請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94619完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 廖英志 | zh_TW |
| dc.contributor.advisor | Ying-Chih Liao | en |
| dc.contributor.author | 翁鼎泓 | zh_TW |
| dc.contributor.author | Ding-Hong Weng | en |
| dc.date.accessioned | 2024-08-16T17:07:33Z | - |
| dc.date.available | 2024-08-17 | - |
| dc.date.copyright | 2024-08-16 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-06 | - |
| dc.identifier.citation | 1. Stoppa, M., & Chiolerio, A. (2014). Wearable electronics and smart textiles: A critical review. sensors, 14(7), 11957-11992.
2. Kono, M., Takahashi, T., Nakamura, H., Miyaki, T., & Rekimoto, J. (2018). Design guideline for developing safe systems that apply electricity to the human body. ACM Transactions on Computer-Human Interaction (TOCHI), 25(3), 1-36. 3. Simegnaw, A. A., Malengier, B., Rotich, G., Tadesse, M. G., & Van Langenhove, L. (2021). Review on the Integration of Microelectronics for E-Textile. Materials, 14(17), 5113. 4. Wu, H., Huang, Y., Xu, F., Duan, Y., & Yin, Z. (2016). Energy harvesters for wearable and stretchable electronics: from flexibility to stretchability. Advanced materials, 28(45), 9881-9919. 5. Kuroda, T., Takahashi, H., & Masuda, A. (2021). Woven electronic textiles. In Wearable Sensors (pp. 249-275). Academic Press. 6. Bahru, R., Hamzah, A. A., & Mohamed, M. A. (2021). Thermal management of wearable and implantable electronic healthcare devices: Perspective and measurement approach. International Journal of Energy Research, 45(2), 1517-1534. 7. Park, S., & Jayaraman, S. (2003). Enhancing the quality of life through wearable technology. IEEE Engineering in medicine and biology magazine, 22(3), 41-48. 8. Fleury, A., Sugar, M., & Chau, T. (2015). E-textiles in clinical rehabilitation: a scoping review. Electronics, 4(1), 173-203. 9. Smart Textiles and Their Applications—1st Edition. Available online: https://www.elsevier.com/books/smart-textiles-andtheir-applications/koncar/978-0-08-100574-3 (accessed on 27 August 2021) 10. Zaman, S. U., Tao, X., Cochrane, C., & Koncar, V. (2020). Understanding the washing damage to textile ECG dry skin electrodes, embroidered and fabric-based; set up of equivalent laboratory tests. Sensors, 20(5), 1272. 11. Bystricky, T., Moravcova, D., Kaspar, P., Soukup, R., & Hamacek, A. (2016, May). A comparison of embroidered and woven textile electrodes for continuous measurement of ECG. In 2016 39th international spring seminar on electronics technology (ISSE) (pp. 7-11). IEEE. 12. Ankhili, A., Tao, X., Cochrane, C., Koncar, V., Coulon, D., & Tarlet, J. M. (2019). Ambulatory evaluation of ECG signals obtained using washable textile-based electrodes made with chemically modified PEDOT: PSS. Sensors, 19(2), 416. 13. Gaubert, V., Gidik, H., Bodart, N., & Koncar, V. (2020, April). Quantification of the silver content of a silver-plated nylon electrode according to the nature of the laundering detergent. In IOP Conference Series: Materials Science and Engineering (Vol. 827, No. 1, p. 012033). IOP Publishing. 14. Quandt, B. M., Scherer, L. J., Boesel, L. F., Wolf, M., Bona, G. L., & Rossi, R. M. (2015). Body‐Monitoring and health supervision by means of optical fiber‐based sensing systems in medical textiles. Advanced healthcare materials, 4(3), 330-355. 15. Angelucci, A., Cavicchioli, M., Cintorrino, I. A., Lauricella, G., Rossi, C., Strati, S., & Aliverti, A. (2021). Smart textiles and sensorized garments for physiological monitoring: A review of available solutions and techniques. Sensors, 21(3), 814. 16. McLaren, R., Joseph, F., Baguley, C., & Taylor, D. (2016). A review of e-textiles in neurological rehabilitation: How close are we?. Journal of neuroengineering and rehabilitation, 13, 1-13. 17. Hubli, M., Zemp, R., Albisser, U., Camenzind, F., Leonova, O., Curt, A., & Taylor, W. R. (2021). Feedback improves compliance of pressure relief activities in wheelchair users with spinal cord injury. Spinal cord, 59(2), 175-184. 18. Tosi, D., Schena, E., Molardi, C., & Korganbayev, S. (2018). Fiber optic sensors for sub-centimeter spatially resolved measurements: Review and biomedical applications. Optical Fiber Technology, 43, 6-19. 19. Zaman, S. U., Tao, X., Cochrane, C., & Koncar, V. (2021). Smart E-textile systems: a review for healthcare applications. Electronics, 11(1), 99. 20. Hughes-Riley, T., Dias, T., & Cork, C. (2018). A historical review of the development of electronic textiles. Fibers, 6(2), 34. 21. Zaman, S. U., Tao, X., Cochrane, C., & Koncar, V. (2021). Smart E-textile systems: a review for healthcare applications. Electronics, 11(1), 99. 22. Gopalsamy, C., Park, S., Rajamanickam, R., & Jayaraman, S. (1999). The Wearable Motherboard™: The first generation of adaptive and responsive textile structures (ARTS) for medical applications. Virtual Reality, 4, 152-168. 23. Tao, X., Huang, T. H., Shen, C. L., Ko, Y. C., Jou, G. T., & Koncar, V. (2018). Bluetooth Low Energy‐Based Washable Wearable Activity Motion and Electrocardiogram Textronic Monitoring and Communicating System. Advanced Materials Technologies, 3(10), 1700309. 24. Kim, H., Kang, T. H., Ahn, J., Han, H., Park, S., Kim, S. J., ... & Lim, J. A. (2020). Spirally wrapped carbon nanotube microelectrodes for fiber optoelectronic devices beyond geometrical limitations toward smart wearable E-textile applications. ACS nano, 14(12), 17213-17223. 25. Zaman, S. U., Tao, X., Cochrane, C., & Koncar, V. (2021). Smart E-textile systems: a review for healthcare applications. Electronics, 11(1), 99. 26. Gao, Y., Yu, L., Yeo, J. C., & Lim, C. T. (2020). Flexible hybrid sensors for health monitoring: materials and mechanisms to render wearability. Advanced Materials, 32(15), 1902133. 27. Zaman, S. U., Tao, X., Cochrane, C., & Koncar, V. (2021). Smart E-textile systems: a review for healthcare applications. Electronics, 11(1), 99. 28. Tao, X., Huang, T. H., Shen, C. L., Ko, Y. C., Jou, G. T., & Koncar, V. (2018). Bluetooth Low Energy‐Based Washable Wearable Activity Motion and Electrocardiogram Textronic Monitoring and Communicating System. Advanced Materials Technologies, 3(10), 1700309. 29. Kim, H., Kang, T. H., Ahn, J., Han, H., Park, S., Kim, S. J., ... & Lim, J. A. (2020). Spirally wrapped carbon nanotube microelectrodes for fiber optoelectronic devices beyond geometrical limitations toward smart wearable E-textile applications. ACS nano, 14(12), 17213-17223. 30. Yan, K., Li, J., Pan, L., & Shi, Y. (2020). Inkjet printing for flexible and wearable electronics. Apl Materials, 8(12). 31. Gao, M., Li, L., & Song, Y. (2017). Inkjet printing wearable electronic devices. Journal of Materials Chemistry C, 5(12), 2971-2993. 32. Lee, T. M., Choi, Y. J., Nam, S. Y., You, C. W., Na, D. Y., Choi, H. C., ... & Jung, K. I. (2008). Color filter patterned by screen printing. Thin solid films, 516(21), 7875-7880. 33. Rosu, R. F., Shanks, R. A., & Bhattacharya, S. N. (1999). Shear rheology and thermal properties of linear and branched poly (ethylene terephthalate) blends. Polymer, 40(21), 5891-5898. 34. Otaigbe, J. U., Kim, H. S., & Xiao, J. (1999). Effect of coupling agent and filler particle size on melt rheology of polymer‐bonded Nd‐Fe‐B magnets. Polymer composites, 20(5), 697-704. 35. Lin, H. W., Chang, C. P., Hwu, W. H., & Ger, M. D. (2008). The rheological behaviors of screen-printing pastes. Journal of materials processing technology, 197(1-3), 284-291. 36. Park, M., Park, J., & Jeong, U. (2014). Design of conductive composite elastomers for stretchable electronics. Nano Today, 9(2), 244-260. 37. Li, J., & Kim, J. K. (2007). Percolation threshold of conducting polymer composites containing 3D randomly distributed graphite nanoplatelets. Composites science and technology, 67(10), 2114-2120. 38. Li, J., Ma, P. C., Chow, W. S., To, C. K., Tang, B. Z., & Kim, J. K. (2007). Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes. Advanced Functional Materials, 17(16), 3207-3215. 39. Komolafe, A., Torah, R., Wei, Y., Nunes‐Matos, H., Li, M., Hardy, D., ... & Beeby, S. (2019). Integrating flexible filament circuits for e‐textile applications. Advanced Materials Technologies, 4(7), 1900176. 40. Rajan, G., Morgan, J. J., Murphy, C., Torres Alonso, E., Wade, J., Ott, A. K., ... & Neves, A. I. (2020). Low operating voltage carbon–graphene hybrid E-textile for temperature sensing. ACS applied materials & interfaces, 12(26), 29861-29867. 41. Rosa-Ortiz, S. M., & Takshi, A. (2020, February). Copper electrodeposition by hydrogen evolution assisted electroplating (HEA) for wearable electronics. In 2020 Pan Pacific Microelectronics Symposium (Pan Pacific) (pp. 1-5). IEEE. 42. Fan, J. A., Yeo, W. H., Su, Y., Hattori, Y., Lee, W., Jung, S. Y., ... & Rogers, J. A. (2014). Fractal design concepts for stretchable electronics. Nature communications, 5(1), 3266. 43. Xu, D., Cao, J., Liu, F., Zou, S., Lei, W., Wu, Y., ... & Li, R. W. (2022). Liquid metal based nano-composites for printable stretchable electronics. Sensors, 22(7), 2516. 44. Blau, R., Chen, A. X., Polat, B., Becerra, L. L., Runser, R., Zamanimeymian, B., ... & Lipomi, D. J. (2022). Intrinsically stretchable block copolymer based on PEDOT: PSS for improved performance in bioelectronic applications. ACS Applied Materials & Interfaces, 14(4), 4823-4835. 45. Niu, P., Bao, N., Zhao, H., Yan, S., Liu, B., Wu, Y., & Li, H. (2022). Room-temperature self-healing elastomer-graphene composite conducting wires with superior strength for stretchable electronics. Composites Science and Technology, 219, 109261. 46. Li, Z., Le, T., Wu, Z., Yao, Y., Li, L., Tentzeris, M., ... & Wong, C. P. (2015). Rational Design of a Printable, Highly Conductive Silicone‐based Electrically Conductive Adhesive for Stretchable Radio‐Frequency Antennas. Advanced Functional Materials, 25(3), 464-470. 47. Rueda, M. M., Auscher, M. C., Fulchiron, R., Périé, T., Martin, G., Sonntag, P., & Cassagnau, P. (2017). Rheology and applications of highly filled polymers: A review of current understanding. Progress in Polymer Science, 66, 22-53. 48. Kulkarni, R. D., Chaudhari, M. E., & Mishra, S. (2013). UV cure acrylate monomers: Synthesis, analysis and storage. Pigment & Resin Technology, 42(1), 53-67. 49. Schwalm, R. (2006). UV coatings: basics, recent developments and new applications. 50. Yousif, E., & Haddad, R. (2013). Photodegradation and photostabilization of polymers, especially polystyrene. SpringerPlus, 2, 1-32. 51. Sivaguru, P., Wang, Z., Zanoni, G., & Bi, X. (2019). Cleavage of carbon–carbon bonds by radical reactions. Chemical Society Reviews, 48(9), 2615-2656. 52. Lovestead, T. M., Berchtold, K. A., & Bowman, C. N. (2002). Modeling the effects of chain length on the termination kinetics in multivinyl photopolymerizations. Macromolecular theory and simulations, 11(7), 729-738. 53. Crivello, J. V. (1999). The discovery and development of onium salt cationic photoinitiators. Journal of Polymer Science Part A: Polymer Chemistry, 37(23), 4241-4254. 54. Quan, H., Zhang, T., Xu, H., Luo, S., Nie, J., & Zhu, X. (2020). Photo-curing 3D printing technique and its challenges. Bioactive materials, 5(1), 110-115. 55. Golaz, B., Michaud, V., Leterrier, Y., & Månson, J. A. (2012). UV intensity, temperature and dark-curing effects in cationic photo-polymerization of a cycloaliphatic epoxy resin. Polymer, 53(10), 2038-2048. 56. Fouassier, J. P., & Lalevée, J. (2014). Photochemical production of interpenetrating polymer networks; simultaneous initiation of radical and cationic polymerization reactions. Polymers, 6(10), 2588-2610. 57. Fan, J. A., Yeo, W. H., Su, Y., Hattori, Y., Lee, W., Jung, S. Y., ... & Rogers, J. A. (2014). Fractal design concepts for stretchable electronics. Nature communications, 5(1), 3266. 58. Stanley, J., Hunt, J. A., Kunovski, P., & Wei, Y. (2022). A review of connectors and joining technologies for electronic textiles. Engineering Reports, 4(6), e12491. 59. Simegnaw, A. A., Malengier, B., Rotich, G., Tadesse, M. G., & Van Langenhove, L. (2021). Review on the Integration of Microelectronics for E-Textile. Materials, 14(17), 5113. 60. Dias, T. (Ed.). (2015). Electronic textiles: Smart fabrics and wearable technology. Woodhead Publishing. 61. Ismar, E., Zaman, S. U., Tao, X., Cochrane, C., & Koncar, V. (2019). Effect of water and chemical stresses on the silver coated polyamide yarns. Fibers and Polymers, 20, 2604-2610. 62. Post, E. R., Orth, M., Russo, P. R., & Gershenfeld, N. (2000). E-broidery: Design and fabrication of textile-based computing. IBM Systems journal, 39(3.4), 840-860. 63. Linz, T. (2011). Analysis of failure mechanisms of machine embroidered electrical contacts and solutions for improved reliability (Doctoral dissertation, Ghent University). 64. Kang, H., Rajendran, S. H., & Jung, J. P. (2021). Low melting temperature Sn-Bi solder: effect of alloying and nanoparticle addition on the microstructural, thermal, interfacial bonding, and mechanical characteristics. Metals, 11(2), 364. 65. Woo Ma, S., Shin, C., & Kim, Y. H. (2017). Enhanced Bonding by Applied Current in Cu-to-Cu Joints Fabricated Using 20 μ m Cu Microbumps. Journal of Electronic Packaging, 139(4), 041004. 66. Choi, J. Y., Park, D. H., & Oh, T. S. (2012). Chip interconnection process for smart fabrics using flip-chip bonding of SnBi solder. Journal of the Microelectronics and Packaging Society, 19(3), 71-76. 67. Bahadir, S. K., Kalaoğlu, F., & Jevšnik, S. (2015). The use of hot air welding technologies for manufacturing e-textile trasmission lines. Fibers and Polymers, 16, 1384-1394. 68. Koshi, T., Nomura, K. I., & Yoshida, M. (2020). Electronic component mounting for durable e-textiles: Direct soldering of components onto textile-based deeply permeated conductive patterns. Micromachines, 11(2), 209. 69. Senders, F., van Beurden, M., Palardy, G., & Villegas, I. F. (2016). Zero-flow: A novel approach to continuous ultrasonic welding of CF/PPS thermoplastic composite plates. Advanced Manufacturing: Polymer & Composites Science, 2(3-4), 83-92. 70. Du, D., Tang, Z., & Ouyang, J. (2018). Highly washable e-textile prepared by ultrasonic nanosoldering of carbon nanotubes onto polymer fibers. Journal of Materials Chemistry C, 6(4), 883-889. 71. Lanin, V. L. (2007). Infrared heating in the technology of soldering components in electronics. Surface Engineering and Applied Electrochemistry, 43, 381-386. 72. Micus, S., Haupt, M., & Gresser, G. T. (2020). Soldering electronics to smart textiles by pulsed Nd: YAG laser. Materials, 13(11), 2429. 73. Atalay, O., Kalaoglu, F., & Kursun Bahadir, S. (2019). Development of textile-based transmission lines using conductive yarns and ultrasonic welding technology for e-textile applications. Journal of Engineered Fibers and Fabrics, 14, 1558925019856603. 74. Briedis, U., Valisevskis, A., & Grecka, M. (2017). Development of a smart garment prototype with enuresis alarm using an embroidery-machine-based technique for the integration of electronic components. Procedia Computer Science, 104, 369-374. 75. Tao, X., Koncar, V., Huang, T. H., Shen, C. L., Ko, Y. C., & Jou, G. T. (2017). How to make reliable, washable, and wearable textronic devices. Sensors, 17(4), 673. 76. von Krshiwoblozki, M., Linz, T., Neudeck, A., & Kallmayer, C. (2013). Electronics in textiles–adhesive bonding technology for reliably embedding electronic modules into textile circuits. Advances in Science and Technology, 85, 1-10. 77. Rabilloud, G. (2006). Adhesives and Sealants—General Knowledge, Application Techniques; New Curing Techniques—Handbook of Adhesives and Sealants. 78. Petrie, E. M. (2013). Adhesive bonding of textiles: principles, types of adhesive and methods of use. Joining textiles, 225-274. 79. Choi, J. Y., & Oh, T. S. (2015). Contact resistance comparison of flip-chip joints produced with anisotropic conductive adhesive and nonconductive adhesive for smart textile applications. Materials transactions, 56(10), 1711-1718. 80. Gomatam, R. R., & Sancaktar, E. (2006). A novel cumulative fatigue damage model for electronically-conductive adhesive joints under variable loading. Journal of adhesion science and technology, 20(1), 69-86. 81. Gomatam, R. R., & Sancaktar, E. (2005). Effects of various adherend surface treatments on fatigue behavior of joints bonded with a silver-filled electronically conductive adhesive. Journal of adhesion science and technology, 19(8), 659-678. 82. Gomatam, R. R., & Sancaktar, E. (2006). The effects of stress state, loading frequency and cyclic waveforms on the fatigue behavior of silver-filled electronically-conductive adhesive joints. Journal of adhesion science and technology, 20(1), 53-68. 83. Gomatam, R. R., & Sancaktar, E. (2006). A comprehensive fatigue life predictive model for electronically conductive adhesive joints under constant-cycle loading. Journal of adhesion science and technology, 20(1), 87-104. 84. Gallagher, A. J., Ní Annaidh, A., Bruyère, K., Otténio, M., Xie, H., & Gilchrist, M. D. (2012, September). Dynamic tensile properties of human skin. In IRCOBI conference (Vol. 59, pp. 494-502). Dublin (Ireland: International Research Council on the Biomechanics of Injury. 85. Schwartz, C., Wang, F. C., Forthomme, B., Denoël, V., Brüls, O., & Croisier, J. L. (2020). Normalizing gastrocnemius muscle EMG signal: An optimal set of maximum voluntary isometric contraction tests for young adults considering reproducibility. Gait & Posture, 82, 196-202. 86. Ugbolue, U. C., Yates, E. L., Ferguson, K., Wearing, S. C., Gu, Y., Lam, W. K., ... & Dias, T. (2021, April). Electromyographic assessment of the lower leg muscles during concentric and eccentric phases of standing heel raise. In Healthcare (Vol. 9, No. 4, p. 465). MDPI. 87. Vieira, T. M., Botter, A., Muceli, S., & Farina, D. (2017). Specificity of surface EMG recordings for gastrocnemius during upright standing. Scientific reports, 7(1), 13300. 88. Grayson, J. (1949). Reactions of the peripheral circulation to external heat. The Journal of Physiology, 109(1-2), 53. 89. Edholm, O. G., Fox, R. H., & Macpherson, R. K. (1956). The effect of body heating on the circulation in skin and muscle. The Journal of physiology, 134(3), 612. 90. He, Y., Liu, H., Himeno, R., & Shirazaki, M. (2005). Numerical and experimental study on the relationship between blood circulation and peripheral temperature. Journal of mechanics in medicine and biology, 5(01), 39-53. 91. Bierman, W. (1936). The temperature of the skin surface. Journal of the American Medical Association, 106(14), 1158-1162. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94619 | - |
| dc.description.abstract | 近年來,由於穿戴式裝置的輕量化及舒適性之需求與日俱增,電子紡織品(electronic textile / e-textile)領域之研究開始受到廣泛的關注,因其具有克服相關缺點之潛力。電子織物透過將電子元件整合到紡織品上製備生物感測裝置,相對現有之外接式感測模組而言,在柔韌性、輕便性、透氣性以及穿戴之舒適性等方面具有極大的優勢,使其更適於建置長時間之非侵入式實時生理檢測平台,可於檢驗醫學與運動科學等領域有所裨益。現今電子織物之商業化依然受到兩個主要問題的限制,分別是織物上可拉伸線路之機械與電氣性能以及織物上線路與電子元件之可靠內部連接與整合。
為克服前述挑戰,本研究使用光固化之拉伸導電複合材料,同時應用於製備布料上之拉伸導電線路及與電子元件之內部連接。透過調控導電複合材料之組成以滿足線路之電氣性能需求,其電阻率可低至10-4 Ωcm,且其固化深度可達200微米。此外,透過皮亞諾曲線之設計,拉伸導電線路在最大應變50 %,拉伸速度每分鐘1500 %應變的情況下,整體之動態電阻變化於前500次拉伸循環中可保持於5 %以下。本研究開發之導電複合材料將用於製備了一肌電感測原型裝置,透過將電子元件整合到高彈性之運動腿套上,可監測腓腸肌運動之肌電訊號。以上成果證實了此拉伸導電複合材料應用於線路製造以及元件互連之電子紡織物的可行性,其高設計自由度亦具備相當潛力向更廣泛之應用需求拓展,為健康護理、活動追蹤、康復、運動醫學及人機交互等穿戴式應用提供了一種具經濟性的解決方案。 | zh_TW |
| dc.description.abstract | In recent years, due to the increasing demand for lightweight and comfortable wearable devices, the field of electronic textiles (e-textiles) begin to receive widespread attention because of its potential to overcome related shortcomings. E-textiles create biosensing devices by integrating electronic components into textiles. Compared to existing external sensing modules, e-textiles offer significant advantages in flexibility, lightness, breathability, and wearing comfort. This makes them more suitable for establishing long-term, non-invasive real-time physiological monitoring platforms, which can benefit fields such as diagnostic medicine and sports science. However, the commercialization of electronic textiles is still limited by two major issues: the mechanical and electrical performance of stretchable circuits on the fabric, and the reliable internal connection and integration of circuits with electronic components on the fabric.
To overcome these challenges, this study formulates a photocuring stretchable conductive composite, which are applied for both the fabrication of stretchable conductive circuits on fabrics and the internal connections with electronic components. By adjusting the formulation of the conductive composites to meet the electrical performance requirements of the circuits, the resistivity can be reduced to as low as 10-4 Ω·cm, with a curing depth reaching up to 200 micrometers. Additionally, through the design of Peano curves, the stretchable conductive circuits can maintain a dynamic resistance change within 5% after 500 stretching cycles at a maximum strain of 50% and a stretching rate of 1500% strain per minute. This study developed a prototype electromyography (EMG) sensing device by integrating electronic components and the stretchable conductive composite into a highly elastic sports leg sleeve, successfully monitoring the EMG signals of the gastrocnemius muscle. These results demonstrate the feasibility of using stretchable conductive composites for circuit manufacturing and component interconnection in e-textiles. The high design flexibility also indicates significant potential for expanding to broader application needs, providing a cost-effective solution for wearable applications in health care, activity tracking, rehabilitation, sports medicine, and human-computer interaction. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T17:07:32Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-16T17:07:33Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 ii
摘要 iii Abstract iv 目次 vi 圖次 ix 表次 xii 第1章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 2 1.3 論文架構 2 第2章 文獻回顧 4 2.1 電子織物應用於穿戴式裝置之製造技術 4 2.1.1 醫療保健領域:診斷、偵測與治療裝置 4 2.1.2 生產製程與布線技術 5 2.1.3 近年發展與挑戰 6 2.1.4 市場前景 7 2.2 印刷技術 8 2.2.1 噴墨印刷 8 2.2.2 網版印刷 10 2.2.3 導電塗料 11 2.3 光固化高分子聚合技術 14 2.3.1 概述 14 2.3.2 自由基型紫外光固化聚合技術 16 2.3.3 陽離子型紫外光固化聚合技術 18 2.4 特殊圖案化設計 18 2.4.1 碎形(fractal)線路設計 18 2.4.2 皮亞諾曲線 20 2.5 電子織物之內部連接與整合 21 2.5.1 異質電子連接技術 21 第3章 實驗系統與程序 25 3.1 實驗藥品與儀器介紹 25 3.1.1 實驗藥品 25 3.1.2 實驗儀器 26 3.2 實驗流程 27 3.2.1 光固化拉伸導電複合高分子材料製備 27 3.2.2 網版印刷、光固化以及暗反應程序 27 3.2.3 光固化與交聯密度測試 28 3.2.4 流變性質與觸變性質測試 29 3.2.5 機械性質與電氣性質測試 29 3.2.6 有限元素分析法之多物理場分析 31 3.2.7 原型證實與實地測試 31 第4章 結果與討論 32 4.1 拉伸導電高分子複合材料 32 4.1.1 機械性質配方調整 32 4.1.2 混成固化系統 37 4.1.3 金屬填料摻合、流變與觸變性質配方調整 42 4.2 織物之線路設計 49 4.2.1 皮亞諾曲線應用於單向拉伸電路設計 49 4.2.2 皮亞諾曲線之彎曲角度分析 50 4.2.3 皮亞諾曲線之線寬分析 51 4.2.4 皮亞諾曲線之驗證 53 4.3 智慧衣物之原型驗證 56 4.3.1 原型驗證:焦耳加熱裝置 56 4.3.2 原型驗證:智慧衣物之設計 57 4.3.3 原型驗證:肌電訊號擷取與處理 58 第5章 結論與未來展望 60 參考資料 61 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 電子織物 | zh_TW |
| dc.subject | 智慧衣物 | zh_TW |
| dc.subject | 拉伸導電膠 | zh_TW |
| dc.subject | 混成光固化聚合機制 | zh_TW |
| dc.subject | 穿戴式裝置 | zh_TW |
| dc.subject | hybrid UV-curing polymerization mechanism | en |
| dc.subject | wearable devices | en |
| dc.subject | electronic textiles | en |
| dc.subject | smart clothing | en |
| dc.subject | stretchable conductive paste | en |
| dc.title | 智慧電子衣物中電子元件的可拉伸互連技術整合 | zh_TW |
| dc.title | Integration of Stretchable Interconnection Technology for Electronic Components in Electronic Textiles | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 李文亞;童世煌;劉振良 | zh_TW |
| dc.contributor.oralexamcommittee | Wen-Ya Lee;Shih-Huang Tung;Cheng-Liang Liu | en |
| dc.subject.keyword | 智慧衣物,電子織物,穿戴式裝置,混成光固化聚合機制,拉伸導電膠, | zh_TW |
| dc.subject.keyword | smart clothing,electronic textiles,wearable devices,hybrid UV-curing polymerization mechanism,stretchable conductive paste, | en |
| dc.relation.page | 74 | - |
| dc.identifier.doi | 10.6342/NTU202403734 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-10 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 4.49 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
