Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94616
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor馬劍清zh_TW
dc.contributor.advisorChien-Ching Maen
dc.contributor.author李奕zh_TW
dc.contributor.authorYi Leeen
dc.date.accessioned2024-08-16T17:04:06Z-
dc.date.available2024-08-17-
dc.date.copyright2024-08-16-
dc.date.issued2024-
dc.date.submitted2024-08-07-
dc.identifier.citation[1] Peters, W. H., & Ranson, W. F. (1982). Digital imaging techniques in experimental stress analysis. Optical engineering, 21(3), 427-431.
[2] Sutton, M. A., Wolters, W. J., Peters, W. H., Ranson, W. F., & McNeill, S. R. (1983). Determination of displacements using an improved digital correlation method. Image and vision computing, 1(3), 133-139.
[3] Chu, T. C., Ranson, W. F., & Sutton, M. A. (1985). Applications of digital-image-correlation techniques to experimental mechanics. Experimental mechanics, 25, 232-244.
[4] Lu, H., & Cary, P. D. (2000). Deformation measurements by digital image correlation: Implementation of a second-order displacement gradient. Experimental mechanics, 40, 393-400.
[5] Sutton, M. A., Mingqi, C., Peters, W. H., Chao, Y. J., & McNeill, S. R. (1986). Application of an optimized digital correlation method to planar deformation analysis. Image and Vision Computing, 4(3), 143-150.
[6] Bruck, H. A., McNeill, S. R., Sutton, M. A., & Peters, W. H. (1989). Digital image correlation using Newton-Raphson method of partial differential correction. Experimental mechanics, 29, 261-267.
[7] Vendroux, G., & Knauss, W. G. (1998). Submicron deformation field measurements: Part 2. Improved digital image correlation. Experimental mechanics, 38, 86-92.
[8] Baker, S., & Matthews, I. (2001, December). Equivalence and efficiency of image alignment algorithms. In Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001 (Vol. 1, pp. I-I). IEEE.
[9] Baker, S., & Matthews, I. (2004). Lucas-kanade 20 years on: A unifying framework. International journal of computer vision, 56, 221-255.
[10] Pan, B., Li, K., & Tong, W. (2013). Fast, robust and accurate digital image correlation calculation without redundant computations. Experimental Mechanics, 53, 1277-1289.
[11] Pan, B. (2014). An evaluation of convergence criteria for digital image correlation using inverse compositional Gauss–Newton algorithm. Strain, 50(1), 48-56.
[12] Gao, Y., Cheng, T., Su, Y., Xu, X., Zhang, Y., & Zhang, Q. (2015). High-efficiency and high-accuracy digital image correlation for three-dimensional measurement. Optics and Lasers in Engineering, 65, 73-80.
[13] Kahn-Jetter, Z. L., & Chu, T. C. (1990). Three-dimensional displacement measurements using digital image correlation and photogrammic analysis. Experimental Mechanics, 30, 10-16.
[14] Luo, P. F., Chao, Y. J., Sutton, M. A., & Peters, W. H. (1993). Accurate measurement of three-dimensional deformations in deformable and rigid bodies using computer vision. Experimental mechanics, 33, 123-132.
[15] Zhang, Z. (2000). A flexible new technique for camera calibration. IEEE Transactions on pattern analysis and machine intelligence, 22(11), 1330-1334.
[16] Schreier, H. W., & Sutton, M. A. (2002). Systematic errors in digital image correlation due to undermatched subset shape functions. Experimental mechanics, 42, 303-310.
[17] Yan, J. H., Sutton, M. A., Deng, X., Wei, Z., & Zavattieri, P. (2009). Mixed-mode crack growth in ductile thin-sheet materials under combined in-plane and out-of-plane loading. International journal of fracture, 160, 169-188.
[18] 張敬源, 馬劍清. 數位影像處理及叢集電腦於電子斑點干涉術及數位影像相關法全場分析技術之開發. 博士論文, 機械工程學研究所, 臺灣大學, 2012.
[19] 周宛萱, 馬劍清. 建構高精度數位影像相關法並應用於土木結構動態系統及奈米材料微系統的變形量測. 碩士論文, 機械工程學研究所, 臺灣大學, 2014.
[20] 簡宸煜, 馬劍清. 應用數位影像相關法於土木結構及碳纖維性質與電池表面變化之量測. 碩士論文, 機械工程學研究所, 臺灣大學, 2015.
[21] 彭柏勳, 馬劍清. 應用數位影像相關法於機械系統與土木結構之變形及動態特性量測. 碩士論文, 機械工程學研究所, 臺灣大學, 2016.
[22] 陳亮至, 馬劍清. 建構立體數位影像相關法之基礎理論並應用於結構靜態與動態三維變形精密量測. 碩士論文, 機械工程學研究所, 臺灣大學, 2016.
[23] 陳義翔, 馬劍清. 優化數位影像相關法並應用於跨尺度問題的精密量測與系統整合. 碩士論文, 機械工程學研究所, 臺灣大學, 2020.
[24] 王盛儀, 馬劍清. 數位影像相關法於二維軌跡及變形量測和應用於建構立體形貌. 碩士論文, 機械工程學研究所, 臺灣大學, 2018.
[25] 黃右年, 馬劍清. 建立即時立體數位影像相關法於三維工程問題的動態量測.碩士論文, 機械工程學研究所, 臺灣大學, 2018.
[26] 李宇倫, 馬劍清. 提升數位影像相關法的量測精度並應用於車輛追蹤與機械手臂的三維量測. 碩士論文, 機械工程學研究所, 臺灣大學, 2020.
[27] 吳俊賢, 馬劍清. 建立數位結構光量測系統並應用於三維形貌與變形量測和機械手臂手眼校正及取放任務. 碩士論文, 機械工程學研究所, 臺灣大學, 2020.
[28] 李霽儒, 馬劍清. 提升數位影像相關法效能並應用於跨尺度動態問題量測與機械手臂之系統整合. 碩士論文, 機械工程學研究所, 臺灣大學, 2021.
[29] 謝佳軒, 馬劍清. 數位影像相關法於精密量測與人機共工系統的整合應用. 碩士論文, 機械工程學研究所, 臺灣大學, 2022.
[30] 余鎧, 馬劍清. 提升數位影像相關法計算效能並應用於機械手臂三維動態性能的即時量測與系統整合. 碩士論文, 機械工程學研究所, 臺灣大學, 2023.
[31] 陳彥霖, 馬劍清. 立體數位影像相關法與深度學習系統整合應用於三維量測、姿態辨識、手臂控制. 碩士論文, 機械工程學研究所, 臺灣大學, 2023.
[32] 吳冠甫, 馬劍清. 應用特徵圖像匹配於數位影像相關法之三維全場形貌及變形量測. 碩士論文, 機械工程學研究所, 臺灣大學, 2023.
[33] Pan, B., Xie, H., Guo, Z., & Hua, T. (2007). Full-field strain measurement using a two-dimensional Savitzky-Golay digital differentiator in digital image correlation. Optical Engineering, 46(3), 033601-033601.
[34] Persson, P. O., & Strang, G. (2004). A simple mesh generator in MATLAB. SIAM review, 46(2), 329-345.
[35] Reu, P. L., Toussaint, E., Jones, E., Bruck, H. A., Iadicola, M., Balcaen, R., ... & Simonsen, M. D. I. C. (2018). DIC challenge: developing images and guidelines for evaluating accuracy and resolution of 2D analyses. Experimental Mechanics, 58, 1067-1099.
[36] Passieux, J. C., Bugarin, F., David, C., Périé, J. N., & Robert, L. (2015). Multiscale displacement field measurement using digital image correlation: Application to the identification of elastic properties. Experimental Mechanics, 55, 121-137.
[37] Bizeul, M., Bouvet, C., Barrau, J. J., & Cuenca, R. (2010). Influence of woven ply degradation on fatigue crack growth in thin notched composites under tensile loading. International Journal of Fatigue, 32(1), 60-65.
[38] 陳祈維, 馬劍清. 應用光纖光柵感測器於積層製造之材料性質量測及風力發電機基座之多點動態特性量測 碩士論文, 機械工程學研究所, 臺灣大學, 2024
[39] Zainab, R. (2019). Standard test method for tensile properties of plastics 1. Eng Mater Technol.
[40] Tapia-Romero, M. A., Dehonor-Gómez, M., & Lugo-Uribe, L. E. (2020). Prony series calculation for viscoelastic behavior modeling of structural adhesives from DMA data. Ingeniería, investigación y tecnología, 21(2).
[41] 歐佳怡, 趙振綱, 黃育熙. 應用黏彈性材料設計抑制揚聲器單體振動分析 碩士論文, 臺灣科技大學, 2024
[42] 林家雋, 黃育熙. 數位影像相關法之自動特徵擷取及計算效能提升 碩士論文, 臺灣大學, 2023
[43] Gent, A. N. (1958). On the relation between indentation hardness and Young's modulus. Rubber Chemistry and Technology, 31(4), 896-906.

 
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94616-
dc.description.abstract數位影像相關法(Digital image correlation, DIC)為影像光學量測技術的一種,具有非接觸、非破壞、全場量測、跨尺度等特性,廣泛應用於相關工程領域及學術研究。數位影像相關法以成熟的數學理論追蹤待測物上的特徵,並計算影像序列與特徵的相關係數,取得特徵的位移、變形等資訊。
本論文以使用數位影像相關法進行實用性量測,並針對實驗中遇到的問題進行改良,以發揮數位影像相關法在全場及動態量測上的優勢,並提升現有系統的精度及便利性。在第一章中,首先針對全場量測中之自動選點方法進行優化,透過誤差點篩選濾除三維全場量測時明顯偏差的分析點,在全場變形量測及形貌重建實驗中能改善自動選點誤差造成的雜訊問題。另一方面,本文引入Distmesh演算法進行全場量測的自動選點,其中透過改變距離函數能自由調整佈點區域之形狀,並建立均勻的三角形網格做為分析點。
本文第二部分針對風力發電機系統的風機葉片及離岸風機底座兩個關鍵結構進行動態量測。其中針對風機葉片透過改變鎖固條件進行分析結構損傷對共振頻率的影響,同時由全場位移進行變形重建及模態振型分析。在離岸風機底座的實驗中,透過不同的敲擊位置及拍攝角度觀察暫態位移及頻域訊號的變化,進一步了解風機基座的動態特性,並與風機葉片之量測結合,展現數位影像相關法針對風力發電系統動態、全場的量測優勢。
本文第三部分以筆電揚聲器為研究主題,首先使用數位影像相關法配合拉伸試驗,分析不同緩衝圈材質之材料參數,並建立有限元素模型模型分析不同緩衝圈材質的減振效果。在拉伸試驗中,應用樣板更新法追蹤大變形下的軸向和橫向應變值,並對過程中的累計誤差問題進行探討及改善。得到楊氏模數與薄松比後,使用COMSOL Multiphysics分析不同緩衝圈材質的減振效果,再配合實體揚聲器的振動量測實驗驗證模擬結果。
zh_TW
dc.description.abstractDigital Image Correlation (DIC) is an optical imaging measurement technique characterized by its non-contact, non-destructive, fullfield measurement, and cross-scale capabilities. It is widely used in related engineering fields and academic research. DIC uses well-established mathematical theories to track features on the object under test and calculate the correlation coefficients of image sequences and features to obtain information on displacement and deformation.
The thesis focuses on using digital image correlation (DIC) for practical measurements and and improving issues encountered during experiments. The goal is to maximumize the advantages of DIC in fullfield and dynamic measurements and enhance the accuracy and convenience of existing systems. The first part of the thesis improves the automatic point selection method in full-field measurements. By filtering out error points in 3D full-field measurements, the noise problem caused by automatic point selection errors in full-field deformation measurement and shape reconstruction is improved. On the other hand, the Distmesh algorithm is introduced for automatic point selection in full-field measurements. By changing the distance function, the shape of the point distribution area can be arbitrarily adjusted, and a uniform triangular mesh is established for fullfield measurement.
The second part focuses on the dynamic measurement of two key structures in wind turbine systems: the turbine blades and the offshore wind turbine foundation. For turbine blades, the effect of structural damage on the resonance frequency is analyzed by changing the screw locking conditions, and deformation reconstruction and modal shape analysis are conducted based on the full-field displacement. In the experiments of offshore wind turbine foundation, transient displacement and frequency spectrum are observed through different impact locations and shooting angles to further understand the dynamic characteristics of the wind turbine base. The part demonstrates the advantages of DIC in dynamic, fullfield measurements for wind turbine systems.
The third part studied on the laptop speakers. First, DIC is applied in tensile tests to analyze the material parameters of different buffer ring materials. Second, we established a finite element model to analyze the damping effects of different buffer ring materials in vibration. During the tensile test, the template update method is applied to track axial and transverse strain values under large deformation, and the cumulative error problem in the process is improved. After obtaining the Young's modulus and Poisson's ratio, COMSOL Multiphysics is used to analyze the vibration suppression of different buffer ring materials, and the simulation results are verified with vibration measurement for loudspeakers.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T17:04:06Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-16T17:04:06Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents摘要 I
Abstract III
目次 V
圖次 IX
表次 XIX
第一章 前言 1
1.1 研究動機 1
1.2 文獻回顧 2
1.3 內容簡介 3
第二章 數位影像相關法原理與實驗儀器介紹 7
2.1 數位影像相關法簡介 7
2.1.1 數位影像相關法量測流程與特色 7
2.1.2 時間參數 8
2.1.3 空間參數 8
2.1.4 樣板子集合與搜尋子集合 8
2.2 數位影像相關法計算原理 9
2.2.1 整像素求解 9
2.2.2 次像素搜尋演算法 11
2.2.3 二維數位影像相關法 23
2.2.4 三維數位影像相關法 25
2.2.5 逐點最小平方法 28
2.3 實驗儀器介紹 29
2.3.1 數位工業相機 29
2.3.2 數位工業相機鏡頭 29
2.3.3 雷射位移計 29
2.3.4 光纖位移計 30
2.3.5 萬能材料試驗機 30
第三章 提升數位影像相關法全場量測表現 45
3.1 全場選點方法回顧 45
3.1.1 全場數位影像相關法量測流程 45
3.1.2 方法回顧:中空圓環形網格生成 46
3.1.3 方法回顧:對極幾何應用於三維自動選點 46
3.1.4 方法回顧:利用特徵圖像匹配改善圖像變形問題 47
3.2 透過誤差點刪除增加三維全場量測精度 47
3.2.1 誤差點篩選機制-均勻四邊形網格 47
3.2.2 刪點資料計算方式 49
3.2.3 懸臂薄板靜態位移實驗 50
3.2.4 風力發電機葉片形貌重建實驗 53
3.3 建立泛用性三角形網格全場選點方法 55
3.3.1 Distmesh簡介 55
3.3.2 整合Distmesh與全場數位影像相關法選點系統 56
3.3.3 逐點最小平方法應用於三角形網格應變計算 57
3.3.4 誤差點篩選應用於三角形網格全場佈點 57
3.4 泛用性三角形網格選點方法實際應用 59
3.4.1 SEM: 圓孔試片拉伸試驗 59
3.4.2 3D列印拉伸試片全場變形量測 61
3.4.3 球體形貌重建實驗 62
第四章 風力發電系統動態變形量測與全場位移重建 97
4.1 風力發電機葉片振動位移量測實驗 97
4.1.1 實驗架設及參數設定 97
4.1.2 實驗結果 98
4.2 風機葉片全場振動位移量測及變形重建 99
4.2.1 實驗架設 100
4.2.2 參數設定與數據處理 100
4.2.3 實驗結果 102
4.3 離岸風機基座振動量測 104
4.3.1 實驗簡介 104
4.3.2 中央圓柱振動量測 105
4.3.3 橫梁振動量測 106
4.4 小結 107
第五章 揚聲器緩衝圈減振效果實驗及理論分析 145
5.1 相關原理及分析流程 145
5.1.1 動圈式揚聲器原理簡介 145
5.1.2 線黏彈性理論 145
5.1.3 緩衝圈減振效果分析流程 147
5.1.4 緩衝圈材料種類 147
5.2 數位影像相關法應用於緩衝圈橡膠材料拉伸試驗 148
5.2.1 實驗規範及架設 148
5.2.2 追蹤機制與應變計算方法 148
5.2.3 樣板更新法之累計誤差問題與解決方法 150
5.2.4 實驗結果 152
5.3 揚聲器系統有限元素分析與驗證實驗 154
5.3.1 模型與材料參數設定 155
5.3.2 固體力學基本設定 155
5.3.3 有限元素分析結果 156
5.3.4 參數化掃描 156
5.3.5 揚聲器單點振動驗證實驗 157
5.4 小結 159
第六章 結論與未來展望 191
6.1 結論 191
6.2 未來展望 193
參考文獻 195
附錄 201

 
-
dc.language.isozh_TW-
dc.subject數位影像相關法zh_TW
dc.subject影像光學量測zh_TW
dc.subjectDistmeshzh_TW
dc.subject風力發電機zh_TW
dc.subject拉伸試驗zh_TW
dc.subject揚聲器zh_TW
dc.subject有限元素法zh_TW
dc.subjectOptical Image Measurementen
dc.subjectFinite Element Methoden
dc.subjectSpeakeren
dc.subjectTensile Testen
dc.subjectWind Turbineen
dc.subjectDistmeshen
dc.subjectDigital Image Correlationen
dc.title提升數位影像相關法全場量測表現並應用於風機系統結構量測及揚聲器減振材料分析zh_TW
dc.titleImproving the Fullfield Measurement Performance of Digital Image Correlation for Wind Turbine Structure and Vibration Analysis of Materials in Loudspeakers Suppressionen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃育熙;廖展誼;張敬源zh_TW
dc.contributor.oralexamcommitteeYu-Hsi Huang;Chan-Yi Liao;Ching-Yuan Changen
dc.subject.keyword數位影像相關法,影像光學量測,Distmesh,風力發電機,拉伸試驗,揚聲器,有限元素法,zh_TW
dc.subject.keywordDigital Image Correlation,Optical Image Measurement,Distmesh,Wind Turbine,Tensile Test,Speaker,Finite Element Method,en
dc.relation.page205-
dc.identifier.doi10.6342/NTU202403626-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-10-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
Appears in Collections:機械工程學系

Files in This Item:
File SizeFormat 
ntu-112-2.pdf15.3 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved