請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94619| 標題: | 智慧電子衣物中電子元件的可拉伸互連技術整合 Integration of Stretchable Interconnection Technology for Electronic Components in Electronic Textiles |
| 作者: | 翁鼎泓 Ding-Hong Weng |
| 指導教授: | 廖英志 Ying-Chih Liao |
| 關鍵字: | 智慧衣物,電子織物,穿戴式裝置,混成光固化聚合機制,拉伸導電膠, smart clothing,electronic textiles,wearable devices,hybrid UV-curing polymerization mechanism,stretchable conductive paste, |
| 出版年 : | 2024 |
| 學位: | 碩士 |
| 摘要: | 近年來,由於穿戴式裝置的輕量化及舒適性之需求與日俱增,電子紡織品(electronic textile / e-textile)領域之研究開始受到廣泛的關注,因其具有克服相關缺點之潛力。電子織物透過將電子元件整合到紡織品上製備生物感測裝置,相對現有之外接式感測模組而言,在柔韌性、輕便性、透氣性以及穿戴之舒適性等方面具有極大的優勢,使其更適於建置長時間之非侵入式實時生理檢測平台,可於檢驗醫學與運動科學等領域有所裨益。現今電子織物之商業化依然受到兩個主要問題的限制,分別是織物上可拉伸線路之機械與電氣性能以及織物上線路與電子元件之可靠內部連接與整合。
為克服前述挑戰,本研究使用光固化之拉伸導電複合材料,同時應用於製備布料上之拉伸導電線路及與電子元件之內部連接。透過調控導電複合材料之組成以滿足線路之電氣性能需求,其電阻率可低至10-4 Ωcm,且其固化深度可達200微米。此外,透過皮亞諾曲線之設計,拉伸導電線路在最大應變50 %,拉伸速度每分鐘1500 %應變的情況下,整體之動態電阻變化於前500次拉伸循環中可保持於5 %以下。本研究開發之導電複合材料將用於製備了一肌電感測原型裝置,透過將電子元件整合到高彈性之運動腿套上,可監測腓腸肌運動之肌電訊號。以上成果證實了此拉伸導電複合材料應用於線路製造以及元件互連之電子紡織物的可行性,其高設計自由度亦具備相當潛力向更廣泛之應用需求拓展,為健康護理、活動追蹤、康復、運動醫學及人機交互等穿戴式應用提供了一種具經濟性的解決方案。 In recent years, due to the increasing demand for lightweight and comfortable wearable devices, the field of electronic textiles (e-textiles) begin to receive widespread attention because of its potential to overcome related shortcomings. E-textiles create biosensing devices by integrating electronic components into textiles. Compared to existing external sensing modules, e-textiles offer significant advantages in flexibility, lightness, breathability, and wearing comfort. This makes them more suitable for establishing long-term, non-invasive real-time physiological monitoring platforms, which can benefit fields such as diagnostic medicine and sports science. However, the commercialization of electronic textiles is still limited by two major issues: the mechanical and electrical performance of stretchable circuits on the fabric, and the reliable internal connection and integration of circuits with electronic components on the fabric. To overcome these challenges, this study formulates a photocuring stretchable conductive composite, which are applied for both the fabrication of stretchable conductive circuits on fabrics and the internal connections with electronic components. By adjusting the formulation of the conductive composites to meet the electrical performance requirements of the circuits, the resistivity can be reduced to as low as 10-4 Ω·cm, with a curing depth reaching up to 200 micrometers. Additionally, through the design of Peano curves, the stretchable conductive circuits can maintain a dynamic resistance change within 5% after 500 stretching cycles at a maximum strain of 50% and a stretching rate of 1500% strain per minute. This study developed a prototype electromyography (EMG) sensing device by integrating electronic components and the stretchable conductive composite into a highly elastic sports leg sleeve, successfully monitoring the EMG signals of the gastrocnemius muscle. These results demonstrate the feasibility of using stretchable conductive composites for circuit manufacturing and component interconnection in e-textiles. The high design flexibility also indicates significant potential for expanding to broader application needs, providing a cost-effective solution for wearable applications in health care, activity tracking, rehabilitation, sports medicine, and human-computer interaction. |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94619 |
| DOI: | 10.6342/NTU202403734 |
| 全文授權: | 未授權 |
| 顯示於系所單位: | 化學工程學系 |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 4.49 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
