 

performance indicators: Accuracy, which measures the proportion of correctly classified 

samples; Sensitivity (Recall), which measures the model's ability to detect positive cases; 

Specificity, which reflects the ability to identify negative cases; and Precision, which 

measures the proportion of true positives among the classified positive samples. The 

formulas for these four indicators are as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

(12) 
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𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (13) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 (14) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (15) 

Combining the above indicators, we also introduce the F1 Score to provide an overall 

measure, calculated as the harmonic mean of precision and sensitivity: 

𝐹1⁡𝑆𝑐𝑜𝑟𝑒 = 2 ∙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
 (16) 

The F1 Score is particularly important when dealing with data imbalance, as it can 

provide a more balanced evaluation based on precision and sensitivity41,42. 

 

When training a classifier, it is imperative to divide the dataset into training and testing 

sets to evaluate its performance accurately. Performance metrics can be significantly 

affected by the variability in data and the method of partitioning, which often 

complicates the assessment of the classifier's true performance. Cross-validation is a 

widely adopted technique to address this issue, enhancing the robustness and reliability 

of the evaluation process. 
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The most common cross-validation method is K-Fold Cross-Validation, which divides 

the dataset into K subsets. Each time, K-1 subsets are used for model training, and the 

remaining one subset is used for validation, repeated K times and averaged43. The 

mathematical expression is as follows: 

𝐶𝑉(𝐾) =
1

𝐾
∑𝐸(𝑖)

𝐾

𝑖=1

 (17) 

where 𝐸(𝑖) is the error of the 𝑖 -th validation, and 𝐶𝑉 is the average error of cross-

validation. 

 

When the sample size is small, we can use Leave-One-Out Cross-Validation (LOOCV), 

where each time only one sample is left out as the validation set, and the rest as the 

training set, repeated M (sample size) times25. The expression is: 

 

𝐶𝑉(𝐿𝑂𝑂) =
1

𝑀
∑𝐸(𝑖)

𝑀

𝑖=1

 (18) 

 

LOOCV is an extreme form of K-Fold Cross-Validation, and its advantage is that the 

model training uses all the data, making the estimation results unbiased and stable. 
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Other cross-validation methods include Repeated Random Subsampling Cross-

Validation and Stratified K-Fold Cross-Validation, which help improve model 

performance on imbalanced datasets44. 

 

After evaluating the classifier's performance using cross-validation and various metrics, 

it is crucial to understand the classifier's behavior at different threshold levels. To 

achieve this, we can utilize the Receiver Operating Characteristic (ROC) curve and the 

Area Under the Curve (AUC). 

 

ROC is a widely used tool for evaluating classifier performance. By plotting Sensitivity 

against 1-Specificity, the ROC curve shows the classifier's performance at different 

thresholds. The ROC curve's horizontal axis represents the False Positive Rate, and the 

vertical axis represents the True Positive Rate45. Ideally, the classifier's ROC curve 

should approach the top left corner, indicating that the classifier can maximize 

sensitivity while minimizing the false positive rate. 

 

To precisely assess how close the ROC curve is to the top left corner, we calculate the 

AUC. It ranges from 0.5 to 1, with higher values indicating better discriminatory ability 
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and values closer to 0.5 suggesting random guessing46. A key feature of AUC is its 

correlation with the classifier's ranking ability, interpreted as the probability that the 

classifier scores a randomly chosen positive sample higher than a negative one. 

 

ROC and AUC help us understand the classifier's ability to balance sensitivity and 

specificity: high sensitivity means the classifier can detect more positive cases, but it 

may accompany a higher false positive rate; high specificity indicates that the classifier 

can effectively exclude negative cases, reducing false positives. The ROC curve 

provides an intuitive method to balance these two, helping us find the optimal decision 

threshold. 

 

SHapley Additive exPlanations (SHAP) is a technique for explaining the output of 

machine learning models, based on Shapley values from game theory, assigning each 

feature an importance value to quantify its impact on model predictions35. This method 

unifies various existing feature importance measurement methods and has a series of 

theoretically desirable properties. 

 

Specifically, SHAP values assign an importance value to each feature, representing its 
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marginal contribution in all possible feature combinations. The weighted average of 

these contribution values is the SHAP value for that feature, ensuring consistency and 

fairness in model interpretation. The calculation method is as follows: 

𝜙𝑖(𝑓, 𝑥) = ∑
|𝑆|! (|𝐹| − |𝑆| − 1)!

|𝐹|!
[𝑓(𝑥𝑆∪{𝑖}) − 𝑓(𝑥𝑆)]

𝑆⊆𝐹{𝑖}

 (19) 

where 𝑆 represents the feature subset, 𝐹 is the set of all features, 𝑥𝑆 represents the 

values of the feature subset 𝑆, and 𝑓 is the model function. 

 

SHAP has the following main properties: Local accuracy, which ensures that the 

explanation model's prediction equals the original model's prediction; Missingness, 

where the contribution value for missing features should be zero; and Consistency, 

which ensures that if the model's dependency on a feature increases, the contribution 

value for that feature should not decrease. SHAP is very effective in explaining complex 

model predictions, especially for deep learning and ensemble models47. By calculating 

the SHAP value for each feature, we can understand the contribution of each feature to 

the prediction, thereby interpreting the model's behavior. 

 

Conclusion. In the performance analysis section, we evaluated the classifier's 
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performance using cross-validation, confusion matrices, and ROC curves. These metrics 

provided a comprehensive understanding of the classifier's strengths and weaknesses. 

The use of SHapley Additive exPlanations (SHAP) values further enhanced the 

interpretability of the model by quantifying the contribution of each feature to the 

classification results. 
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2.6 Optimized Classification Procedure 
 

To date, the principles and performance of the classifiers have been comprehensively 

introduced. Next, a detailed classification analysis workflow will be established using 

the data obtained from the aforementioned TFA. The following steps outline the core 

methodology of this study. To understand the differences in classification capabilities 

and their causes between the two classifiers generated under three different 

physiological conditions, we aim to minimize randomness and use various evaluation 

methods. 

 

First, data normalization is performed to ensure that each variable has consistent units 

and ranges. Normalization not only enhances the performance and stability of the 

classifier but also significantly impacts the analysis of variable contributions. 

 

The next step involves using exhaustive search to identify the optimal subset of 

variables from the dataset. For each possible subset of variables, an SVC is trained 

using Eq. (9) for the optimization problem and Eq. (11) for the linear kernel. The 

accuracy of this SVC is calculated using LOOCV as per Eq. (18), representing the score 
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of this variable subset. After traversing and recording all possible variable subsets, the 

subset with the highest accuracy is selected as the optimal variable subset. 

 

Once the optimal variable subset is obtained, it is trained again to establish the best 

classifier for this dataset. Subsequently, performance evaluations are conducted for both 

the best classifier and the classifier using all variables. The confusion matrix is first 

calculated, from which Accuracy, Sensitivity, Specificity, Precision, and the F1 Score 

can be derived using Eq. (12) to (16). Additionally, the ROC curve and AUC value for 

the best classifier are calculated. 

 

Furthermore, only the best classifier undergoes SHAP value analysis. To avoid the 

randomness of data partitioning, we use LOOCV as per Eq. (18). During the i-th 

partitioning of the dataset, the accuracy that would normally be calculated is replaced by 

the SHAP value computed using Eq. (19). This process yields M SHAP values, which 

are then averaged to obtain the average SHAP value distribution for the optimal variable 

subset. This step quantifies the contribution ranking of all variables to the classification 

performance, reveals the positive/ negative correlation of variables to the outcomes, and 

finally, a summary plot is generated for visualization. 
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Conclusion. In the optimized classification procedure section, we established a detailed 

workflow for data normalization, feature selection, and classifier training. By using 

leave-one-out cross-validation (LOOCV) and analyzing SHAP values, we ensured the 

robustness and reliability of the classification results. This procedure allowed us to 

identify the most discriminative features and develop a highly accurate and interpretable 

classifier for distinguishing between different physiological conditions. 
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Chapter 3 

Results 

 

The complete workflow of this study is illustrated in Figure 1. We utilized existing data 

acquired from 20 subjects, each tested five times under three different physiological 

conditions, focusing on the left and right hemispheres of the brain. The variables 

included the gain, phase, and coherence across three frequency bands (vlf, lf, hf) for 

both hemispheres, totaling 18 features. After excluding invalid or missing data, we 

obtained 97 normocapnia samples, 88 hypercapnia samples, and 98 thigh cuff test 

samples. The statistical data for these samples are presented in Table 1, the scatter plots 

in Figure 2, and the box plots in Figure 3. Our analysis shows that the classifiers trained 

under normocapnia and hypercapnia conditions performed better than those trained 

under thigh cuff testing conditions. 

 

Subsequently, we used normocapnia as the baseline label and hypercapnia as the 

impaired label. The data underwent the Optimized Classification Procedure to identify 

the optimal subset of variables and the best classifier for performance analysis. The 

same process was repeated with normocapnia replaced by thigh cuff testing data. The 
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performance metrics for both classifiers are listed in Table 2, the ROC curves are shown 

in Figure 4, and the summary plot is presented in Figure 5. These results highlight the 

differences in classifier performance under different physiological conditions, 

emphasizing the importance of selecting appropriate training data. 

 

The main findings indicate that the normocapnia/ hypercapnia classifier outperformed 

the thigh cuff testing/ hypercapnia classifier. Using the optimal subset of variables 

increased the accuracy of the former from 88.6% to 94.1% and the latter from 74.7% to 

81.7%. 

 

Conclusion. The classifiers trained under normocapnia and hypercapnia conditions 

demonstrated superior accuracy compared to those trained under thigh cuff testing 

conditions. This improvement can be attributed to the stable and predictable relationship 

between BP and CBFV under normocapnia and hypercapnia conditions, which 

facilitates more accurate classification. 
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Feature Normocapnia Hypercapnia Thigh cuff testing 

Coh(hf_right) -0.627 ± 0.768 0.498 ± 0.623 0.174 ± 0.926 

Coh(lf_right) -0.056 ± 1.252 -0.096 ± 0.838 0.142 ± 0.865 

Coh(vlf_right) -0.184 ± 0.696 -0.047 ± 1.317 0.225 ± 0.93 

Coh(hf_left) -0.065 ± 0.669 0.234 ± 0.677 0.086 ± 0.677 

Coh(lf_left) -0.177 ± 1.134 -0.052 ± 0.769 0.222 ± 1.105 

Coh(vlf_left) 0.408 ± 0.706 -0.752 ± 0.399 0.271 ± 1.124 

Gain(hf_right) -0.292 ± 0.995 -0.228 ± 0.953 0.084 ± 0.909 

Gain(lf_right) 0.475 ± 0.912 0.099 ± 0.727 0.183 ± 0.903 

Gain(vlf_right) 0.247 ± 0.934 0.07 ± 0.707 0.084 ± 0.87 

Gain(hf_left) -0.58 ± 0.995 0.384 ± 0.663 0.229 ± 0.884 

Gain(lf_left) -0.11 ± 1.106 -0.052 ± 0.908 0.155 ± 0.88 

Gain(vlf_left) -0.241 ± 0.766 -0.057 ± 1.198 0.291 ± 0.908 

Phase(hf_right) -0.234 ± 0.942 0.121 ± 0.534 0.218 ± 1.079 

Phase(lf_right) 0.414 ± 0.804 -0.758 ± 0.449 0.207 ± 0.862 

Phase(vlf_right) -0.253 ± 0.926 0.228 ± 1.14 0.045 ± 0.836 

Phase(hf_left) -0.268 ± 0.937 -0.223 ± 0.948 0.065 ± 0.989 

Phase(lf_left) -0.253 ± 0.926 0.228 ± 1.14 0.045 ± 0.836 

Phase(vlf_left) 0.237 ± 0.836 -0.515 ± 0.751 0.228 ± 1.041 

TABLE 1. Comparison of Mean and Variance of Brain Hemispheres' Gain, Phase, and Coherence Across 

Different Physiological Conditions. The table summarizes the mean and variance values of 18 features 

(gain, phase, coherence across vlf, lf, hf bands) measured in the left and right hemispheres of the brain 

under baseline, CO2, and thigh cuff conditions. The values are presented as mean ± standard deviation. 

 

  

Classifier 

Normocapnia / Hypercapnia Thigh cuff testing / Hypercapnia 

Using all features 
Using optimal 

features 
Using all features 

Using optimal 

features 

Accuracy 88.6% 94.1% 74.7% 81.7% 

Sensitivity 92.8% 94.8% 75.5% 82.7% 

Specificity 84.1% 93.2% 73.9% 80.7% 

Precision 86.5% 93.9% 76.3% 82.7% 

F1 Score 89.6% 94.4% 75.9% 82.7% 

AUC 0.884 0.94 0.747 0.817 

TABLE 2. Performance comparison of classifiers under normocapnia/hypercapnia and thigh cuff 

testing/hypercapnia conditions, using all features and optimal features. Metrics include Accuracy, Sensitivity, 

Specificity, Precision, F1 Score, and AUC. 
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FIGURE 2. This figure displays scatter plots for gain (left column), phase (middle column), 

and coherence (right column) measurements across three frequency bands: very low 

frequency (vlf, top row), low frequency (lf, middle row), and high frequency (hf, bottom row). 

The blue markers represent normocapnia conditions, orange markers represent hypercapnia 

conditions, and green markers represent thigh cuff testing conditions. The x-axis represents 

right hemisphere data, and the y-axis represents left hemisphere data. These scatter plots 

illustrate the distribution and variability of these features under different physiological 

conditions, facilitating a comparative analysis of cerebral autoregulation across the 

conditions. 

 

 

 

 

 

 

 

 

  

 

FIGURE 1. Flowchart of the Classification Analysis Workflow. 
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FIGURE 3. This figure displays box plots for coherence (blue), gain (green), and phase (red) values 

across three frequency bands (vlf, lf, hf) for both left and right hemispheres. The left column represents 

the left hemisphere measurements, while the right column represents the right hemisphere. The top row 

illustrates very low-frequency (vlf) band measurements, the middle row shows low-frequency (lf) band 

measurements, and the bottom row depicts high-frequency (hf) band measurements. For each color, the 

three markers from left to right correspond to normocapnia, hypercapnia, and thigh cuff testing 

conditions. The y-axis represents the value of coherence, gain, and phase. This visualization highlights 

the distribution and variability of these features under different physiological conditions, facilitating a 

comparative analysis of cerebral autoregulation across the conditions. 
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FIGURE 4. The left two plots represent the normocapnia/hypercapnia classifier, while the 

right two plots represent the thigh cuff testing/hypercapnia classifier. The top two plots are 

trained using all features, and the bottom two plots are trained using the optimal variable 

subset. The x-axis represents the false positive rate, and the y-axis represents the true 

positive rate. These plots illustrate the AUC (Area Under the Curve) for each classifier, 

highlighting their performance in distinguishing between the different physiological 

conditions. 

 

FIGURE 5. The SHAP summary plots demonstrate feature importance for the classifiers. The left 

plot shows the SHAP values for the Normocapnia/Hypercapnia classifier, while the right plot 

presents the SHAP values for the Thigh Cuff Testing/Hypercapnia classifier. Each point 

represents a feature's impact on the model output, with the color indicating the feature value (red 

for high, blue for low), highlighting the contribution ranking of influential features under 

different physiological conditions. The x-axis represents the SHAP value (impact on model 

output). 
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Chapter 4 

Discussions 

 

The results of this study highlight the differences in classification accuracy between the 

normocapnia/hypercapnia and thigh cuff testing/hypercapnia classifiers. Several factors 

contribute to these differences, which we will discuss in detail. 

4.1 Feasibility and Reproducibility 
 

In the data collection process, we used existing data from 20 subjects, with each subject 

undergoing five measurements under normocapnia, hypercapnia, and thigh cuff testing 

conditions. The final number of valid samples was: 97 normocapnia samples, 88 

hypercapnia samples, and 98 thigh cuff testing samples. After processing the data with 

Transfer Function Analysis (TFA), we obtained frequency domain data. Using the 

Welch Method, we reduced spectral leakage and improved data stability. Besides the 

ample sample size, coherence analysis results showed that most data coherence values 

were above the 95% confidence limit, ensuring data reliability. 

 

For classifier training and validation, we used Support Vector Machine (SVM) for 

classification and evaluated classifier performance through the Optimized Classification 
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Procedure. Besides classifier selection, the use of exhaustive search method, LOOCV, 

and mean SHAP values eliminated optimization problems and data segmentation 

randomness as much as possible, significantly increasing the reliability of the results. 

 

In previous studies using the same data48, the authors calculated the Intraclass 

Correlation Coefficient (ICC) under normocapnia, hypercapnia, and thigh cuff testing 

conditions. The ICC values ranged from 0.88 to 0.9934, indicating that the 

measurements processed through TFA exhibited high reproducibility. 
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4.2 Classifier Results 
 

In this study, one major focus is on using the exhaustive search method to identify the 

optimal subset of variables. From the performance metrics calculations, several key 

observations can be made: 

 

Performance Comparison. The performance of the normocapnia/hypercapnia 

classifier is consistently higher than that of the thigh cuff testing/hypercapnia classifier, 

regardless of whether all features or the optimal variable subset is used. 

 

Optimal Variable Subset. When using the optimal variable subset, both classifiers 

show significant improvement in accuracy and various performance metrics compared 

to using all features. 

 

Receiver Operating Characteristic. The ROC curve for the normocapnia/hypercapnia 

classifier tends to be more skewed towards the top left corner, especially when using the 

optimal variable subset. This indicates a high level of sensitivity and specificity at 

different thresholds.  
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4.3 Investigation of Classification Accuracy Differences 
 

In this section, we delve into the reasons behind the observed differences in accuracy 

between the normocapnia/hypercapnia classifier and the thigh cuff testing/hypercapnia 

classifier. By analyzing the characteristics of measurements under normocapnia, 

hypercapnia, and thigh cuff testing conditions, we aim to identify the key factors that 

contribute to the varying performance of these classifiers. 

 

Normocapnia represents a relatively stable and normal physiological state, where the 

relationship between blood pressure (BP) and cerebral blood flow velocity (CBFV) is 

typically consistent and predictable. This stability facilitates the classifier's ability to 

accurately capture the relationships between features. Studies have demonstrated that 

under stable physiological conditions, the dynamic relationship between CBFV and BP 

is more consistently reflected49. 

 

Hypercapnia, which induces vasodilation and increased cerebral blood flow, represents 

an impaired state. Despite its deviation from normalcy, hypercapnia's effects are 

systematic and predictable, aiding the classifier in distinguishing between baseline and 
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impaired states accurately50. 

 

Thigh cuff testing involves the rapid release of a pressure cuff, leading to instantaneous 

and significant fluctuations in BP and CBFV. These rapid changes introduce more 

power into the signals, increasing data complexity and variability, which can result in 

nonstationarity and reduce the classifier's accuracy. Although the Intraclass Correlation 

Coefficient (ICC) values show high reproducibility for thigh cuff testing data, the rapid 

and significant fluctuations might not consistently reflect the dynamic changes needed 

for accurate classification51. Signal loss or waveform distortion is more common during 

these rapid pressure changes, further affecting data quality and classifier performance52. 

 

In summary, when using all features, the classifier may be affected by irrelevant or 

noisy features, leading to reduced accuracy. However, after using the optimal feature 

subset, the classifier can focus on the most discriminative features, significantly 

improving classification performance26. Although the ICC performance of the Thigh 

Cuff test is relatively high, this does not imply that all its features are the best indicators 

for classification. 
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4.4 Feature Contribution Distribution 

 

In this study, we used SHapley Additive exPlanations (SHAP) values to analyze the 

contribution of each feature to the classifier. 

 

Normocapnia/ Hypercapnia classifier. The coherence (Coh) values in three frequency 

bands played a critical role. Particularly, Coh(hf_right) and Coh(hf_left) indicated that 

the synchronization between BP and CBFV in the high-frequency band increased 

significantly. This synchronization was crucial in distinguishing between normocapnia 

and hypercapnia states, likely due to the rapid vascular responses in hypercapnia that 

make high-frequency changes more pronounced49. For Phase, the positive correlation of 

Phase(lf_left) and Phase(vlf_right) with the classification results indicated that the time 

delay in the low-frequency band on the left side was more significant in the hypercapnia 

state. The positive correlation of Gain in the low and very low-frequency bands with the 

classification results showed that changes in gain reflect the effectiveness of blood flow 

regulation, which is more pronounced in hypercapnia. 

 

Thigh Cuff Testing/ Hypercapnia classifier. The coherence of Coh(vlf_left) reflected 
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haemodynamic changes over longer time scales. These changes significantly impacted 

the classification results under the thigh cuff testing condition. This is likely due to the 

significant response in the very low-frequency band caused by the drastic blood 

pressure changes during the thigh cuff test52. Gain might not provide enough 

discriminative information under the thigh cuff test condition, possibly due to high 

variability and instability in gain values during rapid pressure cuff release, reducing its 

discriminative power in differentiating physiological states51. Additionally, high 

collinearity with coherence and phase features might have reduced its contribution in 

the feature importance ranking26. 
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4.5 Comparison with Previous Studies 

 

The findings of our study indicate that classifiers trained under normocapnia and 

hypercapnia conditions demonstrate superior accuracy compared to those trained under 

thigh cuff testing conditions. This contrasts with the results of Almuallem et al. (2023), 

who found that the thigh cuff condition exhibited the highest reproducibility level (ICC 

mean of 0.97 ± 0.008) when quantifying measurement and subject variability of dCA 

using univariate TFA. 

 

One potential reason for this discrepancy lies in the different analytical approaches 

employed. Almuallem et al. focused on the reproducibility of TFA parameters, 

highlighting the consistency of phase variations in the low frequency (LF) band during 

thigh cuff conditions. Their analysis emphasizes the stability of dCA measurements 

under controlled, induced changes in blood pressure. In contrast, our study utilized 

SVM classifiers to evaluate the predictability of dCA states under various physiological 

conditions. The machine learning approach is more sensitive to the overall patterns and 

relationships in the data, which might explain why normocapnia and hypercapnia 

conditions resulted in higher classification accuracy. 
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Moreover, the difference in findings may also stem from the nature of the physiological 

responses induced by the different conditions. The thigh cuff condition, while providing 

high reproducibility in a controlled setting, might not capture the full range of natural 

variability present in normocapnia and hypercapnia states. Normocapnia and 

hypercapnia involve more gradual and natural changes in blood pressure and cerebral 

blood flow, which may lead to more representative and stable patterns for classifier 

training. This natural variability could enhance the generalizability and robustness of the 

classifiers developed under these conditions. 

 

Additionally, our analysis took into account the overall performance metrics of the 

classifiers, such as accuracy, precision, and recall, providing a comprehensive 

evaluation of the predictive models. Almuallem et al.'s study, on the other hand, 

primarily focused on the ICC to assess reproducibility, which might not fully capture 

the predictive power of the dCA measurements under different physiological conditions. 

 

In summary, while both studies utilized the same dataset, the divergent findings 

highlight the impact of different analytical methodologies and the nature of the 
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physiological conditions on the results. The use of machine learning classifiers in our 

study revealed that normocapnia and hypercapnia conditions provide more accurate and 

stable predictions of dCA states, potentially due to their ability to capture natural 

physiological variability. 
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Chapter 5 

Conclusions 

 

In this study, we successfully developed a binary classifier to assess the health status of 

subjects based on BP and CBFV data collected under various physiological conditions. 

Our results showed that classifiers trained under normocapnia and hypercapnia 

conditions outperformed those trained under thigh cuff testing conditions. This is 

attributed to the stable and predictable relationship between BP and CBFV in 

normocapnia and hypercapnia, which facilitated more accurate classification. The 

application of SHAP values further provided valuable insights into the contribution of 

individual features, enhancing the interpretability and reliability of our model. 

 

Overall, our approach demonstrates the potential of integrating advanced machine 

learning techniques with physiological data analysis to utilize black-box methods for 

distinguishing between different physiological conditions. Future research could focus 

on expanding the sample size, exploring additional physiological conditions, and using 

other types of machine learning models to further refine and validate the classifier. 
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