請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94595
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 柯彥廷 | zh_TW |
dc.contributor.advisor | Yen-Ting Ko | en |
dc.contributor.author | 何昆錡 | zh_TW |
dc.contributor.author | Kun-Chi Ho | en |
dc.date.accessioned | 2024-08-16T16:56:38Z | - |
dc.date.available | 2024-08-17 | - |
dc.date.copyright | 2024-08-16 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-11 | - |
dc.identifier.citation | Alashloo, S. M., Ghosh, D. P., Shahbazi, A., Hermana, M., & Ismail, W. W. (2016). Enhancing Seismic Imaging of Deep Structures Using Anelliptic VTI Traveltimes. In International Petroleum Technology Conference. IPTC.
Angove, M., Arcas, D., Bailey, R., Carrasco, P., Coetzee, D., Fry, B., Gledhill, K., Harada, S., von Hillebrandt-Andrade, C., Kong, L., McCreery, C., McCurrach, S.-J., Miao, Y., Sakya, A. E., & Schindelé, F. (2019). Ocean Observations Required to Minimize Uncertainty in Global Tsunami Forecasts, Warnings, and Emergency Response. Frontiers in Marine Science, 6. Ardhuin, F., Rawat, A., & Aucan, J. (2014). A numerical model for free infragravity waves: Definition and validation at regional and global scales. Ocean Modelling, 77, 20-32. Aucan, J., & Ardhuin, F. (2013). Infragravity waves in the deep ocean: An upward revision. Geophysical Research Letters, 40(13), 3435-3439. Barber, N. F., & Ursell, F. (1948). The generation and propagation of ocean waves and swell. I. Wave periods and velocities. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 240(824), 527-560. Bennington, N., Haney, M., Thurber, C., & Zeng, X. (2018). Inferring Magma Dynamics at Veniaminof Volcano Via Application of Ambient Noise. Geophysical Research Letters, 45(21). Bensen, G. D., Ritzwoller, M. H., Barmin, M. P., Levshin, A. L., Lin, F., Moschetti, M. P., Shapiro, N. M., & Yang, Y. (2007). Processing seismic ambient noise data to obtain reliable broad-band surface wave dispersion measurements. Geophysical Journal International, 169(3), 1239-1260. Bertin, X., de Bakker, A., van Dongeren, A., Coco, G., André, G., Ardhuin, F., Bonneton, P., Bouchette, F., Castelle, B., Crawford, W. C., Davidson, M., Deen, M., Dodet, G., Guérin, T., Inch, K., Leckler, F., McCall, R., Muller, H., Olabarrieta, M., . . . Tissier, M. (2018). Infragravity waves: From driving mechanisms to impacts. Earth-Science Reviews, 177, 774-799. Bogiatzis, P., Karamitrou, A., Ward Neale, J., Harmon, N., Rychert, C. A., & Srokosz, M. (2020). Source Regions of Infragravity Waves Recorded at the Bottom of the Equatorial Atlantic Ocean, Using OBS of the PI‐LAB Experiment. Journal of Geophysical Research: Oceans, 125(6). Bosboom, J., & Stive, M. J. (2021). Coastal dynamics. Bromirski, P. D., Chen, Z., Stephen, R. A., Gerstoft, P., Arcas, D., Diez, A., Aster, R. C., Wiens, D. A., & Nyblade, A. (2017). Tsunami and infragravity waves impacting Antarctic ice shelves. Journal of Geophysical Research: Oceans, 122(7), 5786-5801. Bromirski, P. D., Sergienko, O. V., & MacAyeal, D. R. (2010). Transoceanic infragravity waves impacting Antarctic ice shelves. Geophysical Research Letters, 37(2). Büyükakpınar, P., Cannata, A., Cannavò, F., Carbone, D., De Plaen, R. S. M., Di Grazia, G., King, T., Lecocq, T., Liuzzo, M., & Salerno, G. (2022). Chronicle of Processes Leading to the 2018 Eruption at Mt. Etna As Inferred by Seismic Ambient Noise Along With Geophysical and Geochemical Observables. Journal of Geophysical Research: Solid Earth, 127(10). Cabrera-Perez, I., D'Auria, L., Soubestre, J., Przeor, M., Barrancos, J., Garcia-Hernandez, R., Ibanez, J. M., Koulakov, I., van Dorth, D. M., Ortega, V., Padilla, G. D., Sagiya, T., & Perez, N. (2023). Spatio-temporal velocity variations observed during the pre-eruptive episode of La Palma 2021 eruption inferred from ambient noise interferometry. Sci Rep, 13(1), 12039. Campillo, M., & Paul, A. (2003). Long-Range Correlations in the Diffuse Seismic Coda. Science, 299(5606), 547-549. Cao, H., Apatay, E., Crane, G., Wu, B., Gao, K., & Askari, R. (2022). Evaluation of Various Data Acquisition Scenarios for the Retrieval of Seismic Body Waves from Ambient Noise Seismic Interferometry Technique via Numerical Modeling. Geosciences, 12(7). Clarke, D., Zaccarelli, L., Shapiro, N. M., & Brenguier, F. (2011). Assessment of resolution and accuracy of the Moving Window Cross Spectral technique for monitoring crustal temporal variations using ambient seismic noise. Geophysical Journal International, 186(2), 867-882. Costas, R., Carro, H., Figuero, A., Peña, E., & Sande, J. (2023). A Decision-Making Tool for Port Operations Based on Downtime Risk and Met-Ocean Conditions including Infragravity Wave Forecast. Journal of Marine Science and Engineering, 11(3). Crawford, W., Ballu, V., Bertin, X., & Karpytchev, M. (2015). The sources of deep ocean infragravity waves observed in the North Atlantic Ocean. Journal of Geophysical Research: Oceans, 120(7), 5120-5133. Cupillard, P., Stehly, L., & Romanowicz, B. (2011). The one-bit noise correlation: a theory based on the concepts of coherent and incoherent noise. Geophysical Journal International, 184(3), 1397-1414. Dantas, O. A. B., do Nascimento, A. F., & Schimmel, M. (2018). Retrieval of Body-Wave Reflections Using Ambient Noise Interferometry Using a Small-Scale Experiment. Pure and Applied Geophysics, 175(6), 2009-2022. Denolle, M. A., & Nissen-Meyer, T. (2020). Quiet Anthropocene, quiet Earth. Science, 369(6509), 1299-1300 De Plaen, R. S. M., Lecocq, T., Caudron, C., Ferrazzini, V., & Francis, O. (2016). Single‐station monitoring of volcanoes using seismic ambient noise. Geophysical Research Letters, 43(16), 8511-8518. Díaz, J. (2016). On the origin of the signals observed across the seismic spectrum. Earth-Science Reviews, 161, 224-232. Dolenc, D., Romanowicz, B., Stakes, D., McGill, P., & Neuhauser, D. (2005). Observations of infragravity waves at the Monterey ocean bottom broadband station (MOBB). Geochemistry, Geophysics, Geosystems, 6(9). Donaldson, C., Caudron, C., Green, R. G., Thelen, W. A., & White, R. S. (2017). Relative seismic velocity variations correlate with deformation at Kīlauea volcano. Science advances, 3(6), e1700219. Elgar, S., Herbers, T. H. C., Okihiro, M., Oltman‐Shay, J., & Guza, R. T. (1992). Observations of infragravity waves. Journal of Geophysical Research: Oceans, 97(C10), 15573-15577. Feng, K.-F., Huang, H.-H., & Wu, Y.-M. (2020). Detecting pre-eruptive magmatic processes of the 2018 eruption at Kilauea, Hawaii volcano with ambient noise interferometry. Earth, Planets and Space, 72(1). Feng, K. F., Huang, H. H., Hsu, Y. J., & Wu, Y. M. (2021). Controls on Seasonal Variations of Crustal Seismic Velocity in Taiwan Using Single‐Station Cross‐Component Analysis of Ambient Noise Interferometry. Journal of Geophysical Research: Solid Earth, 126(11). Galetti, E., Curtis, A., Baptie, B., Jenkins, D., & Nicolson, H. (2017). Transdimensional Love-wave tomography of the British Isles and shear-velocity structure of the East Irish Sea Basin from ambient-noise interferometry. Geophysical Journal International, 208(1), 36-58. Godin, O. A., Zabotin, N. A., Sheehan, A. F., Yang, Z., & Collins, J. A. (2013). Power spectra of infragravity waves in a deep ocean. Geophysical Research Letters, 40(10), 2159-2165. Groos, J. C., Bussat, S., & Ritter, J. R. R. (2012). Performance of different processing schemes in seismic noise cross-correlations. Geophysical Journal International, 188(2), 498-512. Group, T. W. (1988). The WAM model—A third generation ocean wave prediction model. Journal of physical oceanography, 18(12), 1775-1810. Guedes Soares, C., & Cherneva, Z. (2005). Spectrogram analysis of the time–frequency characteristics of ocean wind waves. Ocean Engineering, 32(14-15), 1643-1663. Guillemot, A., van Herwijnen, A., Larose, E., Mayer, S., & Baillet, L. (2021). Effect of snowfall on changes in relative seismic velocity measured by ambient noise correlation. The Cryosphere, 15(12), 5805-5817. Harmon, N., Henstock, T., Srokosz, M., Tilmann, F., Rietbrock, A., & Barton, P. (2012). Infragravity wave source regions determined from ambient noise correlation. Geophysical Research Letters, 39(4). James, S. R., Knox, H. A., Abbott, R. E., Panning, M. P., & Screaton, E. J. (2019). Insights Into Permafrost and Seasonal Active‐Layer Dynamics From Ambient Seismic Noise Monitoring. Journal of Geophysical Research: Earth Surface, 124(7), 1798-1816. Jeon, H., Jung, Y., Lee, S., & Jung, Y. (2020). Area-Efficient Short-Time Fourier Transform Processor for Time–Frequency Analysis of Non-Stationary Signals. Applied Sciences, 10(20). Jiang, C., Yang, Y., & Zheng, Y. (2016). Crustal structure in the junction of Qinling Orogen, Yangtze Craton and Tibetan Plateau: implications for the formation of the Dabashan Orocline and the growth of Tibetan Plateau. Geophysical Journal International, 205(3), 1670-1681. Karow, N., Kandler, L., Brede, M., & Grundmann, S. (2020). Turbulent transport of discharged ground water in oceanic bottom boundary layers in a water channel experiment. Ocean Science Discussions, 2020, 1-20. Le Breton, M., Bontemps, N., Guillemot, A., Baillet, L., & Larose, É. (2021). Landslide monitoring using seismic ambient noise correlation: challenges and applications. Earth-Science Reviews, 216. Lecocq, T., Caudron, C., & Brenguier, F. (2014). MSNoise, a Python Package for Monitoring Seismic Velocity Changes Using Ambient Seismic Noise. Seismological Research Letters, 85(3), 715-726. Lecocq, T., Longuevergne, L., Pedersen, H. A., Brenguier, F., & Stammler, K. (2017). Monitoring ground water storage at mesoscale using seismic noise: 30 years of continuous observation and thermo-elastic and hydrological modeling. Sci Rep, 7(1), 14241. Lehmacher, G. A., Scott, T. D., Larsen, M. F., Bilén, S. G., Croskey, C. L., Mitchell, J. D., Rapp, M., Lübken, F. J., & Collins, R. L. (2011). The Turbopause experiment: atmospheric stability and turbulent structure spanning the turbopause altitude. Annales Geophysicae, 29(12), 2327-2339. Lelièvre, P. G., Farquharson, C. G., & Hurich, C. A. (2011). Computing first-arrival seismic traveltimes on unstructured 3-D tetrahedral grids using the fast marching method. Geophysical Journal International, 184(2), 885-896. Li, Z., & Lee, P. (2023). Whitening method for passive water pipeline assessment using ambient noise. Mechanical Systems and Signal Processing, 205. Lin, S. C., Wu, T.-R., Yen, E., Chen, H.-Y., Hsu, J., Tsai, Y.-L., Lee, C.-J., & Liu, P. L. F. (2015). Development of a tsunami early warning system for the South China Sea. Ocean Engineering, 100, 1-18. Liu, J., Meucci, A., & Young, I. R. (2023). A Comparison of Multiple Approaches to Study the Modulation of Ocean Waves Due To Climate Variability. Journal of Geophysical Research: Oceans, 128(9). Lü, Z., Liu, Q., Kong, Q., Sun, J., & Liu, Z. (2024). Regional noise source location based on the time delays between station pairs from ambient noise interferometry. Scientific Reports, 14(1), 10268. Mao, S., Lecointre, A., van der Hilst, R. D., & Campillo, M. (2022). Space-time monitoring of groundwater fluctuations with passive seismic interferometry. Nature Communications, 13(1), 4643. Matsuba, Y., Roelvink, D., Reniers, A. J. H. M., Rijnsdorp, D. P., & Shimozono, T. (2022). Reconstruction of Directional Spectra of Infragravity Waves. Journal of Geophysical Research: Oceans, 127(7). Matsumoto, H., Kimura, T., Nishida, S., Machida, Y., & Araki, E. (2018). Experimental evidence characterizing pressure fluctuations at the seafloor-water interface induced by an earthquake. Sci Rep, 8(1), 16406. Maurya, S., Taira, T. a., & Romanowicz, B. (2019). Location of Seismic “Hum” Sources Following Storms in the North Pacific Ocean. Geochemistry, Geophysics, Geosystems, 20(3), 1454-1467. Mordret, A., Mikesell, T. D., Harig, C., Lipovsky, B. P., & Prieto, G. A. (2016). Monitoring southwest Greenland’s ice sheet melt with ambient seismic noise. Science advances, 2(5), e1501538. Miller, S., & Childers, D. (2004). Probability and random processes: With applications to signal processing and communications. Academic Press. Nakata, N., Chang, J. P., Lawrence, J. F., & Boué, P. (2015). Body wave extraction and tomography at Long Beach, California, with ambient‐noise interferometry. Journal of Geophysical Research: Solid Earth, 120(2), 1159-1173. Neale, J., Harmon, N., & Srokosz, M. (2015). Source regions and reflection of infragravity waves offshore of the U.S.s Pacific Northwest. Journal of Geophysical Research: Oceans, 120(9), 6474-6491. Nishida, K. (2017). Ambient seismic wave field. Proc Jpn Acad Ser B Phys Biol Sci, 93(7), 423-448. Oren, C., & Nowack, R. L. (2017). Seismic body-wave interferometry using noise autocorrelations for crustal structure. Geophysical Journal International, 208(1), 321-332. Phadke, A. C., Martino, C. D., Cheung, K. F., & Houston, S. H. (2003). Modeling of tropical cyclone winds and waves for emergency management. Ocean Engineering, 30(4), 553-578. Rabinovich, A. B., & Eblé, M. C. (2015). Deep-Ocean Measurements of Tsunami Waves. Pure and Applied Geophysics, 172(12), 3281-3312. Rathnayaka, S., & Gao, H. (2017). Crustal‐scale seismic structure from trench to forearc in the Cascadia subduction zone. Journal of Geophysical Research: Solid Earth, 122(9), 7311-7328. Rawat, A., Ardhuin, F., Ballu, V., Crawford, W., Corela, C., & Aucan, J. (2014). Infragravity waves across the oceans. Geophysical Research Letters, 41(22), 7957-7963. Rawlinson, N. (2005). FMST: Fast Marching Surface Tomography Package-Instructions, Research School of Earth Sciences. Canberra: Australian National University. Renalier, F., Jongmans, D., Campillo, M., & Bard, P. Y. (2010). Shear wave velocity imaging of the Avignonet landslide (France) using ambient noise cross correlation. Journal of Geophysical Research: Earth Surface, 115(F3). Rijnsdorp, D. P., Reniers, A. J. H. M., & Zijlema, M. (2021). Free Infragravity Waves in the North Sea. Journal of Geophysical Research: Oceans, 126(8). Rost, S., & Thomas, C. (2002). Array Seismology: Methods and Applications. Reviews of Geophysics, 40(3). Saito, T., & Kawahara, J. (2012). Retrieval of long-wave tsunami Green’s function from the cross-correlation of continuous ocean waves excited by far-field random noise sources on the basis of a first-order Born approximation. Earth, Planets and Space, 64(1), 43-48. Sato, H. (2009). Retrieval of Green's function having coda from the cross-correlation function in a scattering medium illuminated by surrounding noise sources on the basis of the first order Born approximation. Geophysical Journal International, 179(1), 408-412. Sergeant, A., Chmiel, M., Lindner, F., Walter, F., Roux, P., Chaput, J., Gimbert, F., & Mordret, A. (2020). On the Green's function emergence from interferometry of seismic wave fields generated in high-melt glaciers: implications for passive imaging and monitoring. The Cryosphere, 14(3), 1139-1171. Sethian, J. A. (1996). A fast marching level set method for monotonically advancing fronts. proceedings of the National Academy of Sciences, 93(4), 1591-1595. Shiraishi, K., & Watanabe, T. (2021). Passive seismic reflection imaging based on acoustic and elastic reverse time migration without source information: theory and numerical simulations. Exploration Geophysics, 53(2), 198-210. Snieder, R., Grêt, A., Douma, H., & Scales, J. (2002). Coda wave interferometry for estimating nonlinear behavior in seismic velocity. Science, 295(5563), 2253-2255. Snieder, R., & Wapenaar, K. (2010). Imaging with ambient noise. Physics Today, 63(9), 44-49. Song, R., Liu, Y., & Bucknall, R. (2017). A multi-layered fast marching method for unmanned surface vehicle path planning in a time-variant maritime environment. Ocean Engineering, 129, 301-317. Song, X., Cheng, M., Wang, B., Huang, S., Huang, X., & Yang, J. (2013). Adaptive fast marching method for automatic liver segmentation from CT images. Medical physics, 40(9), 091917. Stehly, L., Campillo, M., & Shapiro, N. M. (2006). A study of the seismic noise from its long‐range correlation properties. Journal of Geophysical Research: Solid Earth, 111(B10). Stehly, L., Campillo, M., & Shapiro, N. M. (2007). Traveltime measurements from noise correlation: stability and detection of instrumental time-shifts. Geophysical Journal International, 171(1), 223-230. Takano, T., Nishimura, T., Nakahara, H., Ohta, Y., & Tanaka, S. (2014). Seismic velocity changes caused by the Earth tide: Ambient noise correlation analyses of small‐array data. Geophysical Research Letters, 41(17), 6131-6136. Thornton, E. B., & Krapohl, R. F. (1974). Water particle velocities measured under ocean waves. Journal of Geophysical Research, 79(6), 847-852. Tian, Y., & Ritzwoller, M. H. (2015). Directionality of ambient noise on the Juan de Fuca plate: implications for source locations of the primary and secondary microseisms. Geophysical Journal International, 201(1), 429-443. Toffoli, A., & Bitner‐Gregersen, E. M. (2017). Types of Ocean Surface Waves, Wave Classification. In Encyclopedia of Maritime and Offshore Engineering (pp. 1-8). Tonegawa, T., Fukao, Y., Shiobara, H., Sugioka, H., Ito, A., & Yamashita, M. (2018). Excitation Location and Seasonal Variation of Transoceanic Infragravity Waves Observed at an Absolute Pressure Gauge Array. Journal of Geophysical Research: Oceans, 123(1), 40-52. Tsai, V. C., & Sager, K. (2022). The relationship between cross correlations and Green’s functions in ambient noise interferometry with Bayesian constraints. Geophysical Journal International, 228(2), 816-825. Villaseñor, A., Yang, Y., Ritzwoller, M. H., & Gallart, J. (2007). Ambient noise surface wave tomography of the Iberian Peninsula: Implications for shallow seismic structure. Geophysical Research Letters, 34(11). Wang, K., Thomson, R. E., Rabinovich, A. B., Fine, I. V., & Insua, T. L. (2020). The 2018 Alaska-Kodiak Tsunami off the West Coast of North America: A Rare Mid-plate Tsunamigenic Event. Pure and Applied Geophysics, 177(3), 1347-1378. Wapenaar, K. (2004). Retrieving the Elastodynamic Green's Function of an Arbitrary Inhomogeneous Medium by Cross Correlation. Physical review letters, 93(25), 254301. Wapenaar, K. (2006). Green's function retrieval by cross‐correlation in case of one‐sided illumination. Geophysical Research Letters, 33(19). Wapenaar, K., Draganov, D., Snieder, R., Campman, X., & Verdel, A. (2010). Tutorial on seismic interferometry: Part 1 — Basic principles and applications. Geophysics, 75(5), 75A195-175A209. Wright, J., Colling, A., & Park, D. (1999). Waves, tides and shallow-water processes (Vol. 4). Gulf Professional Publishing. Xiao, H., Spica, Z. J., Li, J., & Zhan, Z. (2024). Detection of Earthquake Infragravity and Tsunami Waves With Underwater Distributed Acoustic Sensing. Geophysical Research Letters, 51(2). Yang, Y., Ritzwoller, M. H., Levshin, A. L., & Shapiro, N. M. (2007). Ambient noise Rayleigh wave tomography across Europe. Geophysical Journal International, 168(1), 259-274. Yates, A. S., Savage, M. K., Jolly, A. D., Caudron, C., & Hamling, I. J. (2019). Volcanic, Coseismic, and Seasonal Changes Detected at White Island (Whakaari) Volcano, New Zealand, Using Seismic Ambient Noise. Geophysical Research Letters, 46(1), 99-108. Yolsal-Çevikbilen, S., Ulutaş, E., & Taymaz, T. (2018). Source Models of the 2012 Haida Gwaii (Canada) and 2015 Illapel (Chile) Earthquakes and Numerical Simulations of Related Tsunamis. Pure and Applied Geophysics, 176(7), 2995-3033. Yoshimoto, M., Watada, S., Fujii, Y., & Satake, K. (2016). Source estimate and tsunami forecast from far‐field deep‐ocean tsunami waveforms—The 27 February 2010 Mw 8.8 Maule earthquake. Geophysical Research Letters, 43(2), 659-665. Zang, X., Brown, M. G., & Godin, O. A. (2015). Waveform modeling and inversion of ambient noise cross-correlation functions in a coastal ocean environment. J Acoust Soc Am, 138(3), 1325-1333. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94595 | - |
dc.description.abstract | 亞重力波是一種海洋重力波,週期較長,範圍從20到300秒,其形成機制是來自於風場動力學、海浪傳播、海岸地形、海床地形和各種波過程之間複雜的非線性相互作用。在這項研究當中,我們應用環境噪訊干涉法分析了在太平洋收集為期十年的Deep-ocean Assessment and Reporting of Tsunami (DART)資料,得到了對應於亞重力波週期的經驗格林函數。經驗格林函數所展示的傳遞行為與理論波的色散現象一致。功率譜密度和頻譜圖分析揭示了北太平洋和東南太平洋站點能量的季節性變化,前者在冬季達到高峰,後者則在夏季達到高峰,與WAVEWATCH III中的亞重力波觀測相似。我們結合Fast Marching Method (FMM)的波傳路徑,徹底探索了亞重力波強度和傳遞方向的季節變化,目的是建立與氣候變遷的潛在的聯繫,並辨認亞重力波的能量來源。我們的結果顯示,在冬季盛行西風加劇的時期,氣旋活動主要是亞重力波的能量來源。我們觀察到亞重力波由西向東傳遞,與以阿留申群島為中心的氣旋活動移動路徑一致。相反地,當盛行西風減弱時,無論在冬季還是夏季,沿岸反射都將成為亞重力波的主要能量來源。 | zh_TW |
dc.description.abstract | Infra-gravity waves (IGWs), characterized by gravity waves with longer periods ranging from 20 to 300 seconds, originate from the intricate interplay of nonlinear interactions involving wind dynamics, wave dispersion, coastal features, seabed topography, and various wave processes. In this study, we applied ambient noise interferometry to analyze cross-correlation functions (CCFs) derived from a 10-year dataset collected by the Deep-ocean Assessment and Reporting of Tsunami (DART) system in the Pacific Ocean, yielding empirical Green's functions (EGFs) corresponding to IGWs periods. The EGFs demonstrated notable propagating behavior, aligning with empirical wave dispersion relationships. Power Spectral Density (PSD) and spectrogram analysis unveiled seasonal patterns in North and Southeast Pacific Ocean stations, with winter intensity peaking in the former and summer in the latter, resembling IGWs observations from WAVEWATCH III. We combined the ray path from Fast Marching Method (FMM) to thoroughly explore the seasonal variation of IGWs in intensity and propagation direction, aiming to establish potential links to climate changes and to identify the sources of IGWs. Our results reveal that during periods of heightened winter Westerlies, storm activity predominantly fuels the source energy of IGWs. This inference is supported by the west-to-east propagation direction of IGWs along the Aleutian Islands, aligning with the movement of storms. Conversely, when Westerlies weaken, whether in winter or summer, shoreline reflection emerges as the primary energy source for IGWs. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-16T16:56:38Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-16T16:56:38Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iii Abstract iv 目次 v 圖次 viii 表次 xiv 第一章 緒論 1 1.1 引言 1 1.2 環境噪訊與地震干涉法 2 1.2.1 環境噪訊 2 1.2.2 環境噪訊干涉法 3 1.3 波浪 4 1.3.1 波浪的性質 4 1.3.2 線性重力波理論與頻散現象 5 1.4 亞重力波 7 1.4.1 亞重力波概述 7 1.4.2 亞重力波的生成機制 7 1.4.3 亞重力波的觀測 8 1.5 海嘯波 11 1.5.1 海嘯波概述 11 1.5.2 歷史上的海嘯 13 1.5.3 海嘯預警系統 14 1.6 研究動機與目標 17 第二章 研究方法 18 2.1 頻譜分析 18 2.1.1 功率譜密度 18 2.1.2 時頻分析 20 2.2 互相關函數與經驗格林函數 23 2.3 環境噪訊互相關 25 2.4 快速行進算法 29 2.5 康奈爾多重網格耦合海嘯模型 31 第三章 資料處理與分析 33 3.1 資料來源與處理流程 33 3.2 資料前處理與頻譜分析 34 3.3 MSNoise 39 3.4 資料正規化 40 3.5 互相關函數 43 3.6 堆疊時間長度與穩定性 45 第四章 結果與討論 47 4.1 亞重力波之傳遞特性 47 4.2 亞重力波與海嘯預警系統 51 4.3 亞重力波季節性變化 58 第五章 結論 66 參考文獻 68 附錄 84 A1 本研究測站資料時間間隔統計 84 A2 本研究測站之時序資料 85 A3 本研究測站之時頻圖 100 A4 本研究測站之波傳路徑 115 | - |
dc.language.iso | zh_TW | - |
dc.title | 利用環境噪訊干涉法擷取太平洋亞重力波之經驗格林函數 | zh_TW |
dc.title | Empirical Green's Functions Retrieval of Infra-gravity Waves in the Pacific Ocean via Ambient Noise Interferometry | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 黃信樺;洪淑蕙;陳映年 | zh_TW |
dc.contributor.oralexamcommittee | Hsin-Hua Huang;Shu-Huei Hung;Ying-Nien Chen | en |
dc.subject.keyword | 環境噪訊干涉法,經驗格林函數,亞重力波,季節變化,海嘯, | zh_TW |
dc.subject.keyword | Ambient noise interferometry,Empirical Green’s function,Infra-gravity waves,Seasonal variations,Tsunami, | en |
dc.relation.page | 129 | - |
dc.identifier.doi | 10.6342/NTU202403669 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-08-13 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 海洋研究所 | - |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf | 30.84 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。