Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94705
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor毛明華zh_TW
dc.contributor.advisorMing-Hua Maoen
dc.contributor.author朱柏誠zh_TW
dc.contributor.authorPo-Cheng Chuen
dc.date.accessioned2024-08-16T17:37:47Z-
dc.date.available2024-08-17-
dc.date.copyright2024-08-16-
dc.date.issued2024-
dc.date.submitted2024-08-09-
dc.identifier.citation[1] Y. Yu, W. Zeng, M. Xu, and X. Peng, "Hydrothermal synthesis of WO3· H2O with different nanostructures from 0D to 3D and their gas sensing properties," Physica E: Low-dimensional Systems and Nanostructures, vol. 79, pp. 127-132, 2016.
[2] Verma, Arpit, et al. "Detection of acetone via exhaling human breath for regular monitoring of diabetes by low-cost sensing device based on perovskite BaSnO3 nanorods." Sensors and Actuators B: Chemical 361 (2022): 131708.
[3] A. Mirzaei, S. Leonardi, and G. Neri, "Detection of hazardous volatile organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review," Ceramics international, vol. 42, no. 14, pp. 15119-15141, 2016.
[4] S. Han, S. Yang and K. Sheng, "High-Voltage and High- ION/IOFF Vertical GaN-on-GaN Schottky Barrier Diode With Nitridation-Based Termination," in IEEE Electron Device Letters, vol. 39, no. 4, pp. 572-575, April 2018
[5] X. Wang and J. A. Cooper, "High-Voltage n-Channel IGBTs on Free-Standing 4H-SiC Epilayers," in IEEE Transactions on Electron Devices, vol. 57, no. 2, pp. 511-515, Feb. 2010
[6] D. Jin and J. A. del Alamo, "Mechanisms responsible for dynamic ON-resistance in GaN high-voltage HEMTs," 2012 24th International Symposium on Power Semiconductor Devices and ICs, Bruges, Belgium, 2012
[7] Ü. Özgür et al., "A comprehensive review of ZnO materials and devices," Journal of applied physics, vol. 98, no. 4, 2005.
[8] R. Triboulet and J. Perriere, "Epitaxial growth of ZnO films," Progress in Crystal Growth and Characterization of Materials, vol. 47, no. 2-3, pp. 65-138, 2003.
[9] R. Janisch, P. Gopal, and N. A. Spaldin, "Transition metal-doped TiO2 and ZnO—present status of the field," Journal of Physics: Condensed Matter, vol. 17, no. 27, p. R657, 2005.
[10] J. Y. Lao, J. G. Wen, and Z. F. Ren, "Hierarchical ZnO nanostructures," Nano letters, vol. 2, no. 11, pp. 1287-1291, 2002.
[11] Z. L. Wang et al., "Semiconducting and piezoelectric oxide nanostructures induced by polar surfaces," Advanced Functional Materials, vol. 14, no. 10, pp. 943-956, 2004.
[12] X. Y. Kong and Z. L. Wang, "Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts," Nano letters, vol. 3, no. 12, pp. 1625-1631, 2003.
[13] B. Yao, Y. Chan, and N. Wang, "Formation of ZnO nanostructures by a simple way of thermal evaporation," Applied physics letters, vol. 81, no. 4, pp. 757-759, 2002.
[14] H.-q. Yan, R.-r. He, J. Pham, and P. Yang, "Morphogenesis of One‐Dimensional ZnO Nano‐and Microcrystals," Advanced Materials, vol. 15, no. 5, pp. 402-405, 2003.
[15] M. H. Huang et al., "Room-temperature ultraviolet nanowire nanolasers," science, vol. 292, no. 5523, pp. 1897-1899, 2001.
[16] M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, "Catalytic growth of zinc oxide nanowires by vapor transport," Advanced materials, vol. 13, no. 2, pp. 113-116, 2001.
[17] Y. Xing et al., "Nanotubular structures of zinc oxide," Solid state communications, vol. 129, no. 10, pp. 671-675, 2004.
[18] M. Vaseem, A. Umar, and Y.-B. Hahn, "ZnO nanoparticles: growth, properties, and applications," Metal oxide nanostructures and their applications, vol. 5, no. 1, pp. 10-20, 2010.
[19] Dhall, Shivani, et al. "A review on environmental gas sensors: Materials and technologies." Sensors International 2 (2021): 100116.
[20] J. Mouly. Gas and Particle Sensors - Technology and Market Trends 2021 [Online] Available: https://s3.i-micronews.com/uploads/2021/07/YINTR21178-Gas-and-Particle-Sensors-Technology-and-Market-Trends-2021-Flyer-Yole.pdf
[21] Zhu, Ling, and Wen Zeng. "Room-temperature gas sensing of ZnO-based gas sensor: A review." Sensors and Actuators A: Physical 267 (2017): 242-261.
[22] L. Yu et al., "Both oxygen vacancies defects and porosity facilitated NO2 gas sensing response in 2D ZnO nanowalls at room temperature," Journal of Alloys and Compounds, vol. 682, pp. 352-356, 2016
[23] R. K. Sonker, S. Sabhajeet, S. Singh, and B. Yadav, "Synthesis of ZnO nanopetals and its application as NO2 gas sensor," Materials Letters, vol. 152, pp. 189-191, 2015
[24] C. Liu et al., "Acetone gas sensor based on NiO/ZnO hollow spheres: Fast response and recovery, and low (ppb) detection limit," Journal of colloid and interface science, vol. 495, pp. 207-215, 2017.
[25] Z. Jing and J. Zhan, "Fabrication and gas‐sensing properties of porous ZnO nanoplates," Advanced Materials, vol. 20, no. 23, pp. 4547-4551, 2008.
[26] Gong, H., et al. "Nano-crystalline Cu-doped ZnO thin film gas sensor for CO." Sensors and Actuators B: Chemical 115.1 (2006): 247-251.
[27] Bie, Li-Jian, et al. "Nanopillar ZnO gas sensor for hydrogen and ethanol." Sensors and Actuators B: Chemical 126.2 (2007): 604-608.
[28] Navaneethan, M., et al. "Sensitivity enhancement of ammonia gas sensor based on Ag/ZnO flower and nanoellipsoids at low temperature." Sensors and Actuators B: Chemical 255 (2018): 672-683.
[29] Kanaparthi, Srinivasulu, and Shiv Govind Singh. "Chemiresistive sensor based on zinc oxide nanoflakes for CO2 detection." ACS Applied Nano Materials 2.2 (2019): 700-706.
[30] Abdelkarem, Khaled, et al. "Design of high-sensitivity La-doped ZnO sensors for CO2 gas detection at room temperature." Scientific Reports 13.1 (2023): 18398.
[31] Kim, Jae-Hun, et al. "Low-voltage-driven sensors based on ZnO nanowires for room-temperature detection of NO2 and CO gases." ACS applied materials & interfaces 11.27 (2019): 24172-24183.
[32] E. Wongrat, N. Hongsith, D. Wongratanaphisan, A. Gardchareon, and S. Choopun, "Control of depletion layer width via amount of AuNPs for sensor response enhancement in ZnO nanostructure sensor," Sensors and Actuators B: Chemical, vol. 171, pp. 230-237, 2012.
[33] X.-Y. Xue, Z.-H. Chen, L.-L. Xing, C.-H. Ma, Y.-J. Chen, and T.-H. Wang, "Enhanced optical and sensing properties of one-step synthesized Pt− ZnO nanoflowers," The Journal of Physical Chemistry C, vol. 114, no. 43, pp. 18607-18611, 2010.
[34] T.-J. Hsueh, S.-J. Chang, C.-L. Hsu, Y.-R. Lin, and I. Chen, "Highly sensitive ZnO nanowire ethanol sensor with Pd adsorption," Applied Physics Letters, vol. 91, no. 5, 2007.
[35] Dixit, Shobhna, et al. "Effect of toxic gases on humidity sensing property of nanocrystalline ZnO film." Journal of Applied Physics 102.11 (2007).
[36] Ma, Ruilong, et al. "Study of the ZnO/MoS2 heterostructures-based gas sensor for humidity-independent response." Materials Research Bulletin 175 (2024): 112775.
[37] Franco, Mariane A., et al. "A review on chemiresistive ZnO gas sensors." Sensors and Actuators Reports 4 (2022): 100100.
[38] A. Maijenburg et al., "Dielectrophoretic alignment of metal and metal oxide nanowires and nanotubes: A universal set of parameters for bridging prepatterned microelectrodes," Journal of colloid and interface science, vol. 355, no. 2, pp. 486-493, 2011.
[39] M. V. P. dos Santos, F. Béron, K. R. Pirota, J. A. Diniz, and S. Moshkalev, "Electrical manipulation of a single nanowire by dielectrophoresis," in Nanowires-new insights: InTech Rijeka, 2017, pp. 41-58.
[40] E. M. Freer, O. Grachev, X. Duan, S. Martin, and D. P. Stumbo, "High-yield self-limiting single-nanowire assembly with dielectrophoresis," Nature nanotechnology, vol. 5, no. 7, pp. 525-530, 2010
[41] F. Kayaci, S. Vempati, I. Donmez, N. Biyikli, and T. Uyar, "Role of zinc interstitials and oxygen vacancies of ZnO in photocatalysis: a bottom-up approach to control defect density," Nanoscale, vol. 6, no. 17, pp. 10224-10234, 2014.
[42] P. G. Choi, T. Fuchigami, K.-i. Kakimoto, and Y. Masuda, "Effect of crystal defect on gas sensing properties of Co3O4 nanoparticles," ACS sensors, vol. 5, no. 6, pp. 1665-1673, 2020.
[43] Q. Wan et al., "Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors," Applied physics letters, vol. 84, no. 18, pp. 3654-3656, 2004.
[44] C.-L. Hsu, I.-L. Su, and T.-J. Hsueh, "Tunable Schottky contact humidity sensor based on S-doped ZnO nanowires on flexible PET substrate with piezotronic effect," Journal of Alloys and Compounds, vol. 705, pp. 722-733, 2017.
[45] P. K. Kannan, R. Saraswathi, and J. B. B. Rayappan, "A highly sensitive humidity sensor based on DC reactive magnetron sputtered zinc oxide thin film," Sensors and Actuators A: Physical, vol. 164, no. 1-2, pp. 8-14, 2010.
[46] V. Platonov, M. Rumyantseva, N. Khmelevsky, and A. Gaskov, "Electrospun ZnO/Pd nanofibers: CO sensing and humidity effect," Sensors, vol. 20, no. 24, p. 7333, 2020.
[47] R. B. H. Tahar, T. Ban, Y. Ohya, and Y. Takahashi, "Humidity‐sensing characteristics of divalent‐metal‐doped indium oxide thin films," Journal of the American Ceramic Society, vol. 81, no. 2, pp. 321-327, 1998.
[48] J. Fripiat, A. Jelli, G. Poncelet, and J. Andre, "Thermodynamic properties of adsorbed water molecules and electrical conduction in montmorillonites and silicas," The Journal of Physical Chemistry, vol. 69, no. 7, pp. 2185-2197, 1965.
[49] B. Yadav, R. Srivastava, C. Dwivedi, and P. Pramanik, "Moisture sensor based on ZnO nanomaterial synthesized through oxalate route," Sensors and Actuators B: Chemical, vol. 131, no. 1, pp. 216-222, 2008.
[50] N. Sun et al., "High sensitivity capacitive humidity sensors based on Zn 1− x Ni x O nanostructures and plausible sensing mechanism," Journal of Materials Science: Materials in Electronics, vol. 30, pp. 1724-1738, 2019.
[51] Majhi, Sanjit Manohar, Prabhakar Rai, and Yeon-Tae Yu. "Facile approach to synthesize Au@ ZnO core–shell nanoparticles and their application for highly sensitive and selective gas sensors." ACS applied materials & interfaces 7.18 (2015): 9462-9468.
[52] Ramgir, Niranjan S., et al. "Room temperature H2S sensor based on Au modified ZnO nanowires." Sensors and Actuators B: Chemical 186 (2013): 718-726.
[53] Yu, Shuguo, et al. "Investigation of humidity sensor based on Au modified ZnO nanosheets via hydrothermal method and first principle." Sensors and actuators B: chemical 287 (2019): 526-534.
[54] 黃胤嘉, "以介電泳動定位由金奈米粒子修飾之氧化鋅奈米線之感測器應用," 國立臺灣大學碩士論文, 2023.
[55] M. V. P. dos Santos, F. Béron, K. R. Pirota, J. A. Diniz, and S. Moshkalev, "Electrical manipulation of a single nanowire by dielectrophoresis," in Nanowires-new insights: InTech Rijeka, 2017, pp. 41-58.
[56] Miao, Jiansong, and Jerry YS Lin. "Nanometer-thick films of aligned ZnO nanowires sensitized with Au nanoparticles for few-ppb-level acetylene detection." ACS Applied Nano Materials 3.9 (2020): 9174-9184.
[57] Eyvaraghi, A. Mahdlou, et al. "Experimental and density functional theory computational studies on highly sensitive ethanol gas sensor based on Au-decorated ZnO nanoparticles." Thin Solid Films 741 (2022): 139014.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94705-
dc.description.abstract在本論文中,我們使用金奈米粒子的修飾以介電泳動技術製作之空橋式氧化鋅(ZnO)奈米線的感測器元件,除了分析退火時間對金奈米粒子形成的影響,也討論該元件對於濕度變化的電性響應。我們首先在矽基板上沉積二氧化矽作為絕緣層,再利用標準黃光微影技術定義出電極的位置,並利用電子束蒸鍍機鍍上鈦金屬搭配金屬掀離製程(Lift off)製作電極,接著使用介電泳動技術定位奈米線到特定電極上以製作出空橋結構,最後再使用蒸鍍機鍍上金粒子並進行退火製備出氧化鋅奈米線感測器。
透過以上製程,我們計算了退火時間對金奈米粒子大小的影響,也對經過不同退火時間之單純的氧化鋅和金奈米粒子修飾之氧化鋅奈米線元件進行不同濕度下的電性量測,並發現鍍有金奈米粒子的樣品在相同濕度下會具有較大的電流,另外也針對這兩種不同的樣品,改變環境相對濕度,同樣進行電流響應和反應時間的量測。量測結果也展現了經過金奈米粒子修飾的樣品在響應上優勢。
zh_TW
dc.description.abstractIn this research work, we decorated bridged zinc oxide (ZnO) nanowires with Au nanoparticles. These nanowires were fabricated by dielectrophoretic deposition techniques. Subsequently, we analyzed Au nanoparticles formed under different annealing times and discussed the electrical response of these devices to humidity changes. First of all, we deposited SiO2 as an insulating layer on a silicon substrate. Then, standard photolithography was used to define the electrode positions, and an electron-gun evaporator was applied to deposit Ti metal, followed by a lift-off process to fabricate the electrodes. By utilizing dielectrophoretic methods, we precisely positioned nanowires onto specified electrodes to form a bridged structure. Finally, gold nanoparticles were deposited using an electron-gun evaporator and annealed to fabricate the Au-decorated ZnO nanowire sensor.
Through this process, we made statistics of the impact of annealing time on the size of gold nanoparticles. We also performed electrical measurements under different humidity conditions on both pure ZnO nanowire devices and those modified with gold nanoparticles. It was found that samples with gold nanoparticles exhibited higher current at the same humidity levels. Furthermore, for these two type samples, we measured the current response and response time by varying the relative humidity of the environment. The measurement results also demonstrated the advantages of the gold nanoparticle-modified samples in terms of response.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T17:37:47Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-16T17:37:47Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
摘要 ii
Abstract iii
目次 v
圖次 vii
表次 x
第一章 序論 1
1.1 元件尺度微縮對環境感測器的優勢 1
1.2 寬能隙半導體 2
1.3 氣體感測器概述 4
1.4 氧化鋅氣體感測器 8
1.5 研究動機 12
1.6 論文架構 13
第二章 理論介紹 14
2.1 介電泳動(Dielectrophoresis, DEP)原理介紹 14
2.2 氧化鋅奈米線濕度感測原理 19
2.3 金粒子點綴對提高感測效果的基本原理 22
第三章 實驗製程及介紹 26
3.1 氧化鋅奈米線 26
3.2 元件製程步驟 26
3.2.1 絕緣層沉積(Deposition) 26
3.2.2 黃光微影定義電極位置(Lithography) 27
3.2.3 製作電極與掀離(E-gun evaporation & Lift off) 27
3.2.4 介電泳(DEP) 28
3.2.5 金奈米粒子修飾(Au Nanoparticle Decoration) 32
3.2.6 熱退火(Annealing) 33
第四章 實驗結果與討論 37
4.1 濕度量測與架構 37
4.2 相對濕度感測器參數介紹 38
4.3 濕度變化電性量測分析 39
第五章 結論 52
5.1 總結 52
5.2未來方向 53
參考文獻 54
-
dc.language.isozh_TW-
dc.subject空橋zh_TW
dc.subject濕度感測器zh_TW
dc.subject氧化鋅zh_TW
dc.subject奈米線zh_TW
dc.subject奈米粒子zh_TW
dc.subject介電泳zh_TW
dc.subjectZnOen
dc.subjectAir-bridgeden
dc.subjectdielectrophoresisen
dc.subjectnanoparticleen
dc.subjectnanowireen
dc.subjecthumidity sensoren
dc.title以不同粒徑金奈米粒子修飾之氧化鋅奈米線在濕度感測的應用zh_TW
dc.titleZnO Nanowires Decorated with Variable-sized Gold Nanoparticles and Their Humidity Sensing Applicationsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林浩雄;陳奕君zh_TW
dc.contributor.oralexamcommitteeHao-Hsiung Lin;I-Chun Chengen
dc.subject.keyword空橋,濕度感測器,氧化鋅,奈米線,奈米粒子,介電泳,zh_TW
dc.subject.keywordAir-bridged,humidity sensor,ZnO,nanowire,nanoparticle,dielectrophoresis,en
dc.relation.page58-
dc.identifier.doi10.6342/NTU202402880-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-12-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電子工程學研究所-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf5.34 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved