請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94690完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 彭隆瀚 | zh_TW |
| dc.contributor.advisor | Lung-Han Peng | en |
| dc.contributor.author | 黃維祥 | zh_TW |
| dc.contributor.author | Wei-Hsiang Huang | en |
| dc.date.accessioned | 2024-08-16T17:32:44Z | - |
| dc.date.available | 2024-08-17 | - |
| dc.date.copyright | 2024-08-16 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-12 | - |
| dc.identifier.citation | 1.https://www.apple.com/apple-vision-pro/
2.Lin, C. C., Wu, Y. R., Kuo, H. C., Wong, M. S., DenBaars, S. P., Nakamura, S., ... & Fang, Y. H. (2023). The micro-LED roadmap: status quo and prospects. Journal of Physics: Photonics, 5(4), 042502. 3.https://www.trendforce.com.tw/presscenter/news/20230810-11786.html 4.Xuan, T., Shi, S., Wang, L., Kuo, H. C., & Xie, R. J. (2020). Inkjet-printed quantum dot color conversion films for high-resolution and full-color micro light-emitting diode displays. The Journal of Physical Chemistry Letters, 11(13), 5184-5191. 5.Coldren, L. A., Corzine, S. W., & Mashanovitch, M. L. (2012). Diode lasers and photonic integrated circuits (Vol. 218). John Wiley & Sons. 6.Ye, S., Xiao, F., Pan, Y. X., Ma, Y. Y., & Zhang, Q. Y. (2010). Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties. Materials Science and Engineering: R: Reports, 71(1), 1-34. 7.Tao, J., & Liu, T. (2024). s valence electrons in cations of metal oxides serving as descriptors for electron and hole polarons. Physical Chemistry Chemical Physics, 26(20), 14705-14712. 8.Janotti, A., & Van de Walle, C. G. (2005). Oxygen vacancies in ZnO. Applied Physics Letters, 87(12). 9.Varley, J. B., Janotti, A., Franchini, C., & Van de Walle, C. G. (2012). Role of self-trapping in luminescence and p-type conductivity of wide-band-gap oxides. Physical Review B—Condensed Matter and Materials Physics, 85(8), 081109. 10.Gellermann, W. (1991). Color center lasers. Journal of Physics and Chemistry of Solids, 52(1), 249-297. 11.Alkauskas, A., McCluskey, M. D., & Van de Walle, C. G. (2016). Tutorial: Defects in semiconductors—Combining experiment and theory. Journal of Applied Physics, 119(18). 12.Yariv, A. (1997). Optical electronics in modern communications. (No Title). 13.https://intuitivetutorial.com/2023/06/08/magnetron-sputter-deposition/ 14.Carreras, P., Antony, A., Roldán, R., Nos, O., Frigeri, P. A., Asensi, J. M., & Bertomeu, J. (2010). Transparent conducting thin films by co‐sputtering of ZnO‐ITO targets. physica status solidi c, 7(3‐4), 953-956. 15.https://kayakuam.com/wp-content/uploads/2019/09/S1800-G2.pdf 16.https://amolf.nl/wp-content/uploads/2016/09/datasheets_LOR_datasheet.pdf 17.https://www.researchgate.net/figure/A-schematic-diagram-of-the-undercut-profile-in-a-bilayer-resist-stack_fig1_4363315 18.Tsai, T. H., & Wu, Y. F. (2006). Wet etching mechanisms of ITO films in oxalic acid. Microelectronic engineering, 83(3), 536-541. 19.Baer, D. R., McGuire, G. E., Artyushkova, K., Easton, C. D., Engelhard, M. H., & Shard, A. G. (2021). Introduction to topical collection: Reproducibility challenges and solutions with a focus on guides to XPS analysis. Journal of Vacuum Science & Technology A, 39(2). 20.https://en.wikipedia.org/wiki/X-ray_photoelectron_spectroscopy 21.Zheng, D., Gao, Z., He, X., Zhang, F., & Liu, L. (2003). Surface and interface analysis for copper phthalocyanine (CuPc) and indium-tin-oxide (ITO) using X-ray photoelectron spectroscopy (XPS). Applied surface science, 211(1-4), 24-30. 22.https://www.hic.ch.ntu.edu.tw/PES/file/%E5%8F%83%E8%80%83%E8%B3%87%E6%96%99/XPS%20%E5%85%83%E7%B4%A0%E6%BF%83%E5%BA%A6%E8%A8%88%E7%AE%97.pdf 23.李柏廷. (2014). 電漿輔助型原子層沉積之發光二極體特性研究. 臺灣大學光電工程學研究所學位論文, 2014, 1-82. 24.http://baike.asianmetal.cn/metal/ni/ni.shtml 25.Julies, B. A., Knoesen, D., Pretorius, R., & Adams, D. (1999). A study of the NiSi to NiSi2 transition in the Ni–Si binary system. Thin Solid Films, 347(1-2), 201-207. 26.Utlu, G., Artunc, N., & Selvi, S. (2012). Temperature and thickness dependence of the grain boundary scattering in the Ni–Si silicide films formed on silicon substrate at 500° C by RTA. Materials Chemistry and Physics, 132(2-3), 421-430. 27.https://zh.wikipedia.org/zh-tw/%E8%96%84%E8%86%9C%E7%94%B5%E9%98%BB 28.https://gtuttle.net/fabrication/topics/tlm_measurements.pdf 29.https://zh.wikipedia.org/zh-tw/%E9%80%8F%E5%B0%84%E4%BF%82%E6%95%B8 30.https://www.aps.anl.gov/files/APS-Uploads/DET/Detector-Pool/Electronics/Function_and_Pulse_Generators/Agilent/agilent_8110-1a_manual.pdf 31.Delbeke, D., Bockstaele, R., Bienstman, P., Baets, R., & Benisty, H. (2002). High-efficiency semiconductor resonant-cavity light-emitting diodes: a review. IEEE Journal of Selected Topics in Quantum Electronics, 8(2), 189-206. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94690 | - |
| dc.description.abstract | 本研究探討了微光點製程與厚度變化對於色心輻射二極體中法布立-佩羅共振腔(Fabry-Perot Etalon)效應的影響。微光點製程透過絕緣層氮化鋁的沉積、黃光微影和草酸緩衝溶液濕蝕刻技術,實現了最小寬度為2µm尺寸高精度、可重製的微發光點二維結構。本研究針對群創光電提供的兩種基板多晶矽玻璃基板與有鉬背金屬之多晶矽玻璃基板進行分析,以驗證光學共振腔對發光特性的影響。我們亦探討不同電漿功率對氧化銦錫鋅薄膜組成和特性的影響,結果顯示隨著氧化鋅比例的增加,元件的光學和電學特性均有顯著變化。最後,通過改變氧化銦錫鋅薄膜厚度,觀察到光譜中發光峰值的明顯移動及多個波峰現象,並使用Matlab程式建模進行模擬分析,證實共振腔效應對色心自發光二極體元件發光光譜的調制作用。
本研究結果提供了一種無需使用巨量轉移技術,即可製作最小寬度達2微米發光結構的製程方式,並通過光罩邏輯的設計與共濺鍍之技術,並調整元件之主動層厚度,即可得到可以改變發光波長且最小發光點寬度為2微米的色心輻射二極體。這些發現驗證了微型共振腔效應對元件發光光譜的影響,為未來發光二極體的開發提供了一種新的觀點。 | zh_TW |
| dc.description.abstract | This thesis investigates the effects of micro-light spot processing and thickness variation on the Miro-cavity effects in ITZnO color-center LEDs. The micro-spot process involves the deposition of an AlN insulating layer, photolithography, and oxalic acid buffer solution wet etching techniques, achieving highly precise, reproducible micro-light-emitting 2D structures with a minimum size of 2µm. In this study analyzes different substrate materials (such as p-poly and Mo-poly substrates) to verify the influence of optical resonant cavities on emission characteristics. Additionally, we explored the impact of different plasma power on the composition and properties of ITZnO thin films. The results showed significant changes in the optical and electrical properties of the devices with increasing ZnO ratio. Finally, by varying the thickness of the ITZnO films, noticeable shifts in emission peak positions and multiple peaks in the spectrum were observed. Matlab modeling and simulation confirmed the modulation effects of the resonant cavity on the emission spectra of the color-center LEDs.
The results of this study provide a fabrication method for creating light-emitting structures with a minimum size of 2µm without the need for mass transfer technology. By designing and selecting the photomask, the emission point thickness can be adjusted to the desired level. These findings validate the influence of micro-cavity effects on the emission spectra of the devices, offering a new perspective for the development of light-emitting diodes in the future. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T17:32:44Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-16T17:32:44Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目次
摘要 I Abstract II 目次 III 圖次 VI 表次 IX 第一章 緒論 1 1.1 簡介 1 1.2 業界Micro-LED製作方式 2 1.3 論文內容概述 2 第二章 色心輻射及Fabry-Perot共振腔原理 5 2.1 白光二極體的發光原理 5 2.2 色心輻射發光原理 8 2.3 Fabry-Perot Cavity 理論 12 第三章 實驗機台介紹及材料分析 15 3.1 濺鍍原理 15 3.2 黃光微影與濕蝕刻技術 17 3.3 X光光電子能譜分析 19 3.4 電漿輔助原子層沉積簡介 24 第四章 發光二極體研製及製程參數制定 26 4.1 發光二極體元件製作 26 4.1.1射頻濺鍍沉積二極體主動層 31 4.1.2高溫熱退火 31 4.1.3快速熱退火 31 4.2 光罩設計 32 4.2.1分割層光罩設計 32 4.2.2主動層光罩設計 33 4.2.3金屬層光罩設計 34 4.3 四點量測之介紹與基板電阻率量測 35 4.4 傳輸線模型量測與快速熱退火製程 37 4.5 穿透率量測 41 4.6 二氧化鉿側壁保護元件 43 第五章 發光二極體之電性、光譜量測與校正 45 5.1 電壓電流量測架構 45 5.2 光譜圖量測架構 46 5.3 量測前光纖收光位置校正 47 第六章 發光二極體之電性、光譜量測 49 6.1 微光點氧化銦錫鋅發光二極體特性分析 49 6.2 P-poly與Mo-poly基板上之發光特性與電性差異 53 6.3 氧化銦錫鋅不同電漿瓦數比例之特性介紹 55 6.4 氧化銦錫鋅不同厚度之光譜特性介紹 57 6.5 實際光譜與程式模擬比較 59 第七章 結論與未來展望 62 參考文獻 63 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 發光二極體 | zh_TW |
| dc.subject | LED | en |
| dc.title | 微光點製程與厚度調變對氧化銦錫鋅色心共振腔二極體之影響 | zh_TW |
| dc.title | Micro-Spot Process and Thickness Effect on ITZnO Color-Center Resonant Cavity Light-Emitting Diodes | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 王維新;賴聰賢;黃玉林 | zh_TW |
| dc.contributor.oralexamcommittee | Way-Seen Wang;Tsong-Sheng Lay;Yue-Lin Huang | en |
| dc.subject.keyword | 發光二極體, | zh_TW |
| dc.subject.keyword | LED, | en |
| dc.relation.page | 68 | - |
| dc.identifier.doi | 10.6342/NTU202403797 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-13 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 光電工程學研究所 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 4.48 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
