請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94662完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 許永真 | zh_TW |
| dc.contributor.advisor | Jane Yung-jen Hsu | en |
| dc.contributor.author | 陳見齊 | zh_TW |
| dc.contributor.author | Jian-Chi Chen | en |
| dc.date.accessioned | 2024-08-16T17:23:33Z | - |
| dc.date.available | 2024-08-17 | - |
| dc.date.copyright | 2024-08-16 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-08 | - |
| dc.identifier.citation | 參考文獻
[1] M. Kaliakatsos-Papakostas, G. Bastas, D. Makris, D. Herremans, V. Katsouros, and P. Maragos, “A machine learning approach for midi to guitar tablature conversion,” in Proceedings of the 19th Sound and Music Computing Conference, Jun. 2022. [2] Keh Wei Lai, “Yiruma-river flows in you,” 2015, [Online; accessed March 2, 2024]. [Online]. Available: https://fingerstyletw.blogspot.com/2015/ 03/yiruma-river-flow-in-you-sungha-jungtab.html [3] 2020 MIDI Manufacturers Association, “Expanded status bytes list,” 2020, [Online; accessed March 13, 2024]. [Online]. Available: https://midi.org/ expanded-midi-1-0-messages-list [4] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word repre- sentations in vector space,” 2013. [5] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors for word repre- sentation,” vol. 14, Jan. 2014, pp. 1532–1543. [6] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word vectors with subword information,” 2017. [7] D. E. Rumelhart and J. L. McClelland, Learning Internal Representations by Error Propagation, 1987, pp. 318–362. [8] S.HochreiterandJ.Schmidhuber,“Longshort-termmemory,”Neuralcomputation, vol. 9, no. 8, pp. 1735–1780, 1997. [9] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” 2023. [10] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training of deep bidirectional transformers for language understanding,” CoRR, vol. abs/1810.04805, 2018. [Online]. Available: http://arxiv.org/abs/1810.04805 [11] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language models are few-shot learners,” CoRR, vol. abs/2005.14165, 2020. [Online]. Available: https://arxiv.org/abs/2005.14165 [12] A. Wiggins and Y. E. Kim, “Guitar tablature estimation with a convolutional neural network.” in ISMIR, 2019, pp. 284–291. [13] F. Cwitkowitz, J. Driedger, and Z. Duan, “A data-driven methodology for consider- ing feasibility and pairwise likelihood in deep learning based guitar tablature tran- scription systems,” arXiv preprint arXiv:2204.08094, 2022. [14] E. Mistler, “Generating guitar tablatures with neural networks,” 2017. [Online]. Available: https://api.semanticscholar.org/CorpusID:30101141 [15] G. Hori, H. Kameoka, and S. Sagayama, “Input-output hmm applied to automatic arrangement for guitars,” Journal of Information Processing, vol. 21, pp. 264–271, Apr. 2013. [16] G. Hori and S. Sagayama, “Hmm-based automatic arrangement for guitars with transposition and its implementation,” in International Conference on Mathematics and Computing, 2014. [Online]. Available: https://api.semanticscholar. org/CorpusID:17782959 [17] G. Hori and S. Sagayama, “Minimax viterbi algorithm for hmm-based guitar fingering decision,” in International Society for Music Information Retrieval Conference, 2016. [Online]. Available: https://api.semanticscholar.org/CorpusID: 10478009 [18] Y.-H. Chen, Y.-H. Huang, W.-Y. Hsiao, and Y.-H. Yang, “Automatic composition of guitar tabs by transformers and groove modeling,” 2020. [19] P.Sarmento,A.Kumar,Y.-H.Chen,C.Carr,Z.Zukowski,andM.Barthet,“Gtr-ctrl: Instrument and genre conditioning for guitar-focused music generation with trans- formers,” 2023. [20] Bri Lundberg, “An easy guide to scientific pitch notation,” 2022, [Online; accessed June 13, 2024]. [Online]. Available: https://www.musicandtheory.com/ an-easy-guide-to-scientific-pitch-notation/ [21] Matthew Pinck, “How to read guitar tabs for beginners,” 2022, [Online; accessed June 13, 2024]. [Online]. Available: https://www.benaturalmusic.live/ how-to-read-guitar-tabs/ [22] Ulli Boegershausen, “Right here waiting (by richard marx) - ulli boegershausen - solo guitar,” 2008, [Online; accessed June 14, 2024]. [Online]. Available: https://www.youtube.com/watch?v=HFWZk6jbVtE&ab_channel=Boegershausen [23] Tommy Emmanuel, “Classical gas [mason williams] | tommy emmanuel,” 2011, [Online; accessed June 14, 2024]. [Online]. Available: https://www.youtube.com/ watch?v=S33tWZqXhnk&ab_channel=TommyEmmanuel%2CCGP [24] Jeff Owens, “Standard tuning: How eadgbe came to be,” n.d., [Online; accessed June 13, 2024]. [Online]. Available: https://www.fender.com/articles/ setup/standard-tuning-how-eadgbe-came-to-be [25] Jeff Owens, “What is a capo?” n.d., [Online; accessed June 13, 2024]. [Online]. Available: https://www.fender.com/articles/parts-and-accessories/what-is-a-capo [26] Kim Perlak, “Guitar techniques: Hammer-ons, pull-offs, and slides,” 2022, [Online; accessed June 13, 2024]. [Online]. Available: https://online.berklee.edu/takenote/ guitar-techniques-hammer-ons-pull-offs-and-slides/ [27] Nate Savage, “How to bend a note on guitar,” 2021, [Online; accessed June 13, 2024]. [Online]. Available: https://www.wikihow.com/Bend-a-Note-on-Guitar [28] Simon Candy, “How to play percussive guitar,” n.d., [Online; accessed June 13, 2024]. [Online]. Available: https://acousticguitarlessonsonline.net/ how-to-easily-add-percussive-techniques-to-your-acoustic-guitar-playing [29] Patrick MacFarlane, “Harmonics,” n.d., [Online; accessed June 13, 2024]. [Online]. Available: https://www.guitarlessonworld.com/lessons/harmonics/ [30] P.Sarmento,A.Kumar,C.Carr,Z.Zukowski,M.Barthet,andY.-H.Yang,“DadaGP:a Dataset of Tokenized GuitarPro Songs for Sequence Models,” in Proceedings of the 22nd International Society for Music Information Retrieval Conference, 2021. [Online]. Available: https://archives.ismir.net/ismir2021/paper/000076.pdf [31] Sviatoslav Abakumov, “PyGuitarPro,” 2014, [Online; accessed March 2, 2024]. [Online]. Available: https://pyguitarpro.readthedocs.io/en/stable/ [32] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word repre- sentations in vector space,” 2013. [33] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors for word repre- sentation,” vol. 14, Jan. 2014, pp. 1532–1543. [34] PyTorch Contributors, “Transformer,” 2023, [Online; accessed June 20, 2024]. [On- line]. Available: https://pytorch.org/docs/stable/generated/torch.nn.Transformer. html [35] class clef, “Right here waiting for you by ulli boegershausen (gui- tar tab),” 2012, [Online; accessed July 31, 2024]. [Online]. Avail- able: https://www.classclef.com/pdf/Right%20Here%20Waiting%20For%20You% 20by%20Ulli%20Boegershausen.pdf [36] Lee Glynn, “Guitar tapping - a beginners guide to guitar tapping technique,” 2020, [Online; accessed June 24, 2024]. [Online]. Available: https://www.pmtonline.co. uk/blog/2020/10/09/guitar-tapping-a-beginners-guide-to-guitar-tapping-technique/ [37] Erik Mongrain, “Erik mongrain ”air tap” - music live show 2009, birmingham, uk (binaural sound for headphones),” 2009, [Online; accessed June 24, 2024]. [Online]. Available: https://www.youtube.com/watch?v=aqp8j4ghhgg | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94662 | - |
| dc.description.abstract | 吉他指法譜的編排是一項專業技能,需要投入大量時間學習,甚至需要向專家請教。初學者和不熟悉吉他的音樂創作者可能因此卻步。我們希望通過自動化的指法轉譯系統,降低指法編排的門檻,讓更多人享受吉他演奏的樂趣。
因此,本研究提出了一種將樂譜(Sheet Music)作為輸入,吉他指法譜作為輸出的機器學習模型。 由於音樂是一種具有時序且前後相關的資訊,適合使用序列模型(Sequence Model)處理,我們設計了基於Transformer架構的模型進行轉譯工作。我們採用dadaGP資料集(包含26181個不同內容的GuitarPro檔案)作為訓練資料集。我們先過濾多餘的檔案,並透過PyGuitarPro套件讀取吉他指法譜資料。基於經驗和觀察,我們選擇忽略節奏資訊,並以此前提設計了音樂資訊和指法資訊的嵌入方法。此外,我們設計了資料後處理方法,檢查輸出的指法譜,若發現某個指法對應的音高不在輸入資訊中,則改為不彈奏,從而改善模型輸出表現,並成功通過GPU平行運算實現,降低了後處理的計算時間。 在實驗中,我們首先嘗試訓練出一個能夠收斂的模型,並以此為基礎,尋找表現較好的參數和架構設定。實驗結果在表現上優於近年的研究。 | zh_TW |
| dc.description.abstract | Arranging guitar tablature is a specialized skill that requires a significant amount of time to learn and often involves seeking advice from experts. Beginners and music creators unfamiliar with the guitar might be discouraged by these barriers. We aim to lower the barriers of tablature arrangement through an automated tablature transcription system, enabling more people to enjoy playing the guitar.
Thus, this study proposes a machine learning model that takes sheet music as input and produces guitar tablature as output. Since music is sequential and context-dependent, it is well-suited for sequence models. We designed a model based on the Transformer architecture to handle the transcription task. We used the dadaGP dataset, which contains 26,181 unique GuitarPro files, as our training dataset. We filtered out redundant files and read the guitar tablature data using the PyGuitarPro library. Based on experience and observations, we ignored rhythmic information and designed our embeddings for musical and tablature information accordingly. Additionally, we developed a post-processing method to check the output tablature. If a note in the tablature does not correspond to a pitch in the input, we mark it as unplayed, thus improving the model's performance. This process was successfully implemented using GPU parallel computing, reducing the computation time for post-processing. In our experiments, we first trained a convergent model and then used it as a baseline to find better parameter settings and model configurations. The results outperformed recent study in terms of performance. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T17:23:33Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-16T17:23:33Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 iii 中文摘要 v 英文摘要 vii 目次 ix 圖目次 xiii 表目次 xv 第一章 緒論 1 1.1 背景 1 1.1.1 何謂指法譜 (Tablature) 1 1.1.2 指法譜的多樣性 (Diversity) 2 1.2 研究動機與目的 3 1.3 方法概述 3 1.3.1 自然語言處理中的文字翻譯任務 4 1.3.2 樂譜轉譯為指法譜的任務 4 第二章 相關研究 7 2.1 自然語言處理 7 2.1.1 詞嵌入 (Word Embedding) 7 2.1.2 序列模型 8 2.2 吉他譜轉譯與生成 8 2.2.1 樂譜轉譯 8 2.2.2 音樂創作 9 第三章 問題定義 11 3.1 名詞定義 11 3.2 問題定義 12 3.2.1 基本定義 13 3.2.2 成果評估 16 3.2.2.1 指法譜 0/1正確率 (Tablature 0/1 Accuracy) 17 3.2.2.2 音高正確率 (Pitch Accuracy) 17 3.2.2.3 音高誤報比率 (Pitch False Alarm Ratio) 17 第四章 研究方法 19 4.1 資料集 19 4.1.1 資料集簡介:dadaGP 19 4.1.2 檔案過濾 19 4.1.3 使用 PyGuitarPro套件過濾資料 20 4.2 前處理 21 4.2.1 資料集分割 21 4.2.2 截斷 (Truncation)預處理 22 4.3 模型 23 4.3.1 輸入、輸出之處理 23 4.3.1.1 嵌入 (Embedding)設計 23 4.3.1.2 位置編碼 (Positional Encoding) 24 4.3.2 模型基本架構 25 4.3.2.1 架構 25 4.3.2.2 實作與訓練 27 4.3.2.3 後處理 27 4.4 評估指標 29 4.4.1 指法譜 0/1正確率 (Tablature 0/1 Accuracy) 29 4.4.2 音高正確率 (Pitch Accuracy) 29 4.4.3 音高誤報比率 (Pitch False Alarm Ratio) 30 4.4.4 指法編排相似度 (Slot Accuracy) 30 4.5 不採用 rule-based的原因 31 第五章 實驗 33 5.1 實驗設計 33 5.1.1 基準模型設計 33 5.1.2 尋找表現較佳的參數量 34 5.1.3 訓練與挑選模型 34 5.2 與已發表研究的比較 35 第六章 結果與分析 37 6.1 結果 37 6.2 分析 38 6.2.1 後處理的效益 39 6.2.2 Self Attention次數之影響 39 6.2.3 Attention Head數量之影響 43 6.2.4 Feedforward Dimension之影響 43 6.2.5 輸入資訊探討 44 6.3 與已發表研究的比較 44 6.4 輸出範例 46 第七章 結論 49 7.1 貢獻 49 7.1.1 嵌入方法 49 7.1.2 找出適當的模型架構與參數量 49 7.2 待研究議題 50 7.2.1 嵌入方法改善以及考量更複雜的演奏技巧 50 7.2.2 納入不同的調音與 Capo夾 50 7.2.3 更廣泛的指板位置 51 7.3 對於結果的評價 52 參考文獻 53 附錄 A —模型訓練過程之損失數值走勢圖與驗證數值走勢圖 59 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 指法譜 | zh_TW |
| dc.subject | 吉他 | zh_TW |
| dc.subject | 轉譯 | zh_TW |
| dc.subject | 樂譜 | zh_TW |
| dc.subject | Guitar | en |
| dc.subject | Tablature | en |
| dc.subject | Sheet Music | en |
| dc.subject | Transcription | en |
| dc.title | 使用序列模型將樂譜轉譯為吉他譜 | zh_TW |
| dc.title | Transcribe Pitch Set Sequence to Guitar Tablature by Sequence to Sequence Model | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 項潔 | zh_TW |
| dc.contributor.coadvisor | Jieh Hsiang | en |
| dc.contributor.oralexamcommittee | 黃怡靜;楊智淵 | zh_TW |
| dc.contributor.oralexamcommittee | Janet Huang;Chih-Yuan Yang | en |
| dc.subject.keyword | 吉他,樂譜,指法譜,轉譯, | zh_TW |
| dc.subject.keyword | Guitar,Sheet Music,Tablature,Transcription, | en |
| dc.relation.page | 82 | - |
| dc.identifier.doi | 10.6342/NTU202403031 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-10 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 資訊工程學系 | - |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 1.48 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
