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Abstract

The brain’s ability to maintain stable cerebral blood flow (CBF) despite fluctuations in

blood pressure (BP) is crucial for preventing damage and ensuring normal brain

function. This study aims to develop and evaluate a binary classifier to determine the

health status of subjects based on their blood pressure (BP) and cerebral blood flow

velocity (CBFV) data, with the assumption that subjects can be classified as either

baseline or impaired. Using Transcranial Doppler (TCD) ultrasound and Transfer

Function Analysis (TFA), we measured BP and CBFV under normocapnia, hypercapnia,

and thigh cuff testing conditions. For classifier development, we trained and tested the

dataset using Support Vector Machine (SVM) and analyzed the performance metrics

and feature contributions of the classifier. Our findings indicate that classifiers trained

under normocapnia and hypercapnia conditions demonstrate superior accuracy

compared to those trained under thigh cuff testing conditions, highlighting the stability

and predictability of BP and CBFV relationships in these states.

Keywords: Dynamic Cerebral Autoregulation, Transcranial Doppler, Transfer
Function Analysis, Machine Learning, Support Vector Machine, SHapley Additive
exPlanations.
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Chapter 1
Introduction

Dynamic Cerebral Autoregulation (dCA) refers to the brain's ability to maintain
relatively stable cerebral blood flow (CBF) despite fluctuations in blood pressure (BP).
This mechanism is crucial for maintaining normal brain function and preventing
damage. dCA involves multiple physiological processes, including chemoregulation,
autoregulation, and neurovascular coupling, which together ensure that the brain meets
its metabolic needs!. By measuring BP and CBF under different physiological

conditions, researchers can assess the effectiveness and stability of dCA.

Common techniques for measuring dCA include the Valsalva maneuver, squat-to-
stand, sit-to-stand, and thigh cuff deflation, all of which induce BP changes to observe
their effects on CBF2. Transcranial Doppler (TCD) ultrasound, a non-invasive method,
measures blood flow velocity in major intracranial arteries, providing high temporal
resolution CBFV data crucial for dCA research®. For accurate BP measurement,
arterial pressure monitoring and volume clamping methods are used. Volume

clamping involves adjusting cuff pressure based on the pulse waveform's systolic and
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diastolic phases, yielding high-resolution BP data. When combined with TCD, this

data helps elucidate the BP-CBFV relationship®.

Regarding how to process the measured data, we employ the commonly used Transfer

Function Analysis (TFA) method, which quantifies the dynamic relationship between

BP and CBF by calculating parameters such as gain, phase, and coherencel. To

further enhance the analysis, recent medical research increasingly integrates machine

learning classifiers, which can analyze and predict health status. These classifiers are

widely applied in fields like cardiovascular disease risk prediction®, tumuor diagnosis’,

and neurological disorder early warning®. In dCA research, machine learning

classifiers show significant potential by utilizing BP and cerebral blood flow velocity

(CBFV) data to distinguish between baseline and impaired states®.

To obtain the data required for developing our classifiers, we utilized pre-existing data

collected by other researchers. These data were obtained following the

recommendations from the CARNet white paper, which involved five measurements

on 20 healthy subjects using TCD under normocapnia, hypercapnia, and thigh cuff

testing conditions®. Next, we processed the data to eliminate noise and artifacts, and
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then interpolated and filtered the data to ensure continuity and accuracy. The
processed signals were analyzed using Transfer Function Analysis (TFA) to obtain
parameters such as gain, phase, and coherence'?. Finally, to improve the consistency

and comparability of research results?, we standardized the data for classifier training.
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Chapter 2

Methods

In this study, our objective is to develop and evaluate a binary classifier to determine
the health status of subjects based on their BP and CBFV data, with a focus on using
classifiers between the normocapnia/ hypercapnia and thigh cuff testing/ hypercapnia

conditions.

To achieve this, we used existing datasets and adopted standardized data processing
and analysis methods to ensure the accuracy and reliability of the data. Following the
recommendations of the CARNet white paper®®, we used TCD ultrasound technology
for data collection and applied TFA to quantify the dynamic relationship between BP

and CBFV.

In the following sections, we will provide a detailed description of the data collection,
preprocessing, and analysis steps. Subsequently, we trained the classifier using the
collected data and evaluated its performance metrics. Finally, we analyzed the

variables to elucidate their relationship with dCA.
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2.1 Data Acquisition

To collect data for training and evaluating the classifier, we designed and implemented

a series of rigorous experimental procedures. We selected TCD technology as the
primary data collection tool and, based on CARNet white paper recommendations,
adopted various methods to induce BP changes, including normocapnia, hypercapnia,
and thigh cuff testing. The detailed steps of the experimental design, subject recruitment,

data collection, and experimental procedures are described below.

In this experiment, we used existing data, which were obtained as follows: First, by
measuring the volume control of the digital artery, we used arterial volume clamping
devices to adjust cuff pressure in response to changes in arterial volume during systole
and diastole. This method provides high-precision BP data?3. Simultaneously, we
recorded CBFV data using TCD technology as a proxy for direct CBF measurement.

These data were recorded in cm/s*.

It is important to note that the gain, phase, and coherence measured by different devices
may vary. To ensure data consistency and comparability, we followed the standardized

equipment and methods recommended in the CARNet white papers®. Finally, during
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TFA, spontaneous BP and CBFV fluctuations should be recorded for at least 5 minutes

to ensure sufficient data for accurate frequency domain analysis'!. These steps ensure

the accuracy and consistency of experimental data, providing a reliable foundation for

subsequent data processing and classifier training.

In the data preparation and preprocessing phase, we followed recommendations to

ensure data quality and reliability. The minimum recommended sampling frequency is

50Hz, twice the maximum signal frequency (Nyquist theorem). Researchers however

often use sampling frequencies 4-5 times higher to improve accuracy!. We processed

raw waveforms and beat-to-beat data, with beat-to-beat data averaging BP and CBFV

per pulse. While both formats correlate well, beat-to-beat data is preferred for TFA due

to its lower sensitivity to interference. The method involves using the diastolic period of

BP as cycle endpoints to calculate average BP and CBFV through waveform

integration®2. Before analysis, signals were visually inspected for noise. Short-term

interference was corrected with linear interpolation; longer-lasting interference led to

data exclusion®.

Averaging BP and CBFV per pulse using the beat-to-beat method yields several data
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points. We used cubic polynomial interpolation to create equally spaced data points,

ensuring a minimum frequency of 4Hz after resampling to prevent high heart rate

interference®. Detrending does not affect TFA results and helps reduce very low

frequency (VLF) power, improving accuracy'’. Data normalization is recommended to

reduce individual variability and enhance analysis consistency; filtering methods are

avoided as they may alter signal characteristics. These steps ensure high-quality,

reliable data for TFA.

Conclusion. In the data acquisition section, we designed and implemented a series of

rigorous experimental procedures using Transcranial Doppler (TCD) ultrasound

technology to collect blood pressure (BP) and cerebral blood flow velocity (CBFV) data.

By following standardized methods for data processing and preprocessing, we ensured

the accuracy and reliability of the collected data. These steps provided a solid

foundation for subsequent analysis and classifier development.
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2.2 Transfer Function Analysis

Transfer Function Analysis (TFA) is a method to analyze the relationship between
BP and CBFV'. The preprocessed standardized beat-to-beat BP and CBFV data are
time-domain signals. First, both are transformed into frequency-domain signals
using Fast Fourier Transform (FFT) and then subjected to cross-spectral analysis to

calculate gain, phase, and coherence. Detailed explanations are provided below.

Usually, during spectral analysis, FFT is used to convert time-domain signals into
frequency-domain signals. However, the coefficient of variation (CoV = standard
deviation/mean) of a single FFT of the complete time-domain signal (single
window) is about 1, indicating that using the entire measurement signal for FFT
will result in unstable and unreliable outcomes. Therefore, the Welch method is

needed to improve analysis accuracy*?.

The Welch method is an improved spectral estimation method designed to reduce
spectral leakage and improve estimation reliability. Its main principle is to segment

the signal, apply windowing to each segment, perform Fourier transform, and then
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average the results of each segment. This method reduces random errors introduced

by a single FFT. The calculation formula of the Welch method is as follows:

1 L-1 1 N-1 . 2
Palf) = ZZ = Z x(mome N ®

Where L is the number of segments, U is the energy of the window function, x;(n)

is the signal of the i -th segment, and is the window function®34,

According to standardized procedure recommendationst, when using the Welch

method, too short a window length will lead to insufficient frequency resolution;

typically, a window length of more than 100 seconds is used, and if the total

recording time exceeds 5 minutes, the window length should not be increased but

rather the number of windows. Windows are not aligned side by side; some overlap

increases smoothness. Previous studies indicate that a 50% overlap is most

commonly used. Spectral leakage occurs in spectral analysis when the signal is

truncated in a finite observation window, producing unreal spectral components.

To reduce spectral leakage, window functions such as the Hanning window

(recommended), Hamming window, or Tukey window, or increasing signal length
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are applied®. The Hanning window function gradually reduces the signal amplitude

at both ends, and its formula is as follows:

w(n) =0.5(1—-cos (2nrn/(N—-1))), 0<n<N-1 2

where w(n) is the value of the window function, and N is the window length®. By

using the Welch method with the Hanning window, we can more accurately

quantify frequency domain parameters (gain and phase) and reduce estimation

errors due to spectral leakage®®.

After obtaining the frequency spectra of BP and CBFV for each window, we

average the windows to get the frequency spectra instead of using a single FFT.

After obtaining the frequency-domain signals of BP ((P(f))) and CBFV (F(f)),

we assume their relationship is linear and calculate their gain, phase, and coherence

directly:
Sep(f) = P(f) - P*(f) 3)
Ser(f) = F(f) - F*(f) )
Ser(f) = P(f) - F*(f) (5)
Gain(f) = SS::((]{)) (6)
10
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Phase(f) = arg(SpF(f)) (1)

| Spr(N)I?

Spp (f) ' SFF(f) (8)

Coh(f) =

The coherence function is a dimensionless indicator that effectively measures the

reliability of these estimates. Checking if the coherence value exceeds the 95%

confidence limit (i.e., the 5% critical value) for zero coherence is a simple method

to assess the validity of gain and phase. If coherence remains low (insignificant)

across all frequency bands, the record should be excluded from analysis due to poor

data quality and unreliable results.

Finally, we segment the data by frequency; commonly used frequency bands

include vif (0.02-0.07Hz), If (0.07-0.2Hz), and hf (0.2-0.5Hz). For standardization

purposes, we set these as the segmentation points to distinguish the effects of

different frequencies on dCA.

Conclusion. In the transfer function analysis section, we applied the Welch method

to convert time-domain signals into frequency-domain signals and calculated the
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gain, phase, and coherence between BP and CBFV. This method reduced spectral

leakage and improved the reliability of the analysis. By segmenting data by

frequency bands, we were able to better understand the dynamic relationship

between BP and CBFV under different physiological conditions.
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2.3 Classifier

In machine learning, classifiers are essential algorithms for predicting category labels

based on input features, widely used in image recognition, text classification, and

medical diagnosis. Classifier design and application involve supervised learning, which

trains models using labeled data to make accurate predictions on new data. The model

iteratively adjusts parameters to minimize prediction errors. A well-trained model

effectively classifies new data to meet application goals. Model selection aims to choose

the optimal algorithm with the best classification capability, evaluated by excess loss.

In this section, we utilize post-TFA data and labels to establish a binary classifier to

determine whether subjects are in an impaired dCA state. We use the Python

programming language and employ its powerful machine learning library, scikit-learn,

for data analysis and model training®®.

Due to the advantages of handling small sample datasets and high-dimensional data, we

chose Support Vector Machines (SVM) as the classification algorithm'®. Our dataset has

more samples than features, but the numbers are relatively close, making SVM a
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suitable choice. SVM is particularly effective in situations where the number of
dimensions approaches the number of samples. Additionally, SVM has a strong
theoretical foundation and provides robust performance even when the data are not
linearly separable by using kernel tricks to transform the original feature space into a
higher-dimensional space. This flexibility allows SVM to model complex relationships

in the data®.

The basic idea of SVM is to find an optimal hyperplane in high-dimensional space to
separate data points into different categories. This optimal hyperplane maximizes the
margin between two categories, thereby improving classification accuracy and
stability'®. The goal of SVM is to find a separating hyperplane such that the distance
between the hyperplane and the nearest data points (support vectors) is maximized. The

mathematical formulation is as follows:

Given a set of training data (x;, y;) * where x; € R™ » y; € {1,—1} > SVM solves the

following optimization problem:

9)

min, > w2
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subjecttoy; (w-x; +b) = 1,Vi
where w is the weight vector, and b is the bias term. This optimization can be solved by
converting to a dual problem using Lagrange multipliers, ultimately determined by the

support vectors?®:2!,

SVM can also handle nonlinear classification problems through the kernel function. The
basic idea of the kernel function is to map the original data into high-dimensional space
so that data can be linearly separated in that space. The mathematical representation of
the kernel function is:

K(x,x) = 0(x) - 0(x)) (10)
Where K is the kernel function, and @ is the mapping function that maps input data x;

and x; into high-dimensional space?.

Common kernel functions include linear, polynomial, and Gaussian (RBF) kernels?. In
this study, we chose the linear kernel, which mathematical representation is:

K(Xi,x]') = X;- x]' (11)
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For several reasons, we chose the linear kernel. It is computationally efficient, making it

suitable for datasets with a large number of features. Additionally, the linear kernel is

easier to interpret, as the resulting model coefficients can directly indicate the

importance of each feature. These advantages make the linear kernel a practical choice

for our classification task.

Conclusion. In the classifier development section, we utilized Support Vector Machines

(SVM) to build a binary classifier capable of distinguishing between baseline and

impaired states based on BP and CBFV data. The use of a linear kernel allowed for

efficient computation and interpretability of the model. The classifier's performance was

evaluated using various metrics, demonstrating its effectiveness in classifying different

physiological states.
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2.4 Feature Selection

Feature selection is crucial in machine learning and data mining, as it identifies the most

informative features from a large dataset. This process not only improves model

accuracy but also reduces computational costs and boosts interpretability?®. Eliminating

redundant features helps to minimize overfitting and improve the model's generalization

capabilities?’. A reduced feature set also lowers computational demands, which

accelerates both training and prediction times?®, Moreover, a simplified feature set

renders the model more comprehensible and interpretable, emphasizing the most

significant factors?°. In the context of high-dimensional datasets, feature selection helps

to overcome the "curse of dimensionality," thereby increasing processing efficiencyC.

Feature selection methods include filter, wrapper, embedded, and exhaustive search

techniques. Filter methods, such as t-tests and chi-square tests, evaluate the correlation

between each feature and the target variable, while mutual information techniques

measure the relevance of features to the target variable®3132, These methods are simple

and fast but often ignore feature interactions. Wrapper methods, like genetic algorithms

and recursive feature elimination (RFE), iteratively select optimal feature subsets to
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improve model performance*343°, Embedded methods, including decision tree-based

selection and regularization techniques like Lasso regression, evaluate feature

importance directly during model training®®=’. Exhaustive search, though

computationally expensive, evaluates all feature subsets to find the globally optimal

combination, making it suitable for datasets with fewer features=°.

Different feature selection techniques have unique advantages and disadvantages,

making them suitable for various datasets. Statistical tests are simple but may miss

complex feature interactions, while mutual information methods handle nonlinear

relationships well but are computationally intensive. Genetic algorithms are ideal for

high-dimensional datasets but require longer computation times. Model-based methods

like RFE and decision trees consider feature interactions but need more computational

resources. Exhaustive search, though computationally expensive, guarantees finding the

globally optimal feature combination and is suitable for datasets with fewer

features®1-3328, Based on our data characteristics and research objectives, this study will

use the exhaustive search method to ensure optimal classification performance.

Employing multiple feature selection techniques can also enhance robustness®.

Conclusion. In the feature selection section, we employed an exhaustive search method
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to identify the optimal subset of features that contributed the most to the classifier's

performance. This approach helped improve the model's accuracy, reduce

computational costs, and enhance interpretability. By eliminating redundant features, we

minimized the risk of overfitting and improved the generalization capabilities of the

classifier.
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2.5 Performance Analysis

To evaluate our classifier's performance, we use various indicators and methods to
ensure its stability and accuracy. These metrics help identify the model's strengths and
weaknesses, guiding improvements. Accurate evaluation is crucial for reliable clinical
diagnosis and treatment, revealing subtle differences in dCA mechanisms and enabling

personalized medical recommendations.

First, when discussing classifier performance, the confusion matrix is a direct way to
display the classification results. In a binary classification task, the confusion matrix
includes four parts: True Positive (TP), False Positive (FP), True Negative (TN), and
False Negative (FN)*°. From this matrix, we can calculate several important
performance indicators: Accuracy, which measures the proportion of correctly classified
samples; Sensitivity (Recall), which measures the model's ability to detect positive cases;
Specificity, which reflects the ability to identify negative cases; and Precision, which
measures the proportion of true positives among the classified positive samples. The
formulas for these four indicators are as follows:

4 _ TP+TN (12)
CCUracy = Tp ¥ TN + FP + FN
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TP

VY = —— 13
Sensitivity N ( )
S ficity = (14)

pecificity TN+ FP 4

1 1 — (15)

Precision

Combining the above indicators, we also introduce the F1 Score to provide an overall

measure, calculated as the harmonic mean of precision and sensitivity:

Precision - Sensitivity
F1 Score =2 - — — (16)
Precision + Sensitivity

The F1 Score is particularly important when dealing with data imbalance, as it can

provide a more balanced evaluation based on precision and sensitivity*'42.

When training a classifier, it is imperative to divide the dataset into training and testing

sets to evaluate its performance accurately. Performance metrics can be significantly

affected by the variability in data and the method of partitioning, which often

complicates the assessment of the classifier's true performance. Cross-validation is a

widely adopted technique to address this issue, enhancing the robustness and reliability

of the evaluation process.
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The most common cross-validation method is K-Fold Cross-Validation, which divides
the dataset into K subsets. Each time, K-1 subsets are used for model training, and the
remaining one subset is used for validation, repeated K times and averaged*®. The

mathematical expression is as follows:

1

where E ;) is the error of the i -th validation, and CV is the average error of cross-

validation.

When the sample size is small, we can use Leave-One-Out Cross-Validation (LOOCV),
where each time only one sample is left out as the validation set, and the rest as the

training set, repeated M (sample size) times?. The expression is:

M
1
Viwooy = MZ Eq (18)
1=

LOOCYV is an extreme form of K-Fold Cross-Validation, and its advantage is that the

model training uses all the data, making the estimation results unbiased and stable.
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Other cross-validation methods include Repeated Random Subsampling Cross-

Validation and Stratified K-Fold Cross-Validation, which help improve model

performance on imbalanced datasets**.

After evaluating the classifier's performance using cross-validation and various metrics,

it is crucial to understand the classifier's behavior at different threshold levels. To

achieve this, we can utilize the Receiver Operating Characteristic (ROC) curve and the

Area Under the Curve (AUC).

ROC is a widely used tool for evaluating classifier performance. By plotting Sensitivity

against 1-Specificity, the ROC curve shows the classifier's performance at different

thresholds. The ROC curve's horizontal axis represents the False Positive Rate, and the

vertical axis represents the True Positive Rate*. Ideally, the classifier's ROC curve

should approach the top left corner, indicating that the classifier can maximize

sensitivity while minimizing the false positive rate.

To precisely assess how close the ROC curve is to the top left corner, we calculate the

AUC. It ranges from 0.5 to 1, with higher values indicating better discriminatory ability
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and values closer to 0.5 suggesting random guessing*®. A key feature of AUC is its

correlation with the classifier's ranking ability, interpreted as the probability that the

classifier scores a randomly chosen positive sample higher than a negative one.

ROC and AUC help us understand the classifier's ability to balance sensitivity and

specificity: high sensitivity means the classifier can detect more positive cases, but it

may accompany a higher false positive rate; high specificity indicates that the classifier

can effectively exclude negative cases, reducing false positives. The ROC curve

provides an intuitive method to balance these two, helping us find the optimal decision

threshold.

SHapley Additive exPlanations (SHAP) is a technique for explaining the output of

machine learning models, based on Shapley values from game theory, assigning each

feature an importance value to quantify its impact on model predictions®®. This method

unifies various existing feature importance measurement methods and has a series of

theoretically desirable properties.

Specifically, SHAP values assign an importance value to each feature, representing its
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marginal contribution in all possible feature combinations. The weighted average of

these contribution values is the SHAP value for that feature, ensuring consistency and

fairness in model interpretation. The calculation method is as follows:

SN(F|—=|S|—1)!
s =y ST ) — £ 19)
SCF(i}

where S represents the feature subset, F is the set of all features, x represents the

values of the feature subset S, and f is the model function.

SHAP has the following main properties: Local accuracy, which ensures that the
explanation model's prediction equals the original model's prediction; Missingness,
where the contribution value for missing features should be zero; and Consistency,
which ensures that if the model's dependency on a feature increases, the contribution
value for that feature should not decrease. SHAP is very effective in explaining complex
model predictions, especially for deep learning and ensemble models*’. By calculating
the SHAP value for each feature, we can understand the contribution of each feature to

the prediction, thereby interpreting the model's behavior.

Conclusion. In the performance analysis section, we evaluated the classifier's
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performance using cross-validation, confusion matrices, and ROC curves. These metrics

provided a comprehensive understanding of the classifier's strengths and weaknesses.

The use of SHapley Additive exPlanations (SHAP) values further enhanced the

interpretability of the model by quantifying the contribution of each feature to the

classification results.
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2.6 Optimized Classification Procedure

To date, the principles and performance of the classifiers have been comprehensively
introduced. Next, a detailed classification analysis workflow will be established using
the data obtained from the aforementioned TFA. The following steps outline the core
methodology of this study. To understand the differences in classification capabilities
and their causes between the two classifiers generated under three different

physiological conditions, we aim to minimize randomness and use various evaluation

methods.

First, data normalization is performed to ensure that each variable has consistent units
and ranges. Normalization not only enhances the performance and stability of the

classifier but also significantly impacts the analysis of variable contributions.

The next step involves using exhaustive search to identify the optimal subset of
variables from the dataset. For each possible subset of variables, an SVC is trained
using Eq. (9) for the optimization problem and Eq. (11) for the linear kernel. The

accuracy of this SVC is calculated using LOOCYV as per Eq. (18), representing the score
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of this variable subset. After traversing and recording all possible variable subsets, the

subset with the highest accuracy is selected as the optimal variable subset.

Once the optimal variable subset is obtained, it is trained again to establish the best

classifier for this dataset. Subsequently, performance evaluations are conducted for both

the best classifier and the classifier using all variables. The confusion matrix is first

calculated, from which Accuracy, Sensitivity, Specificity, Precision, and the F1 Score

can be derived using Eqg. (12) to (16). Additionally, the ROC curve and AUC value for

the best classifier are calculated.

Furthermore, only the best classifier undergoes SHAP value analysis. To avoid the

randomness of data partitioning, we use LOOCYV as per Eq. (18). During the i-th

partitioning of the dataset, the accuracy that would normally be calculated is replaced by

the SHAP value computed using Eq. (19). This process yields M SHAP values, which

are then averaged to obtain the average SHAP value distribution for the optimal variable

subset. This step quantifies the contribution ranking of all variables to the classification

performance, reveals the positive/ negative correlation of variables to the outcomes, and

finally, a summary plot is generated for visualization.
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Conclusion. In the optimized classification procedure section, we established a detailed

workflow for data normalization, feature selection, and classifier training. By using

leave-one-out cross-validation (LOOCV) and analyzing SHAP values, we ensured the

robustness and reliability of the classification results. This procedure allowed us to

identify the most discriminative features and develop a highly accurate and interpretable

classifier for distinguishing between different physiological conditions.
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Chapter 3

Results

The complete workflow of this study is illustrated in Figure 1. We utilized existing data
acquired from 20 subjects, each tested five times under three different physiological
conditions, focusing on the left and right hemispheres of the brain. The variables
included the gain, phase, and coherence across three frequency bands (vif, If, hf) for
both hemispheres, totaling 18 features. After excluding invalid or missing data, we
obtained 97 normocapnia samples, 88 hypercapnia samples, and 98 thigh cuff test
samples. The statistical data for these samples are presented in Table 1, the scatter plots
in Figure 2, and the box plots in Figure 3. Our analysis shows that the classifiers trained
under normocapnia and hypercapnia conditions performed better than those trained

under thigh cuff testing conditions.

Subsequently, we used normocapnia as the baseline label and hypercapnia as the
impaired label. The data underwent the Optimized Classification Procedure to identify
the optimal subset of variables and the best classifier for performance analysis. The

same process was repeated with normocapnia replaced by thigh cuff testing data. The
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performance metrics for both classifiers are listed in Table 2, the ROC curves are shown

in Figure 4, and the summary plot is presented in Figure 5. These results highlight the

differences in classifier performance under different physiological conditions,

emphasizing the importance of selecting appropriate training data.

The main findings indicate that the normocapnia/ hypercapnia classifier outperformed

the thigh cuff testing/ hypercapnia classifier. Using the optimal subset of variables

increased the accuracy of the former from 88.6% to 94.1% and the latter from 74.7% to

81.7%.

Conclusion. The classifiers trained under normocapnia and hypercapnia conditions

demonstrated superior accuracy compared to those trained under thigh cuff testing

conditions. This improvement can be attributed to the stable and predictable relationship

between BP and CBFV under normocapnia and hypercapnia conditions, which

facilitates more accurate classification.
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Feature

Normocapnia

Hypercapnia

Thigh cuff testing

Coh(hf_right) -0.627 + 0.768 0.498 + 0.623 0.174 + 0.926
Conh(If_right) -0.056 + 1.252 -0.096 + 0.838 0.142 + 0.865
Coh(vIf_right) -0.184 + 0.696 -0.047 + 1.317 0.225 + 0.93
Coh(hf_left) -0.065 + 0.669 0.234 + 0.677 0.086 + 0.677
Conh(If_left) -0.177 + 1.134 -0.052 + 0.769 0.222 + 1.105
Coh(VIf_left) 0.408 + 0.706 -0.752 + 0.399 0.271 + 1.124
Gain(hf_right) -0.292 + 0.995 -0.228 + 0.953 0.084  0.909
Gain(If_right) 0.475 + 0.912 0.099 £ 0.727 0.183 + 0.903
Gain(vIf right) 0.247 + 0.934 0.07 + 0.707 0.084 + 0.87
Gain(hf_left) -0.58 + 0.995 0.384 £ 0.663 0.229 + 0.884
Gain(If_left) -0.11+ 1.106 -0.052 + 0.908 0.155 + 0.88
Gain(vIf_left) -0.241 % 0.766 -0.057 + 1.198 0.291 £ 0.908
Phase(hf_right) -0.234 + 0.942 0.121 + 0.534 0.218 + 1.079
Phase(If_right) 0.414 + 0.804 -0.758 + 0.449 0.207 + 0.862
Phase(vIf right) -0.253 + 0.926 0.228 + 1.14 0.045 + 0.836
Phase(hf_left) -0.268 * 0.937 -0.223 + 0.948 0.065 + 0.989
Phase(If_left) -0.253 + 0.926 0.228 + 1.14 0.045 + 0.836
Phase(vIf_left) 0.237 + 0.836 -0.515 + 0.751 0.228 + 1.041

TABLE 1. Comparison of Mean and Variance of Brain Hemispheres' Gain, Phase, and Coherence Across
Different Physiological Conditions. The table summarizes the mean and variance values of 18 features
(gain, phase, coherence across VIf, If, hf bands) measured in the left and right hemispheres of the brain
under baseline, CO2, and thigh cuff conditions. The values are presented as mean + standard deviation.

Normocapnia / Hypercapnia Thigh cuff testing / Hypercapnia

Classifier Using all features U5|fng optimal Using all features Using optimal
eatures features
Accuracy 88.6% 94.1% 74.7% 81L.7%
Sensitivity 92.8% 94.8% 75.5% 82.7%
Specificity 84.1% 93.2% 73.9% 80.7%
Precision 86.5% 93.9% 76.3% 82.7%
F1 Score 89.6% 94.4% 75.9% 82.7%
AUC 0.884 0.94 0.747 0.817

TABLE 2. Performance comparison of classifiers under normocapnia/hypercapnia and thigh cuff
testing/hypercapnia conditions, using all features and optimal features. Metrics include Accuracy, Sensitivity,
Specificity, Precision, F1 Score, and AUC.
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\‘/- Equipment Setup————» TCD ultrasound. BP measurement devices
Data Acquisition Measurement Conditions——» Normocapnia, Hypercapnia, Thigh Cuff Testing
|— DataCollection— 4| 50Hz sampling frequency, 5 minutes records
-\/
v Signal Processing »{ Visual inspection, Linear interpolation, Exclude long-term interference data
Data Preprocessing Data Interpolation and Filtering——| Beat-to-beat data averaging, interpolation, minimum frequency of 4Hz
—Normalization and Detrending —»| Normalize data, Detrend data
v
|—Frequency Domain Transformation .| Convert to frequency-domain using FFT
Transfer Function | ————Welch Method————»| Apply windowing and segment signals, Use Hanning window
Analysis
I Cross-Spectral Analysis | Gain, Phase, Coherence
v
\/—Data Standardization—»| Standardize variables
Feature Selection——————>»| Exhaustive search method
Classifier Development [ Model Training —————» Train SVM with selected features/ optimal features subset
Performance Evaluation—»| Confusion matrix, accuracy, sensitivity, specificity. precision, F1 score, AUC
[———SHAP Value Analysis—>| Calculate SHAP values, Interpret feature contributions

‘\/
FIGURE 1. Flowchart of the Classification Analvsis Workflow.
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FIGURE 2. This figure displays scatter plots for gain (left column), phase (middle column),
and coherence (right column) measurements across three frequency bands: very low
frequency (vlIf, top row), low frequency (If, middle row), and high frequency (hf, bottom row).
The blue markers represent normocapnia conditions, orange markers represent hypercapnia
conditions, and green markers represent thigh cuff testing conditions. The x-axis represents
right hemisphere data, and the y-axis represents left hemisphere data. These scatter plots
illustrate the distribution and variability of these features under different physiological
conditions, facilitating a comparative analysis of cerebral autoregulation across the
conditions.
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FIGURE 3. This figure displays box plots for coherence (blue), gain (green), and phase (red) values
across three frequency bands (vIf, If, hf) for both left and right hemispheres. The left column represents
the left hemisphere measurements, while the right column represents the right hemisphere. The top row
illustrates very low-frequency (vIf) band measurements, the middle row shows low-frequency (If) band
measurements, and the bottom row depicts high-frequency (hf) band measurements. For each color, the
three markers from left to right correspond to normocapnia, hypercapnia, and thigh cuff testing
conditions. The y-axis represents the value of coherence, gain, and phase. This visualization highlights
the distribution and variability of these features under different physiological conditions, facilitating a
comparative analysis of cerebral autoregulation across the conditions.
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FIGURE 4. The left two plots represent the normocapnia/hypercapnia classifier, while the
right two plots represent the thigh cuff testing/hypercapnia classifier. The top two plots are
trained using all features, and the bottom two plots are trained using the optimal variable
subset. The x-axis represents the false positive rate, and the y-axis represents the true
positive rate. These plots illustrate the AUC (Area Under the Curve) for each classifier,
highlighting their performance in distinguishing between the different physiological
conditions.
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FIGURE 5. The SHAP summary plots demonstrate feature importance for the classifiers. The left
plot shows the SHAP values for the Normocapnia/Hypercapnia classifier, while the right plot
presents the SHAP values for the Thigh Cuff Testing/Hypercapnia classifier. Each point
represents a feature's impact on the model output, with the color indicating the feature value (red
for high, blue for low), highlighting the contribution ranking of influential features under
different physiological conditions. The x-axis represents the SHAP value (impact on model
output).
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Chapter 4

Discussions

The results of this study highlight the differences in classification accuracy between the
normocapnia/hypercapnia and thigh cuff testing/hypercapnia classifiers. Several factors

contribute to these differences, which we will discuss in detail.

4.1 Feasibility and Reproducibility

In the data collection process, we used existing data from 20 subjects, with each subject
undergoing five measurements under normocapnia, hypercapnia, and thigh cuff testing
conditions. The final number of valid samples was: 97 normocapnia samples, 88
hypercapnia samples, and 98 thigh cuff testing samples. After processing the data with
Transfer Function Analysis (TFA), we obtained frequency domain data. Using the
Welch Method, we reduced spectral leakage and improved data stability. Besides the
ample sample size, coherence analysis results showed that most data coherence values

were above the 95% confidence limit, ensuring data reliability.

For classifier training and validation, we used Support Vector Machine (SVM) for

classification and evaluated classifier performance through the Optimized Classification
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Procedure. Besides classifier selection, the use of exhaustive search method, LOOCYV,
and mean SHAP values eliminated optimization problems and data segmentation

randomness as much as possible, significantly increasing the reliability of the results.

In previous studies using the same data*®, the authors calculated the Intraclass
Correlation Coefficient (ICC) under normocapnia, hypercapnia, and thigh cuff testing
conditions. The ICC values ranged from 0.88 to 0.9934, indicating that the

measurements processed through TFA exhibited high reproducibility.
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4.2 Classifier Results

In this study, one major focus is on using the exhaustive search method to identify the

optimal subset of variables. From the performance metrics calculations, several key

observations can be made:

Performance Comparison. The performance of the normocapnia/hypercapnia

classifier is consistently higher than that of the thigh cuff testing/hypercapnia classifier,

regardless of whether all features or the optimal variable subset is used.

Optimal Variable Subset. When using the optimal variable subset, both classifiers

show significant improvement in accuracy and various performance metrics compared

to using all features.

Receiver Operating Characteristic. The ROC curve for the normocapnia/hypercapnia

classifier tends to be more skewed towards the top left corner, especially when using the

optimal variable subset. This indicates a high level of sensitivity and specificity at

different thresholds.
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4.3 Investigation of Classification Accuracy Differences

In this section, we delve into the reasons behind the observed differences in accuracy
between the normocapnia/hypercapnia classifier and the thigh cuff testing/hypercapnia
classifier. By analyzing the characteristics of measurements under normocapnia,
hypercapnia, and thigh cuff testing conditions, we aim to identify the key factors that

contribute to the varying performance of these classifiers.

Normocapnia represents a relatively stable and normal physiological state, where the
relationship between blood pressure (BP) and cerebral blood flow velocity (CBFV) is
typically consistent and predictable. This stability facilitates the classifier's ability to
accurately capture the relationships between features. Studies have demonstrated that
under stable physiological conditions, the dynamic relationship between CBFV and BP

is more consistently reflected.

Hypercapnia, which induces vasodilation and increased cerebral blood flow, represents
an impaired state. Despite its deviation from normalcy, hypercapnia's effects are

systematic and predictable, aiding the classifier in distinguishing between baseline and
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impaired states accurately®°.

Thigh cuff testing involves the rapid release of a pressure cuff, leading to instantaneous

and significant fluctuations in BP and CBFV. These rapid changes introduce more

power into the signals, increasing data complexity and variability, which can result in

nonstationarity and reduce the classifier's accuracy. Although the Intraclass Correlation

Coefficient (ICC) values show high reproducibility for thigh cuff testing data, the rapid

and significant fluctuations might not consistently reflect the dynamic changes needed

for accurate classification®. Signal loss or waveform distortion is more common during

these rapid pressure changes, further affecting data quality and classifier performance®.

In summary, when using all features, the classifier may be affected by irrelevant or

noisy features, leading to reduced accuracy. However, after using the optimal feature

subset, the classifier can focus on the most discriminative features, significantly

improving classification performance?. Although the ICC performance of the Thigh

Cuff test is relatively high, this does not imply that all its features are the best indicators

for classification.
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4.4 Feature Contribution Distribution

In this study, we used SHapley Additive exPlanations (SHAP) values to analyze the

contribution of each feature to the classifier.

Normocapnia/ Hypercapnia classifier. The coherence (Coh) values in three frequency

bands played a critical role. Particularly, Coh(hf_right) and Coh(hf_left) indicated that

the synchronization between BP and CBFV in the high-frequency band increased

significantly. This synchronization was crucial in distinguishing between normocapnia

and hypercapnia states, likely due to the rapid vascular responses in hypercapnia that

make high-frequency changes more pronounced*®. For Phase, the positive correlation of

Phase(If_left) and Phase(vIf_right) with the classification results indicated that the time

delay in the low-frequency band on the left side was more significant in the hypercapnia

state. The positive correlation of Gain in the low and very low-frequency bands with the

classification results showed that changes in gain reflect the effectiveness of blood flow

regulation, which is more pronounced in hypercapnia.

Thigh Cuff Testing/ Hypercapnia classifier. The coherence of Coh(vIf_left) reflected
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haemodynamic changes over longer time scales. These changes significantly impacted

the classification results under the thigh cuff testing condition. This is likely due to the

significant response in the very low-frequency band caused by the drastic blood

pressure changes during the thigh cuff test®2. Gain might not provide enough

discriminative information under the thigh cuff test condition, possibly due to high

variability and instability in gain values during rapid pressure cuff release, reducing its

discriminative power in differentiating physiological states®*. Additionally, high

collinearity with coherence and phase features might have reduced its contribution in

the feature importance ranking®.
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4.5 Comparison with Previous Studies

The findings of our study indicate that classifiers trained under normocapnia and
hypercapnia conditions demonstrate superior accuracy compared to those trained under
thigh cuff testing conditions. This contrasts with the results of Almuallem et al. (2023),
who found that the thigh cuff condition exhibited the highest reproducibility level (ICC
mean of 0.97 = 0.008) when quantifying measurement and subject variability of dCA

using univariate TFA.

One potential reason for this discrepancy lies in the different analytical approaches
employed. Almuallem et al. focused on the reproducibility of TFA parameters,
highlighting the consistency of phase variations in the low frequency (LF) band during
thigh cuff conditions. Their analysis emphasizes the stability of dCA measurements
under controlled, induced changes in blood pressure. In contrast, our study utilized
SVM classifiers to evaluate the predictability of dCA states under various physiological
conditions. The machine learning approach is more sensitive to the overall patterns and
relationships in the data, which might explain why normocapnia and hypercapnia

conditions resulted in higher classification accuracy.
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Moreover, the difference in findings may also stem from the nature of the physiological

responses induced by the different conditions. The thigh cuff condition, while providing

high reproducibility in a controlled setting, might not capture the full range of natural

variability present in normocapnia and hypercapnia states. Normocapnia and

hypercapnia involve more gradual and natural changes in blood pressure and cerebral

blood flow, which may lead to more representative and stable patterns for classifier

training. This natural variability could enhance the generalizability and robustness of the

classifiers developed under these conditions.

Additionally, our analysis took into account the overall performance metrics of the

classifiers, such as accuracy, precision, and recall, providing a comprehensive

evaluation of the predictive models. Almuallem et al.'s study, on the other hand,

primarily focused on the ICC to assess reproducibility, which might not fully capture

the predictive power of the dCA measurements under different physiological conditions.

In summary, while both studies utilized the same dataset, the divergent findings

highlight the impact of different analytical methodologies and the nature of the
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physiological conditions on the results. The use of machine learning classifiers in our
study revealed that normocapnia and hypercapnia conditions provide more accurate and
stable predictions of dCA states, potentially due to their ability to capture natural

physiological variability.
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Chapter 5

Conclusions

In this study, we successfully developed a binary classifier to assess the health status of
subjects based on BP and CBFV data collected under various physiological conditions.
Our results showed that classifiers trained under normocapnia and hypercapnia
conditions outperformed those trained under thigh cuff testing conditions. This is
attributed to the stable and predictable relationship between BP and CBFV in
normocapnia and hypercapnia, which facilitated more accurate classification. The
application of SHAP values further provided valuable insights into the contribution of

individual features, enhancing the interpretability and reliability of our model.

Overall, our approach demonstrates the potential of integrating advanced machine
learning techniques with physiological data analysis to utilize black-box methods for
distinguishing between different physiological conditions. Future research could focus
on expanding the sample size, exploring additional physiological conditions, and using

other types of machine learning models to further refine and validate the classifier.
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