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Arranging guitar tablature is a specialized skill that requires a significant amount
of time to learn and often involves seeking advice from experts. Beginners and music
creators unfamiliar with the guitar might be discouraged by these barriers. We aim to
lower the barriers of tablature arrangement through an automated tablature transcription

system, enabling more people to enjoy playing the guitar.

Thus, this study proposes a machine learning model that takes sheet music as input

and produces guitar tablature as output.

Since music is sequential and context-dependent, it is well-suited for sequence mod-
els. We designed a model based on the Transformer architecture to handle the transcription
task. We used the dadaGP dataset, which contains 26,181 unique GuitarPro files, as our
training dataset. We filtered out redundant files and read the guitar tablature data using the
PyGuitarPro library. Based on experience and observations, we ignored rhythmic infor-
mation and designed our embeddings for musical and tablature information accordingly.
Additionally, we developed a post-processing method to check the output tablature. If a
note in the tablature does not correspond to a pitch in the input, we mark it as unplayed,
thus improving the model’s performance. This process was successfully implemented us-

ing GPU parallel computing, reducing the computation time for post-processing.

In our experiments, we first trained a convergent model and then used it as a base-
line to find better parameter settings and model configurations. The results outperformed

recent study in terms of performance.

Keywords: Guitar, Sheet Music, Tablature, Transcription
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VSRR DR R B T o i RAR gk R
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%ﬁmfﬁ@fi‘w}é\ P im L dp ‘zsﬂiﬁuﬁ g% ERgp2 kit g Lie A %
B D EE  RREER S AT R g B AP B dp 2
FPfeFp  BROMIHIET L F o g ho APHFR AP RRI D
Y o REFRB AT A HRPR LT b g2 T blde Ulli
Boegershausen #7;# % ¢ Right Here Waiting[22] » ¥ /2 j& & 4 47 & & Ptig j2 o+ >
TG chbbip o DEFVRPEISAEF L ES G2 ®ICRD) 2
Bole pRARL FR BEmE s £ AFE S S REDEN P TR G
28T A s SR GECE s ¥t b)4e Tommy Emmanuel #7i# % <0 Classical
Gas[23] » #Tr e R A & F R end P o W E KL § ORI A R

R R R R ARG IR R L o R G E R ¢

&=
T
+

E'I

TRERMES A ER ARAGRE R0 ¥ P RS EHE

N

i

=2
-

il LIRER AR AL o 4 Ry P b B AT BB LR R R
) \‘}i-"&’?Kgf;:ﬁ“if’ﬁ#ﬁiéﬁ?%ﬂdﬁ)io FIp oo Ak A

%
TEHEETR ORRT B PSR A TR MR L S LR

A
FIIRS
4

B3R RARBEEAG W R EEFRHITERES R LA
TEb o a AP E R AL BAAHE S DERFNES - B Sk BEEE
FRIL {AFFROR AL o F 0 R A B K o PR G K LaniE i AR EL A

B i

YT AR - S AT Y R AL ] 0 TP R B

F A AP LTRE B PR

1. &% 2 (Standard Tuning)[24] 2. = 2 & s 5 % %

NS 2 2 mE e RS FLT BFFL AP R g @ L o
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2. FpHF =R 7 AZiE 20:
J‘MF’B%’Z#’% RET R S0 AFE R ADEFRT > X S U ahipE =
FERBAZE L2202+ BT FREN G LB endiE FAP LFpE
BEE AP RERTRAEZEH A PR GZELERE Y 5T 3TE

- 'B‘ﬁip/i)* el 5\#%} s Fpt A IF“;'L"" 20 ,wifﬁ’f)fl* r'ﬂﬁl(m ¥l oo

3. 2@ B A % (Capo)[25]:

A DR RRERL T G R g B IR T

LS,
M
Tt
oy
IRy
e

EAPARER G o dgdr i UG 20 e gk o
Frgt- B E R uFE T AP R T i

LBEHLTY gz §72 FR[0]A2 I BIE ARZSBIF
token ¥ 1§ F:
BEARIEHR F HITATA A h B o B G TE P o B a5 B
AR B b R gy A BB F R A S v

BE PRSI o FI A PRERL A BT R token ¥ hg § e

2 W% T chfas [27] 0 4 B Asded hF
FHEPITE Y R G B FRBIEZ L > - H R &h g
AR e a B B RAEMAF 0 BT BTN kw @Y (v
R-d-w ) KRB F L) DER R o FRREITOERY BRI

REECEA R AP ST BAh i

PR AR A BT S B2 A & g 2K G PR R LTS §a

R LY ARy T RE AR R e T R LT

15 doi:10.6342/NTU202403031



AT R B R A U g

TEAG ~ g E 5 20 9T % hg § #F 5 MIDI number 40 1|
840 x og BAI PR KA L R S T S g

K bR T R i g o 0T AT R B AP

2. g WL [29] $57lEA
o ARG 0 A 2 AT RIS AR SRR 2 F R £
ERRF RV EEDE AL Ak o T A PRRR R Y L HIT

2% o

322 ARFHE

e

TERRADET O APIETEA Ba v - L2 FT RHEL S

% #*

W
&

R 2R H e W AAp B AR 0 o Rdp i S BRIRE T AR 2 S eap 1
RN - PEIFRT AN TEL HPET RS RTOREYROEEpEET

LA P PR A B AP L TR o L BH - BN R

1+ g A PREATH (Ground Truth) » 1 % £ 3 2 f m@?J 134 (Result) o

2. TR IR EZH =B AY hi=B 25 (Index) > BIMA B wdple o L b
ﬁ#ﬁlégsgfﬁ’l(%jfiﬁ?%]’ﬁifégim.ﬁ]%&b9‘k LT’}}:‘—IJI‘L‘Z‘\L |I}

o

token ¥ % j 3% ehF

\

VaaS ;jg,_:‘;f;ps 2\ i ;I- '/F" ””#ﬂ ’F%'—— °

16 doi:10.6342/NTU202403031



3.2.2.1 3573 0/1 JE#E % (Tablature 0/1 Accuracy)

¥~ & B token » %’”%?J:'L,%% LA N 2 ma‘ﬁ &y BRI T A B 0 3% token

HE LR R 2 B -

N

E

F

2 3p FEEFEFTAA AP E 0 P3% token 5 4o
P IR S T ST

1 ifx=y
same(x,y) = x,y €N

0 ifx#y
> same(6, Y5 same(s?

c .y sy . = j= i 2 Si)
thk O/ B FES = -

3.1

SR Al EAR R o A g 2 R ARIRIT A Y R

3.2.2.2 ¥ & iE#E % (Pitch Accuracy)

# i Token #14 A% h3 B 0 B ISR SRR TR B PF A0

FoNprrTHRENLE

T G2
= 1

B A B R AT BB A P T AR TR A AN

g&y
F_w.

AR R A > R AT A B A RRL  RARAIR SR ERES

1% 0 FR RN PR e 2 8 B A B g 2 St o

3.2.2.3 & 5#E k& (Pitch False Alarm Ratio)

= 1 Token 3% 3 EMEEGE F o P E BRI EY S
FALens B0t % o AP S A PE 2 B o 4
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BB RS 3 B FIBS 30 R b R
RS T SR
S PP

R
) pl

(3.3)

S SRS ts ERNES S ERREY S TR
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HWE BRI E

BAFE S APBREALZAPRY DT LR A HEB TR R AT RDT R
T Pk g ARAPER T ORI B B A B E

411 HFHE#HS:dadaGP

A B AP R T dadaGP FTALE [30] £ & 5 26,181 £ #FFAL » $58 #
7 gp3~gpdgpS( T AL gp AnR) TR TE 4 Tk TR 739 By

Y| o

412 BEBRE

~F ORI —*Ff 7 #& =2 p @ o F 4 encoder ~ decoder(#t % A T A 4p
Transformer 7 encoder ~ decoder) ° T'F—ﬁ #3F 5 R AeF A S B encoder IR e,
%, % W ﬁ £ % 1B decoder #i® B k% 0 12 % i@ * PyGuitarPro API # 4% %7 &

19 doi:10.6342/NTU202403031



4;’]"*‘&7%*&, I;}*)‘{ F“r %F\ ) lj—r”‘_;])ﬂ‘l;}’- o

$ tree path/to/dadaGP/DadaGP-v1.1/A/Alice

|-- Alice - Arabic Heavy.gp3
|-— Alice - Arabic Heavy.gp3.gp2tokens2gp.gpb
|-- Alice - Arabic Heavy.gp3.pygp.gpb

--— Alice - Arabic Heavy.gp3.tokens.txt

i TP W Alice - Arabic Heavy.gp3 & 4o 5L > F]pb H & enFfl & JE Ak
B B,f o Y i 3B Python %rA > 1345 4y dataset chfg R B 1‘#%} > >

&R TR A

4.1.3 4& A PyGuitarPro &4 1% & &+

d 3% FR & (4 chencoder ~ decoder 7 & AF T F Fo AP FEEHE @
FRFERTH APR* B RE P PyGuitarPro[31] X#EBRFH 0 F B gp A E T
Bt R EF B L - B osong #FH 0 o T AR g i A TALEH

#2375 F5 ¢ fhsong_obj T i song #F W2 4r i o

for t, track in enumerate(song_obj.tracks):

#track.channel.instrument: ¥ F #i

#track. strings: 5% ¥ E

#track. strings: ¥ P>E LA K33

#track. offset: capo % = %

for m, measure in enumerate(track.measures):
for v, voice in enumerate(measure.voices):

for b, beat in enumerate(voice.beats):
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10

11

12

13

#beat . hasHarmonic: 482 % d 2§ HITH %=

for n, note in enumerate(beat.notes):
#note.type: FA| (B F /RkH/FH/EZF)
#note. string: #%x iz

#note.value: #BehigH =}

2

izt B¢ s 1 track 2 H oo ﬁ:}fgék PR AR T P m@ﬁ] U] R E 0 B LK
Eetrack 0 § B hjson kL Y AR ke Bk B AT B
{"measurey” : [tokeny,tokeny,...|, "measure,” : [tokeng, tokeny, ...], ...} » %
measure 35 FHE F ¢ HL B & 0 @ token ) F &

[[string, fret]o, [string, fret]y, ...] » & % [string, fret] FA7edx 7 LB % 522 2
ﬁf’émiﬁ%ﬁlia v AT At edkenE TN 4 2 8% > F]pE Btoken 30 F 51
% [string, fret] T4 » X % 5% 6% onote R FRIFEEHY o F £ EEE 5 ¥
LEH e BERDTR A fTERITE A L gy AN R Pl

-

42 ARIE

F_*

TE Y o AP A A P hefe e track G OH o RGP AR EH

TP B RROTHEE -

-

421 FHEH

APt it - Hx A drack BRF B rack (TS 2 B F Ik

i
|4
It
e
’ﬁ\
i
o
-+
]
o
(@)
W‘
%E*é
o
beic
b
ﬁ
1+
<
N

0320 %+ gsz)ivs 235l 322
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track = H =0 0 &1l ot BINEHS A PR R S B BIREZ BER R o
%#ﬁ%ﬁiﬁ_%}_f%é&%}fi&%}%’{%i{ﬁ_;ﬂ}?‘* ;Q:m”“}iév\#li Z BiEx o B
YeF LEL AR E TR g R A0 0200 RRERE CRBEREY &

0~5 iZfk e Aj o

4.2.2 #E7 (Truncation) 78 % 32

E4tE Botrack ) APRFRAEFRE LB BB OTHENE -

BBl fep BREZ JLeniti2 fple o 2 d W FREEL RE~ > & B track
B IR R A 100 3] 10* e Bl 0 - B b ARN R FRE ] R e ERA AR
EXH 2 GPU et 7 &k 38 > R F]E 4o % batch £ track % ¥ = i 3 L%

o FRLRBE 5T %‘Jﬁ%?ﬁi%’i’“']— s E Bk entrack 0 i@ @ 3% batch e

=

i

(g

o

w0 AR Y i (RTX-2080Ti) sc "8 138 1% > f 4% 55 34 f‘?ﬁij‘*‘ag g & K-
40 track (EREF> A% - RERPFPN HF A PG I A EE S
bmhﬁ?uﬁi%ﬁ%%iﬁﬁﬁ’k%ﬂwgﬁﬁéﬁﬁﬂﬁﬁﬁﬁﬂ(%%
gpihE ~Arhtrack M2 H ZREEDOFE BB IR NFAKRTERARTHER

Rz o

DIRE RS o AP E R 1260 F HxE R R EIERA
F4RERZ  cER VTR TEAF AN T TSR TR 2314 7]
j{;j}j {}Lg} A&rﬁgﬁ,ﬁﬁi—g%-& y A\ ,Fa .{5 ﬁrp;fu—m ,.Iﬁmfgﬁ& y i&tﬁm}:’? ;,J;g_! Pﬁ
NZEFERS  EREDRDRZAAHR D 2 o

I hSRER R REE 0 S AR R 126 5 e AR 40F 2 K126

HFBRAFRA 0 STE - 2R A0 @ FHMIE V- 26 s LEETR
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Ap i E KRG B JPY RSB T R -

’1‘53:}7%__ WRGER FE 0 B KT mx“—L'gjlf'-&r'T PR 5 161923 & 5 R

5 18104 2 > Pl B 5 17628 £ o

P e l[% S+ & 4w json Fh R RET o

43 HBH

F_*

é—%ﬂ’giﬁﬁﬁ%&ﬁﬂﬁﬂ%%%&&ﬁ%% RN N R

% Transformer 3 B #-3] 24 > i § £ 1 =Rtk -

431 WA B2 RAE

~

AR e O SRS o = S U LA 0 S T R 1} n‘ » (Embedding)
SCERR LIS S R R R R I B S RN i

7 & * Transformer $#-3] & * e ¥ %45 (Positional Encoding) °
4.3.1.1 # A (Embedding) %3t

BARIT T ARIEP > S ¥ #® % 4t ~ (Word Embedding) > # * BAEE | F L

Ll R R AT Y F TR I3]0 AEL SRR Gl Kb T i

5B e~ 2 8 ) -

EA frai,uﬁi;«]:': v Y ,ﬁ&{#tﬂ%?‘;ﬁ;ﬁﬂi}ih o e AP AR T A Y TR R
cho FEsE g 22 0 £ FRBEE L 0~20 iE R TARES £ 21 ARG £
et 1B EE ARG o F R RE G 60F5E 0 FH g 6x22=132FF A 0 7]

APALY gE B token @ * 132 e § 0 & 22 MG - EEOFT M 0 132 ¢
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6B 22 RENER 1IN 652 F 22BEET > W 2] BN HET
MERBEE DT M 5 22 AR R L FEE D> R TAKRE S L DERE B
1o By S 0 * 1322 % % 5 1 & (75 BOS(Begin of Sentence)
token » &t FlH - ichtoken 547 € F 6 BAAR L 1 HAALZ 00 P2 T ok

3 i ffo— #ehtoken F oM X 7% W[ 0 I 3T padding token R E_F i 5% s {5 -

BaRi 1l 2450 3&{@ 4 & i 5% 55 3 G A el S A

TR BW 0 2 EAE B # & (Pitch Set) HF L0 A MIDI[]
Bt £ 128467 a0 > B2 PR 132 B EAPIT > FIRL AL Y I32 R e §
B4Rz L0 HLARAPMERANF R AT I RESZT > FH_ESZL 15 #
5 00334 % 2 3] BOS v e § & EOS {rpadding » o *tiga 4 fr= 2023 &

FOF B EEMRP R ARG TUAPHRT 2L 0w B R Ao

4.3.1.2 4t & % #% (Positional Encoding)

AP F P L D json RSN RFIIG F FE AU E IpEE A B
B EORE G E S TREETAEI AT EAPRFR R T A
PR e o~ 2 F B enF o A3 A P * Transformer H-4] KRR RE o AP

# * Transformer A48 3% 4 dvh <~ ¢ [9] adcE = 2
PE (pos.2iy = sin(pos/10000%/dmoder 4.1)

PE (pos2iv1) = cos(pos /10000 dmoder) (4.2)

H P pos % token i E i NEA A ETADERE dppge FE TR IER (A

AEF P h#icE i 132) o 19454.3.1.19 Embedding 2 % R-FHE L e E AT (S

X #o B k¥ Vduoder » £ #r + Positional Encoding ehF 2 > T 5 57 o~ e
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432 BAXKERE

R &P s A 2 A Transformer[9] sHc7] 2 f# B EFABAPR Y

NP RAEDRE G B RG APRI ORI E o

4321 FE#

Yel 3R A ATif o A i T U G 3 T e niBE R RJE > B AP R
* Transformer[9] ¥ 2 & 3] » H % 1 4e Figure 4.147 71 © 24 i # % 3] & Decoder
£ 3.%?] d1 # 7 Positional Encoding F 3t chip iz e 2 Bzl ¥ iR de “ﬁ%
Positional Encoding 7% 3 » £ 1345 Embedding /i 42i& (7 F 8 & > @ 535 R] ehdp

e
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Shifted Right Tablature Sequence

!

Embedding

b

Add Positional Encoding

e

(Qgcgdtr

Decoder Layer 1

v

Decoder Layer 2

v

Decoder Layer N

Y
Decoder Output

v

Subtract Positional Encoding

Reshape

Argmax

v

Tablature Raw Data

Pitch Set Sequence

!

Embedding

I

Add Positional Encoding

-~

@Ddﬂr

Encoder Layer 1

v

Encoder Layer 2

3

Encoder Layer N

Y
Encoder Output

Figure 4.1: £ " Transfomer 3 3+ -3 7 41
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43.2.2 EHEEI%

A g * PyTorch £ i @ & torch.nn. Transformer[34] &k § (T3] » & 7 %

Learning Rate Scheduling[?9]:

lrate = factor X LRS 4.3)

-0.5

LRS =d %3 - min(step_num™">, step_num - warmup_steps™') 4.4)

model

S 4% % 35 £ (MSE, Mean Squared Error) ¢ 5 4F 4 & #c» 3 ¥ 45 i 3 .48
Embedding £ Positional Encoding i 1% #£2 Decoder Output 2. fF ei332= £ » k3!
FHA] o I HEAET AL @ % tgt_mask KPR decoder iF H Jw I iy 4 o @ H

src_key_padding_mask -~ tgt_key_padding_mask » 4%+ padding token i+ mask °

4323 #BE®E

EANIANAR T mﬁig?]/\ 7T BEDFFENAPHLFT U S Result ¥
i & o3 % E_F & Inputs 4p {4 > %’t%‘"'}“ﬁ% PR AR RN A o Glhod B 7 B ARE
203 % FA(40,45,50) > @ Apple kg B # 5 {40,45,50,55) 0 R EE O
RARRIEEY > HE SSaRiEZir A B E > AP BAES H 5 Pitch False
Alarm Mask > %48 % H 4 Figure 4.2475% o - B 4225 287 (FEB EHLF 5 7
SAETA FAHULGPU hT FEE IR o AP LG dtoken s B F e A -
iEsz i E g B o e B F 4 i token % 5 0 B F B = % dotoken ¥ 3%
R A E o AR T EFEY  ERM LT ERT > FRAFRE S

oq) -
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shifted Right Tablature Sequence Pitch Set Sequence

! .

Embedding Embedding
, |
Add Positional Encoding Add Positional Encoding
-~ e
(Qgcgdcr @:Dder
Decoder Layver 1 | |« Encoder Layer 1
Decoder Layer 2 Encoder Layer 2
v \
Decoder Layer N Encoder Layer N
v Y
Decoder Output ——  Encoder Qutput

v

Subtract Positional Encoding

A 4

Pitch False Alarm Mask [

v

Tablature Raw Data

Figure 4.2: 4v } 18 2 03] 78 45
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4.4 FHEHEAR

R AP ARELET S RE DA A PATH O -

A0 LR o 0 B E S R

4.4.1 F57k3E 0/1 iE5EF (Tablature 0/1 Accuracy)

305 B token > o ARk Y o 2 RS Y B RREET AR B 0 3% token

F G LRk 20 B3 - BB EFETH AR 0 P13% token S 453K o

YIRS TE

I ifx=y
same(x, y) = x,yeN

0 ifx#y
>, same(6, 2?21 sarne(sfij , S7))

Tp ik O/ & FES = (4.5)
n

B R EAR S 0 A G i B ARIRT L Y O -

44.2 FFiEsEF (Pitch Accuracy)

% i Token 383 & FALME % g 3 ;ﬂiéi%]:'ﬂ% BRIRFT AR R B

e T R R

LIPS AP

- S L
FRLAES = T
i 1P

(4.6)

SRR R EBEA PR LR R ARG B FROLA > F LA

PAptRPE R A > L A w A BIROARKRAL  RARI N R ERTERES
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g 0 AP RN PR 0 2 B R A S e 2 St o

4.4.3 & FHFEHbFE (Pitch False Alarm Ratio)

& 1% Token ‘F’K AR E g F o %Lﬁﬁi«%]:",..‘%% o Al T A AU IR AR R

FAeg A g oo AP PY R P 2B 4 T T A E R B g

<

ﬂ’ﬁ%%ﬁiﬁﬁﬁﬁﬁﬁéﬁﬁ$@’ﬂ%*ﬁ$%%*ﬁ%€°ﬁ¥u

VAL d- A
i IPY NP

3% e § = 2L
' i=1 |P;g|

4.7)

EH A D PECRBA PRI S 0D Rtk o -

4.4.4 F5::4%FA M E (Slot Accuracy)

% B token £ § 6 iF5Zehdpdr Tl 0 ¥ UAR 3 & B token § 6 B slots Tl e A
(T IER] 0 slot SRR & B R E TR AR B R dz,pLza’A%biéﬁ%ﬁéﬁﬁmd
LREEE A B R e s P E N T R A

6
i X ja same(s‘l.g,]. . 8i )

oA R =
«‘fFj/ AR 02 R on

#ﬁ ZFHO RS > APF Y L wiNend A TK- B token F 5 D B ﬁig?J:".

P R B S B R AR fRA T, & B token 4 Ef5 454 - 55 o

=

E"J#};l/é;‘EO/lﬂﬁ;}‘% 0> L‘:’[F“z ‘/ﬁn;}%;}ﬁn}}iﬂ Y 0.8 ° 1\.]]a Fl\é;?' f@:ér‘i;rﬁ:}ﬁ%_
RS R R
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4.5 ARk A rule-based &7 H

BB A7 PP ¥ i rule-based 7 i 0 A g ip AT Y B dRiT

P vt HMM B 407 0 S8 & 6 3 i ) [10] 0 3287 f el S 2 R e

Pty
i

@i 3 70 i® 5 rule-based * 2 %Y H R o B tiEL o l’}lj—!ir'l’ft:}%%);
PR AP AEARGE  MArR PERY I REF 4R 0 T U
Fapendpiz o LR R LI TR ORAE 12 HFE 0 P g
REEG EF g =B P2 EbT % > 5 I REFARDRZ L EIHF RIS
FEREAR IR S O 2 5 12 fenie & R F A 5 A PR Rin et AR ol B (F kT
Bt Z Boe? f H cnif2 7 i - LR R 3 RS EBIER R
S T S LR e A RS- o TRt 2 AP

%ﬁﬁ,xgzkﬁmﬁﬁﬁag¢¢w,g$ﬁﬁ@ﬁﬁ$§%§—ﬁ’@%

gz

AR DEET R EA S e E 4R B ERFRREEVRE B
&+$?ﬁiﬁﬁ‘ﬂ%ﬁﬁgﬁ?ﬂﬁﬁ’¢&$“@+’E%%ﬁawﬁﬁ
Bodih s o feBp R A L RBEERCL 85 KL TR e iERY L T
% 1§ trial and error (9> 8 KB - BEE > BT NG p L 3 LT FI LR

WS o MATRAR G K4 h

*‘m}&

FLE > 2 F AR EE Y FE 2 L aid
EFRA > APApgista® 2 b it ehtrialand error { F A E G 18§

g A o

31 doi:10.6342/NTU202403031



32

doi:10.6342/NTU202403031



bado FARLAGAPR RIS 6o FF LRI LRON LG PR

M- BARG TG ot oh > AP FH ALY B AFT LED

ROATHOE BT A (1] BEFe e R

51 FE&st

APy - F AR - B A3 Transformer 28 i A & 7] (Baseline
Model) » 4e% i B @ - BRI P F 50% = ehA R AP gt 5 AR

Heal o # AR L L AR

511 REFEAX

N E R HIEAPRECERBET PR AR RS LA

24

—3; , ;\‘.Wa—‘ﬁ,‘t

\\\Xr

% PyTorch # = Transformer[34] g 3% S ¥c > KA Py - B

baseline model $-#c& » 1T EIP A PR L AP E & LB T o

4

2K 5 512> i 2P eh embedding % 3 E_132 &

B FltR s 1320

* Attention head F#cE > FFKX A8 > H U4 & % 5 d_model ehF| > F1 5 ¢
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I 3a e R GhF K & B attention head &R o B A P ATy P F LR
IE VR - T iR R A2 R R 4084 L
ApiE R RIE 2R FRG A A 4 R0 o 7S Y - attention head
iR L F o BREFERFF Y FHEE P ERVRFETER

Flpt L EHE T 12 17 5 A B H03) 0 attention head #<c§ -

* Encoder &2 Decoder i %] sk #c > g % 8.6 > F] 5 Transformer # 4~ £ p

RET RN LA AR R L P AE T HE - AR AP

e Feedforward network s/ & » 33K £_2048 » ¥ 50 4 A i 8 L * F5 3%

B AR REFLEE TR

B ARE IR RLF L AT ML F] AP TFRE L

512 FRAABEGLEE

70 b A BRI GE  A A & A Attention head h#c £ ~ Encoder £
Decoder 1% #ic ~ Feedforward network en/& & » FEFA P X F 7 Uz > T AT

R R EER Y (1P A RREPEHRE -

513 JisRIALPL|HEA

hdo- Bl P sy § B8P REZ KPR S8 n@dhT
warmup_steps=40 > (4.3) 7 factor=0.0015 2. K Z3& 7 9T/ F 12 =8 fTag o NP Y
PUIT R R TR PIHBAET] 0 A < {7 epoch Bk T 200 11 oo do % LD Ak
%% (Validation) ® 3 4 & ZLiE BT "5 A » NP v o e a3 0 215 0 B3 IR
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q
s
5
F_k
i
?3;-
=]
frt.
1
s
\t‘“*

PRI AR AP ERRFENR S B2

52 mELBARAREHILE

L e gAY [1]4 £ % dadaGP TR & k33— B £ CNN
A AR S 2] B B RIR R AR R TR Y 2 e

PG AR A& LT Z B

BB HE g B 24 AT R 20 0 oA R H -
F g 3 PR - T b At A R K 162 MR 0 F kAR
2T R > F g 025 g R R A F AR 0 £ 2T R o Bl

rd o h 162 A e £ 0 ik 3 E_02 MIDI number $ 0@ R K ERG B T o

FoOBFTVREAMER Y dadaGP FTAHE P 5% mF A R 2 i
" Data in the system was represented in a binary format (described in the next paragraph)
that generated multiple instances per piece, making the entirety of the dataset practically
unusable because of its large size. Therefore, a 5% part of the entire dataset was employed,
in which a random 5% of pieces from each folder in the DadaGP was included. | o #% i
FRl LTS Y PR RS B TR S ERE Y 23T M
FEREE AL RAFT O EET €F SHROPI o T AT Y €T AT
FRERI G OT A RDIRBA > X2 T L EE o FIL AR R TR

fo s RET Y AT F 2 R ehip g o

5

lt\

2L AT E P ORI F R 5% (Data Augmentation) = E 0 AT G A FRF T
PG NT REF TLHRBE - AP AT R HFET DTS A
EAIFE*ZHE 2 ORBRAEIEAT ARV R SEL TR -
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6.1 &%

Table 6.1 % 3.2 9 e 242 ; Table 6.2 % IR & B A VR PF PrfacnZk 8 2 % »
. i]};%'\;h PP E WA enik g Table 6.3% MBEH AP E D o fd) LpIEE
R AR RGBS il % R 2 R PR AATRE > J TR R

A - HENHERA Y B o

Model | Post-processing | nhead | dim_feedforward | num_decoder_layers

num_encoder_layers
#1 False 12 2048 4
#2 True 12 2048 4
#3 True 12 2048 4
#4 True 12 2048 8
#5 True 12 4096 4
#6 True 12 4096 4
#7 True 12 8192 4
#8 True 6 2048 4
#9 True 12 2048 2
#10 True 12 2048 4
#11 True 22 2048 4
#12 True 12 2048 6

Table 6.1: -3 . $%

37 doi:10.6342/NTU202403031



Model | Total Epoch | Best Epoch | Slot Accuracy | Tablature 0/1 Accuracy | Pitch Set Accuracy
#1 290 217 0.8752 0.7346 0.9074
#2 250 194 0.8925 0.7412 0.9043
#3 400 375 0.8982 0.7578 0.9164
#4 400 397 0.8309 0.5592 0.7459
#5 306 282 0.9086 0.7820 0.9403
#6 350 347 09118 0.7900 0.9457
#7 350 340 0.9122 0.7833 0.9408
#8 350 310 0.8939 0.7489 0.9086
#9 200 77 0.7389 0.3749 0.5274

#10 350 334 0.8978 0.7557 0.9160
#11 350 275 0.8628 0.6381 0.8255
#12 350 335 0.8278 0.5454 0.7384

Table 6.2: % #% (Validation) % %

Model | Slot Accuracy | Tablature 0/1 Accuracy | Pitch Set Accuracy | Pitch False Alarm Ratio
#1 0.8776 0.7336 0.9106 0.0803
#2 0.8934 0.7397 0.9062 0
#3 0.8991 0.7543 0.9185 0
#4 0.8327 0.5581 0.7472 0
#5 0.9087 0.7771 0.9394 0
#6 09118 0.7848 0.9450 0
#7 0.9121 0.7791 0.9413 0
#8 0.8946 0.7457 0.9121 0
#9 0.7411 0.3765 0.5316 0

#10 0.8979 0.7508 0.9175 0
#11 0.8661 0.6396 0.8278 0
#12 0.8297 0.5446 0.7401 0

Table 6.3: ip|:# (Testing) & %

6.2 M

AR EHT R DR B B A PR R RP o # LAY -
B BB AR B 0 F A 0 e RS AT R A R P v - G e 1)
RIL AR o F G 1 kA HF R FES GPU T 7 AL enfs AT AL R > 4101 15 3

PR ERg 0 IS RGT o Bt #1 AT S IRt E PR

B is g R AR IR 350~400 B € i A RORA Tt > TRk G T
Lo B P end B4 o) o AT F MU AR 0B+ epoch $eRT B 350 0 3R A i
R T L ER A o FPL AP E T #] AP R S T4~ (S RJdT o Y
BO#10 155 B FF =R -
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9 3 & 12 Table 6.14 Table 6.3 #ciE asdshm » P RF> € ¥ FAEI & |2

mﬁﬁ;fi s A RERAELB &Y o

6.2.1 BERANKEH

dim_feedforward: 2048, nhead: 12, num_encoder_layers: 4, num_decoder_layers: 4

Model | Post-processing | Slot Accuracy | Tablature 0/1 Accuracy | Pitch Set Accuracy | Pitch False Alarm Ratio
#1 False 0.8776 0.7336 0.9106 0.0803
#2 True 0.8934 0.7397 0.9062 0
#3 True 0.8991 0.7543 0.9185 0

Table 6.4: {4 &I T F 2_ WL i

#H2E#3 5 S BB L HI R 2 - Ko f 0 Y Repoch R 7 0 H AR R
wARR o d #] o #2 HRIER S F IR 0 B2 2R #2 & Pitch Set Accuracy & Jfi £
— & > 2 % Slot Accuracy fr Token 0/1 Accuracy P* Bg4F £ o itk end M fE & AP

B EIE T o FL AP ERIEREEY HE D DS B riEe s A S o

Pitch Set Accuracy = 2713 #58 » ¥ 122 % Slot Accuracy = Token 0/1 Accuracy °

~=\

BB B OB &+ ¥ g )k > Figure 6.1¢ Pitch Set Accuracy % epoch 80 = +
Bde o Al b 3§48 L Slot Accuracy @ f4c » {4 &2 fh Figure 6.211 % Figure
63¢ ¥ IUER T 0B —"f enfic (e P B 5 42317 0 — E Figure 6.37 epoch 270 = +
X - AR RS R R E FE AU Y Figure 6197 Tl o d S g ¥
GPU T (78 chk % N {5 Bd0 » s U PFRF & AZEd > A 9ERT » & - B

epoch S ZHPFRF <27 5771 304 (RA I 12 2482 4) o

6.2.2 Self Attention % ¥ = H &

#% i - encoder ™ % decoder (& Bk A - R NP #10 5 R 0 #O s
#12 ~ #4 5 F B R o ¥ 0 TR encoder fe decoder B 4 K PF A TR B4 0 H

Wk RN B A o 3 VR ABE D #) A AT F R EA F TR
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Post-processing: True, dim_feedforward: 2048, nhead: 12
Model | num_encoder_layers | Slot Accuracy | Tablature 0/1 Accuracy | Pitch Set Accuracy
num_decoder_layers

#9 2 0.7411 0.3765 0.5316
#10 4 0.8979 0.7508 0.9175
#12 6 0.8297 0.5446 0.7401
#4 8 0.8327 0.5581 0.7472

Table 6.5: num_encoder_layers, num_decoder_layers 2. " &

(Figure A.8) » i #4 ihd L] 7 A= %k Z 5 F " =t ety + = (Figure A.8) » 7 i
Flo FBERM TR DIRFPFL AR APTRFIEZL 2SR

A AG it Y ERIEHM NS EE AV RERF oL RS "’Kqﬁ; 2 4% (Figure A.6) °

6.2.3 Attention Head # &2 % &

Post-processing: True, dim_feedforward: 2048, num_encoder_layers: 4,
num_decoder_layers: 4.

Model | nhead | Slot Accuracy | Tablature 0/1 Accuracy | Pitch Set Accuracy
#8 6 0.8946 0.7457 0.9121
#10 12 0.8979 0.7508 0.9175
#11 22 0.8661 0.6396 0.8278

Table 6.6: nhead 2. ‘" iz

PyTorch £ i+ 24| Attention Head #c& & 7F &_dpoger 2- FlHc > 1 it T L el
B F A% L i Attention Head © 2 F § ¥ dypger = 132 =22 x3x 11> 2 3E * 7
61222 enfic® kb > 4rTable 6,657 5 I > B P #8 B #I0 ¥ m g F L B > e
HIL AP 2T AIFT i g > T A PR 12 B AP M ALE R g 8

o

Ik

#

o

6.2.4 Feedforward Dimension 2 % %

Sl #3 E A R s R HSHT A R B B el R i
Mor BTG - BRI R AR Q3 R EATIR #1000 £ 4
PIPGEALY 1B BB ERE T P U #5 > F)p b e & e Table 6.747 & I o
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Post-processing: True, nead: 12, num_encoder_layers: 4, num_decoder_layers: 4.

Model | dim_feedforward | Slot Accuracy | Tablature 0/1 Accuracy | Pitch Set Accuracy
#10 2048 0.8979 0.7508 0.9175
#6 4096 09118 0.7848 0.9450
#7 8192 0.9121 0.7791 0.9413

Table 6.7: dim_feedforward 2. +“ §&

AP OUF IR A S 4096 chd TP AE R 2048 12 2 8192 4F 0 R 8192 B2

* ehbatch size B L 4 it E A GPU ehie it * £ a4 A5 % F % > @ batch size
FERRAFHFMELPT 4B 25 B epoch & FHFIREKRFEANFIRT > -
Bl P PER L8 A T 2 B epoch o F]pt APk B R ARk e R 8192 F B F

6.2.5 $MAFIMIR

R AF s 5 (H6) KF > APz Ap AR FE 09 s AP 320
PR T EZF MR EI R BET L% Lo RIEAFT T his %
PF p 7 v 5 1

R 4 0L (T A S FRPNRT L i 4 ek

T o

6.3 HTBERMIAHILEK

. A Machine Learning Approach for MIDI to Guitar Tablature Conversion[ 1] & i»
Foyov o APt woendt % # s (> 27 7 Table 2. <7 Guitar-only training - Guitar-only

test f= Augmented training - Guitar-only test i& = 3§ (74 IR o

FAAPRE- TRy Y &2 S L tablature frame fr A FT Y &K D
token ¥ ifdg i F %A A Ap e & 0 410 B ¢ match 7] 0 sum 7 ehdficiE o 4 ,T}u
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4_token * #ﬁ/z FHeq ’f XA Rkt > BAE Y mip/z 01 &

(Tablature 0/1 Accuracy) #_4p (R & o

FFAol - 7R E > SR Y G T A5 (Data Augmentation) 77 &

S b A W T E LA RS TAY R B LA % T

YRR A F AR R TR BRI

F_&

AP RpAPLDFHROEE O H#O DT EE AP T YRR P B

B F] SN i 2 f? A - A > 31 & F attention head ch#cE 0 F]

s

fm eic

12 &% 4 162 & PyTorch 8§ (7 » o *t R H 4 > APEHT

BT 12 ¥ v 12 < 018 1% 4 attention head “#ic & o

AR Ay [1] ¢ i@ o 23 0 fpt 2 -2 Table 2. #icdy &
£ 4 = Table 6.8 > i&i»#7 1 3+ 7 data augmentation e /% > » B < & 74
A% Pp3% % % ¢ > augmentation #_F 3 & * % training set - testing set © A & *
augmentation P ¢ v + Guitar-only e % 12 4% o 3% ¥ £_% B column Hg & > & R
itoken ¥ Z EBE O BEMERTFL > FP G E G 6T i E (1~60) 0 & F A
% B row (AR & 0 40 % 3% token ¥ A7 iy i TAR E'Jﬁﬁ?féﬁi‘d match > & %4 4P

P ,éf% ¥ 3] partial 0 FR DA APE P Eﬁ‘ﬁﬁi‘] no match o % *% sum P ¥ _#-% B

row £ column i¥4e %% o
RHxpAPLD g2 01 a7 g RZESF § &9 (row, col)

= (match, sum) 4p f¢ > = )ILQ‘F EaliN :}ﬁ/z DR et oo d 3N P e test set

A $# * augmentation > F] gt > AP % 4 Augmented test A5 0 L fR¥E R T F

f

Guitar-only test > H & A %] 5 035 &2 048 > @ 2 eh= jx A2 oenfic 3] B &

071 » teficie ¥t P RE AT & o

F Y R dadaGP S P S%mg‘f«"%{r-‘%wﬁj”’ FRR T %
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RN HORG > @ PaR? { TR EEAREEDREN
ForRe L o AP N BEA PR PR - L VREDAR e B A
PER LR FRFREHET DT B DR A R =S HIADS Y

B ks v a/amy Y ERa & KF

Guitar-only training - Guitar-only test ‘ Augmented training - Guitar-only test
num. p.: 1 2 3 4 5 6 sum ‘ 1 2 3 4 5 6 sum

nomatch 045 0.05 0.03 0.01 0.01 0.00 055|036 0.04 002 0.01 0.01 0.00 0.44
partial  0.00 0.03 0.05 0.01 0.00 0.00 0.09 | 0.00 0.03 0.03 0.01 0.01 0.00 0.07
match  0.25 0.05 0.03 001 0.00 0.01 035]034 0.06 005 001 0.01 0.01 048

sum 0.70 0.13 0.11 0.03 0.02 0.01 1.00|0.70 0.13 0.11 0.03 0.02 0.01 1.00

Guitar-only training - Augmented test ‘ Augmented training - Augmented test
num. p.: 1 2 3 4 5 6  sum ‘ 1 2 3 4 5 6  sum

nomatch 0.16 0.16 0.02 0.03 0.03 005 045)|0.12 0.15 0.02 0.03 0.03 0.05 040
partial  0.10 0.13 0.06 0.07 0.06 0.07 039 ]0.10 0.16 0.06 0.07 0.06 0.07 0.42
match  0.13 0.01 0.01 0.00 0.00 0.00 0.14]0.17 0.01 0.01 0.00 0.00 0.00 0.18

sum 029 031 0.09 0.10 0.09 0.12 1.00|0.29 031 0.09 0.10 0.09 0.12 1.00
Table 6.8: Cross-comparison results as a ratios over the total number of examined data
instances when model was trained and tested with guitar-only and augmented data, when
the transcription task incorporated 1 to 6 number of pitches.[!]

Dataset Slot Accuracy | Tablature 0/1 Accuracy | Pitch Set Accuracy
Validation Set 0.8916 0.7150 0.8909
Testing Set 0.8947 0.7136 0.8919
Table 6.9: dp = =% 1 ez 5 25 {8 » £ AT A & 3R
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ipiaiﬁﬁﬁE&§JWé20’{{§ﬂ%$w4:?zgﬁ@20w¥{£
MTEBGLRLER{ B T Table 7.14_dadaGP FALE P > 2
BaRehs Bl g il e d g ko ARAEFERFY PO EERS D

fret » HFHLA % € 5 & & (Long Tail) 38 > ¢ & - JE 9 o

fret count
0 | 11799101
1 3924286
2 | 11805394
3 9526698
4 5261572
5 8156690
6 3048766
7 6686176
8 2235282
9 3013625
10 | 1600870
11 638076
12 923266
13 233802
14 376983
15 218184
16 105681
17 162632
18 42660
19 70164
20 37098
21 19952
22 14557
23 2951
24 4912
25 1974
26 1355
27 647
28 566
29 622
30 575
31 1

Table 7.1: dadaGP F#L ¢ » 7 3ha2 %] > 4 R ER ] Rk B S
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Figure A.1: Training Loss of Model#1
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Figure A.7: Training Loss of Model#4
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