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Abstract

Infra-gravity waves (IGWs), characterized by gravity waves with longer periods
ranging from 20 to 300 seconds, originate from the intricate interplay of nonlinear
interactions involving wind dynamics, wave dispersion, coastal features, seabed
topography, and various wave processes. In this study, we applied ambient noise
interferometry to analyze cross-correlation functions (CCFs) derived from a 10-year
dataset collected by the Deep-ocean Assessment and Reporting of Tsunami (DART)
system in the Pacific Ocean, yielding empirical Green's functions (EGFs) corresponding
to IGWs periods. The EGFs demonstrated notable propagating behavior, aligning with
empirical wave dispersion relationships. Power Spectral Density (PSD) and spectrogram
analysis unveiled seasonal patterns in North and Southeast Pacific Ocean stations, with
winter intensity peaking in the former and summer in the latter, resembling IGWs
observations from WAVEWATCH III. We combined the ray path from Fast Marching
Method (FMM) to thoroughly explore the seasonal variation of IGWs in intensity and
propagation direction, aiming to establish potential links to climate changes and to
identify the sources of IGWs. Our results reveal that during periods of heightened winter
Westerlies, storm activity predominantly fuels the source energy of IGWs. This inference
1s supported by the west-to-east propagation direction of IGWs along the Aleutian Islands,
aligning with the movement of storms. Conversely, when Westerlies weaken, whether in

winter or summer, shoreline reflection emerges as the primary energy source for IGWs.

Keywords: Ambient noise interferometry, Empirical Green’s function, Infra-gravity

waves, Seasonal variations, Tsunami.
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Long-period waves Smin-12h Atmospheric pressure gradients

Ordinary tidal waves 12 -24h Gravitational attraction

%\* 1.1‘/4/\/47 ‘k‘F ©
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132 MIE 4 HIWAEHFLOR %
M E 4 A 32% (Linear Gravity Wave Theory) £ — f&* kg it | 4=tg ~ & 4 &
SR RIRS c B E A IEH Tl E L0 ¢ 0 AR i Y
BEAHREZ I G A 7o iRfp R E 4 LI H THEATH % (Wave Dispersion)
RN B HE R LI E JoRFOR B - a3 o R AR Y i R
TARR o o EARE L EaE B ARE oo okiEs BB nTF R 2
- o F AKRERE A S 0 i § R o TR R RAERCM B0 T AT
w? = gktanh(kh) GV 1.1)
HP i e d g5 g 2 £4 eid Rk 5 #icoh 5K BREg 5 T
B RRepE Re 0 VAT &

2 .
¢c= ‘Z—ntanh(kh) (% 1.2)

B A% e £ o ERRE2E ) B tanh(kh) 2 khE SAEM B > & 7 i h®
iR B g khiE 2h ¥+ pF o tanh(kh)4837>0 10 & BT R GA550 5 (2 4
A g WEg L g (B 1.3) -

1 [ 1 , T | = ! T
| / |
: / : tanh(kh)
0.8 | : / [ - 4
| // |
So06f ! ' -
= Uy |
g [/ I
04f | | -
=0.31 4 - ;
021+ /1 | 4
| |
“+——shallow intermediate ' deep
0 ' 1 L 1 I '
0 1 2 3 4 5 kh

B 1.3~ @ik R EF 1 & B o (P p Bosboom and Stive, 2021)
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TP VLR 0 VB RSN A B A S = 8 0 A4 W 2Rk (Deep-
water Waves) ~ ® -k (Intermediate-water Waves){e:% -k ;& (Shallow-water Waves) °
- A Z v u;ﬁd RIFE R G R R A B U (B 1.4 F v E A AT
0.5 FF > FLZ Rk > AIVePBEE R R X FIR K PP @30 005
BB R Kk R B R TR o 4SRRI Y Rk B e

RIFES @ -kl ieniBld R Rl DL £ & RFOEE (£ 1.2) -

deep water intermediate water shallow water
zone zone zone
h/L> 0.5 0.05<h/L<0.5 h/L < 0.05

( Y
),

S

S0<M

Yy ¥ i -
THTTITTTTTTTTTTTT /////f/'/;’f///ﬂﬁ

Bl 1.4~ 7534 @ 2257 o ($Pp Karow et al., 2020)

Deep water waves  Intermediate water waves  Shallow water waves

gL gL 2mh
Cp = ﬁ Cp = ﬁtanhT cp=1/gh

¢, = wave phase velocity, g = the acceleration of gravity,

h = water depth, L= wave length
o L2~k ~ P Bk Ao oKk andpid RIZH SN & o

doi:10.6342/NTU202403669



14 HEA R
141 I & 4 pEit
IGWs £~ fa4rrkens i€ 4 gt o £ AP ) 40 20 /3 300 f)2 0 2
¥R E R £ %Fﬁ]n&ﬁ"ﬁ FI AT o IGWs e 4 2 b Hd 4 5
AVLEBIE A A B EE A U E BAER R T AR R AT T > £ H
Rk R o AT TR FE EE IGWs it £ o & F #ieen IGWs 3075 BLagiT 4
ST FAARGE AP AMS g R e b ASURE AT PP
FuEds ;0 0 A5 %k (Bdge Waves) e i 5k 52 p d B4E 0002 i ) AEERR A
FARPADFERPN FE O BRI EEFARBRAE R o Ra o e
IGWs it B 7 4 € iR L iR K% & B30 A chB % %> 2,32 % 5% (Leaky
Waves) o fF & i b o B A S 5 B 0 B B 6 s B AT A T
(Dispersion Relation) » ¥ £ 77 4 :
o, = gk sin(2n + 1) tan B (¢ 1.3)
BP o,z FGATRREF ok Zirfpr gi 4 i B on 25 PEER
Bco MEFROAL B 4o BB S 0 R R M 4o 0 B PR TR Tk, = 02/g
B ke <0Z/g IGWs B3t e0A5 5% 5 A
IGWs 53 &+ € & 3| § s & 0 5 (Rijnsdorp et al., 2021) » d ** F & #
WREFG T Pk B b Feh RS w s XA G A R B RESIAF R
XA RhdE 2 f > 2a B IGWs chd & o FI 5 378 L fLE FUP B 40iF » F2
7 IGWs 3 8«02 58 (Bertin et al., 2018) » 4o &k 28 el 2 I % (Bromirski et
al., 2015) ~ iF ATt 4+ B0 4 B % ¢ (Roelvink et al., 2009) « 3 3 -k 5 4 A7k
(Van Dongeren et al., 2013)% - &7 IGWs /3 X% B A2 4 4p g £ &8 e B o

142 L &4 geand 24

IGWs 2 & 4|7 g2 k- pAn 5 (5% j298 (B 1. 5) - $ 75k 3
BEFS BAEI AT 2 P @ P v P2 T AR AT T o d R
TeR g e PR ART (P §ER- LR AR EH L PR - BIRIFE AT
A0 A5k #F (Wave Group) o @ A FHAHES € 2305 B Rapk g 2 £ o L%;fﬁ

7
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3p A I % (Beating) °
AFERR P54 T IR T g e B AR T IRAE T g Ao Bt
AR AR E JRIGRA TR REEZ T BT T B
Bo bRt R B S AR R R B DR o e fa T s T g ghA £
T - fEE R 0 T IGWs o

.S (@ wave trains wave trains

‘§ out of phase in phase

% ~

Y

g

2

s

v

]

g

s

Bl 1.5~ IGWs 2 S 417 L Bl (7 B FApTepd el > 2L E FR
_!:557 }‘F%ﬂy‘s’\_l}% }\f\:} ’ hﬁ o(b)q‘/ﬂ; /ﬂ"#g“;lfq" ’_j_IE.;Bd J\m— (%3

# 5)4c IGWs (2. ¢ & &)eh% (v o (5§ Wright, 1999)

143 I & 4 L oELip
74 % Ardhuin et al. (2014)#% & HI2 35 » IGWs il 3 7 113538 5 2Tk 2
(Significant Waves)s5dk % S 4pfd S 8ck G & > HE a8 v &7 5

Hig = a1HsTr$l\/% i 1.4)

H¥Y S Hih IGWs ik 3 > Ho5 5 el § T 5 T30 > g 5 £4 4o
& > h i -KiF - 12 National Oceanic and Atmospheric Administration (NOAA)#7% &
7% L JUFF 4R 7] National Weather Service Wave Watch III (NWW3) % 1] » 3% #C
AP RE e P REGE 2 T EERR DS Z 0 P ORI R 2T
B UE I o NWW3 8 % « EejaiFfof 274 s 37 B BEFERER

0P R R AR FIR o R TR TR Y NWW3 i
8
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A A s B e R FEA S TIRRARDE R S e B F SE0

ia Efris AL B ik JUTEAR (R 1.6) o

Jan to Feb 2008 Jan to Feb 2010

Latitude

100°E 125°E 150°E 175°E 160°W135°W110°W 85°W 60°W 100°E 125°E 150°E 175°E 160°W135°W110°W 85°W 60°W
Longitude Longitude

Jan to Feb 2015 Jan to Feb 2016

Latitude

Jan to Feb 2013

Jan to Feb 2014

100°E 125°E 150°E 175°E 160°W135°W110°W 85°W 60°W 100°E 125°E 150°E 175°E 160°W135°W110°W 85°W 60°W
Longitude Longitude

Longitude

@
-]
2
Kl
3

100°E 125°E 150°E 175°E 160°W135°W110°W 85°'W so"w
Longitude
Jan to Feb 2017

-\
100°E 125°E 150°E 175°E 160°W135°W110°W 85°W 60°W

100°E 125°E 150°E 175°E 160°W135°W110°W 85°W 60°W
Longitude

0.000 0.005 0.010

Infragravity Wave Height (m)

0.015

Jul to Aug 2013

0,020

0.025

Jul to Aug 2014

Jul to Aug 2008 Jul to Aug 2010
0 ® v
$ $ ¢
2 2 2
k] k] k]
5 g 5
100°E 125°E 150°E 175°E 160°W135°W110°W 85°'W 60.‘W 100°E 125°E 150°E 175°E 160°W135°W110°W 85°W 60.‘W
Longitude Longitude

Jul to Aug 2015 Jul to Aug 2016
B

Longitude
Jul to Aug 2017

100°E 125°E 150°E 175°E 160°W135°W110°W 85°W 60°W

100° 125°E 150°E 175°E 160°W135°W110°W 85°W 60°W 100°E 125°E 150°E 175°E 160°W135°W110°W 85°W 60°W

Latitude

100°E 125°E 150° 175°E 160°W135°W110°W 85°W 60°W

100°€ 125°E 150°E 175°€ 160°W135°W110°W 85°'W SO w
Longitude

Longitude Longitude Longitude
0.000 0.005 0.010 0.015 0.020 0.025

Infragravity Wave Height (m)

B 1.6-NWW3 ¢ IGWs & % = 3. Bl -
B o d kAT ABAAHRK AT
b e d o IGWs ot £ ¥ R

o b IGWs dijk § = 7 115 W AR 4 5D

E(f) = K (f)
$9B(f) A A G LSRR
B0 p i kR o RF RS U B
eEfA 0 T B3] IGWs Gk § :

-—\

% IGWs i 3

s B d

TR A & F IGWs

R F T B AR R o o
B AAeAT I A A o

cosh(kh)
pPg

s

BL

E ()

g

¥

SRR S

> wd H

—\-

B4 FHR T T 4
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fmax
Hi =4 f E(f) — E,df (3*1.6)

fmin

B o E et il o BBV RS T Bt B S N i { Aok R IGWs

B

Gk B 0 X BTH AR EY BifhE s o
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151 &bt frat | ?.
Fevpik (Tsunami Waves) » * 45 29k » - B2 8 31 6 4 k8 44 2 o

AP AR F A H R BRAVLBRE B FAREIRFET R

Aeen (B L7) e $# HRAH A5 82 JASEE 0B A R o)L
B X HIR e e Pl B BT AR E YRS BESF L KR
HHFTEEF 65 B FA ABRABYEDEE (B RORRFER L
T302TUR) s FALBKARELE 2t iR T2 R B

BE P PE A ey 7 %’a‘rvgxé Ba-kmBEae s Uiegad B o % I
ORI AE RS ERESP -

TSUNAMI GENERATION SOURCES

tsunami
<«— tsunami —» ——

tsunami —»

SUBMARINE
EXPLOSIONS |

- tsunami : tsunami
\ — tsunami -
\\ =
\ \/

EARTHQUAKES

p
-
.
-
-

e
<
"

METEORITE IMPACT

Bl 1.7~ /%= %7 2 B o (85~ p https://www.dnr.wa.gov/programs-and-

services/geology/geologic-hazards/Tsunamis)
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https://www.dnr.wa.gov/programs-and-services/geology/geologic-hazards/Tsunamis
https://www.dnr.wa.gov/programs-and-services/geology/geologic-hazards/Tsunamis

Al TR R - R RREDE S RO HRETEY 160 22 o AIF
R INREL S NPE ST T fﬁ»@mm’a@wow@@ BT ER ] P E 900
~2 ok FRAFI03 D00 v AL AT AR Rtk A R
EH100 2 vk EAS E ARSI E ) FEG100 202 (B 1.8) iR EREBAB
Hbe > R BV A r %o 3 S P R A o - R AL S RS

IR

'E—?‘gp%fr&%'}i‘/‘gﬂﬁr°?vfi\"’ri‘/ﬁw%g = f"fﬁi’fé' /‘”‘ﬁlﬂr‘-\ Wi B KRR RIE

- \q\

BERT + hoh kS S AL PR D e T AR B L L
:_’*ﬁf;‘i%’ ] ’ﬁ:%‘}i;‘fi" J}LFijg AKX X pESN ilfgd; @ﬁ%j\mﬂ"ﬁ" /4"$/ﬁ»" x x’ftf/&l

oA ukr%;‘;*ﬁ Bp s A BRMEANORBESERE L YT B 22

TRBRRAS R TS BEER RR LT

6.6 miles (10.6 km) e

Wavelength

132 mil 14 mil
le———— 313 km) ——> le— (23 km) —>!

2.5 miles (4,000 m)
miles kilometers

Bl 1.8~ avbyt Bebid & ~ £ 2 K/EM %7 4 B - (G55 i NOAA)
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152 K¢ }aavs

Pe ik R EFABRE L) A kTR HP G 80%Ed # B
Arildeens Fp > A RAERF 4 B RPN ST ER B o IR RFELR L D%
ﬁi—oﬁ%iﬁ%@ga@éiﬁiﬁﬁﬁ’hggﬁ?*E‘ﬁ%*’ﬁiﬁ
FRGL A R TR SR e 3 AR ERE LY 4R R K
$ el R G ARE 1400 A B T st imie U o ip il A rd e
BT oo A 23k AHEHA T R R AR AE R RBL RGO
ialmg kel E o R ﬁiii%:é‘ B AV A kg E & 4 (Tsunami Warning System) »

KT R R R SRR irR A AR L Rl kg 4 fo i -
WAE e b S AR R FI0T LR IE 5 e S R A AR

=\

lE'

oot AR
ABE- AT O ARDRGTRF IR LT ERO oA TG 2 heh
_ggfgrg Ebg% T Ao oK f:lﬁ%lﬁp\ m@ﬂﬂ uhﬂ%‘*“]ﬁ—fp}ﬁr},u;
AART A F B PEAKRFREBRM LS B

2 ArM AL > AP R T - S LlnEaiE o Ra o G i

A

Tsunami Sources 1610 B.C. to A.D. 2023
From Earthquakes, Volcanic Eruptions, Landslides, and Other Causes

UM 1.9 rd b chiheh o (35 4 NOAA)
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ATBIEE L iande T iR T 1920 & R ¥ & o F fw;;&':’?’
BF R RIABPEDRS2Z - o

Sl hho RAHGE 5

T AL &P DA E R

4L

ﬁ,,
e b & o 14 Deep-ocean Assessment and Reporting of Tsunamis (DART) 4 4t

Sh AR PR A HRPASRT SV Ed AR (B 19T R R
AR I R B AR E LA (B 1. 10) -

DART® Deployments .
# United States 3
© United States/Chile
# Australia
¢ Chile
¢ India
¢ Thailand

B 1. 10 ~ DART b 8E4 (30 & < E e i% o (P~ p Angove et al., 2019)

DART 5 %t¢ 7 - B F 2 v BB 4 3+ (Bottom Pressure Recorders, BPR)fr -
FRraFiRg RERRE T RA KRR o RO - EAR R
RS S T ] S S L EE S SER R U T
Rt iarhap EY e (B 111 ok A R ER S B e F R o BPR e
e R4 Bdp i€ 152 E 670 mm/psia B A G B & o » — ¢ DART 5%+ Bl
RN RRA B P kaaaEiEr a8 L5075 NOAA ¥ g+
ABER WA AR R B BREIOFF R A PR B w B DR Y
RET e d P S AAREL FMAX >R -
14
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DART II

Deep-ocean Assessment and-Reporting of Tsunamis

:Tsunami
Warning

<« Acoustic
Transducers

B 1. 11 ~ DART 4 %7 % Bl © (385 p NOAA)

DART [k 3ei8 (7P A 5 & fABcRaF & B0 R 00N o B 2 6050 o i et
T KRER IS AR X E ARG B R BRI § A ATERFIE R ¢
Bk AR RO R AR S o F O DR G R By o A B HGNT 0 kA

SR WL

AL G BEE IR IS fehlicdy M H L E 1 A TIEER TR dok hid

— A

FA N ABEEE ARBIFE- BT 2k ABE F R
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% 18 2 NOAA B % ¢4 v $.%) Short-term Inundation Forecasting for Tsunamis
(SIFT)ig i+ > @ BF DART i Sudfeenfiflay 3 Frie 4309 R A g g g
755 112006 & 117 15 p et § % 2 5 6] (B 1. 12) - SIFT % S 2117 &

B Nk RRA R G LB A HEAE Y ¢ 350 A BIR e b Rl Bl
Bl v BN UE B Aol R A e B KL PFS B S T k p DART %

Schid R TR 0 i 5 TR T Rl foie diih il s 1 o

i

DART46408 AK _| DART 46402 AK _ DARTAB403 AK

—obs.
— mode!

am— dan = S |

% DAR’THAM AK DART 46413 AK

t P

b L o w

3
DART46408 AK | DART45410 AK

g] 1. 12~ SIFT s vh @ Mw #7 2 DART 4R F AL m c BIY BEd A omavhit
BoF ¢z 43547 DART plab» ' d F 54 ¢ SIFT H3|5E R % % » £4
7 DART $4EF#L o (#2~f NOAA)
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16 =iHisep

IGWs f* i hiEp & 3 5 41 B Eavk 2 fof dokinap & s » 2 5%
RATIF R NERPFTE S F G RE R RE AR o A
FooE RS R R SRR § R E A IR R WA AoiT
%S img R 22 EREBRFPBAE I w0 BEEE Y IGWs ¢h4 2 4c

>‘1’:\

BT AL T EEFORE . LFEAFY IGWs el s > AT g 1 ANI #
M ¥ AT S T X TR B o DART Bl=b 57 R AR 338 T (h EGFs & (745 31 o £ i 3%

WL R EREZ SR AP RaE 2 IGWs B 5 g ¥R G R
Bt o T IGWs 275k 04 LB LWk > A F P BRI T B IRA KR
SR o Fgt 5 B3 EGFs~ B A F £ 486 B3] (Cornell Multi-grid
Coupled Tsunami Model, COMCOT)#-3] o7 % BLP] T 4L vt 5> 1% » 1242 IGWs
Briavh 2 Benfpinddt o 23877 7 B 2w & 35t IGWs jaixr a4 §
Bl I ARHESF T EREOE LR
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¥R B33
21  HEH A
211 #FHDR

Donlenc et al. (2005)c7F= 7 & 4573 K+ B &k 2 # 53 % & (Power Spectral
Density, PSD)k# 7 /& ¥ ¢ AW 5Lchi £ 4 F > THF §F e H ¢ # IGWs i £ &
AR Gt AP LT AR 0 Rt S T E ¥ % DART Plakiriess T
% B PSD o

PSD & - fA; 5L 453 2 » * 30 E RIUELS F AHAEHY e ® og L Rl
B P BCH AL S 6 = 3 A PR 5 PR B IR T S R e
Sl E o 4B Miller and Childers (2004) » 12 = §_PSD ¥ ‘e 16 42

Bk - ST ELX () ¢ #EP~— #4150 (Truncated Singal) X, ()7 % 7 & :

X@), Ittt

_ X201
Xto(t) { O, Itl > t, * )

St
=
oo
|l
s
=
ETIS

Ey, = f X2(t)dt (£ 2.2)

5 £ 7 E 25 (Law of Conservation of Energy) » FF i 38 iv £ 7 247 538 50 £ 4p

R R R
1 (®

Zto |Xt0(f)| df (;\; 2 3)
B0 X () Ky (O 2 s o d 0Py, 5 - BEPEH 50 RE T o0 g

v

FREFHPYEIRE 0 AT L

[|Xt0(f)| ]df (3 2.4)

Pr, = 2t,

%*%é%ﬂ%ﬂﬂ%ﬁ$’%?ué@%ﬁwx%ﬁ:

P m
X
tog—ooo 2 O

—=J°° I M 2.5

BT R TESy()rN 25 gl TP FERR - A7 5
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E|x., D] B
Sxx(f) = tl)lngo [| 2t | ] G

#33% Aucan and Ardhuin (2013)s#7 7 > @ = 5 j&_DART 46405 P2k ? B~ G
T H ek DA EAELG PSD o FELRTAEN B A T AT FeanE & ok FRE

EET L MFSLE (F21)-

1072

i

m2/Hz

15

10— 10~
Hz

Bl 2.1~ 2 Feks p Voo DART 46405 Bleb2. PSD o B 5 T3 g/ 4 o £ %
CEPPEIDNEZFERE A TN RIS o FRFOATEEIRRS AL
AR EOR BRI AT oAb SRR SRR H P

PRV GIEFRE B\ F R FY T agd (AT ® o (P Aucanand

Ardhuin, 2013)

i{‘-ﬁ‘ %‘}\‘26 \‘15"}’\‘16m§§#|9’853§3"mIGWS/ﬁ»r§F‘F%’T 'H)
Frfbd FEaeFsngl (122)-
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120°E 150°E 180°W 150°W 120°W 90°W
60°N -

60°S

Bl 22 IGWs ik 8 o o d MER AL 5 %¢ FERE L £ QB | R4
B PR o XA o R R AR AR @ Tk 3 R B IGWs i
EEHETED 3Rt TV a0 NIRRT 7 ek & o(FF B~ p Aucan and Ardhuin,

2013)

Flab o AETE AR L i PSD e B AR 0 1R IGWs 9PSD e it o A
PHFEER IGWs chit B A E B E§ R B 6 ch L LE X 7 % IGWs

TP DTEERH AL AR P e o

212 PEAA 4T
B RPLE Y o B AT R LT B R F Rk AR b
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BRAEY A LTI A FEE BRS04 B GRS 2 4 0 BB
42k (Diaz,2016) » fjf AR ¥ > PRAE A JTALF 00474 F ¢ fEr P o T
W JENER RS § #4 FengF it (Lehmacher et al, 2011) » 7% 2483 ¢
PR A {7 enfis * ¢ 7 BB IGWs ¥t 4Rk 28 02 58 (Bromirski etal., 2010) > 2 2 /&
A en@ i (Soares and Cherneva, 2005) o f A F7 7 18 {7 cnpFag 2 47 ¢ 0 %
* ObsPy £ 2 ¢ endnfic » 2§ v @pF & = £ (Short Time Fourier Transform,
STFT)ch R 32 » STFT 4k il * 0 A 493050 fe s B b e S fodp % 1 o STFT ¢h

AAELEIBREPFFOASEx(O)Fr > E L@ THE RErf REFE

2 (B 2.3)-

Signal

Window Length
< >

Windows /><><><\ . G

-

> >
Hop Overlap
Length Length

-ﬂ‘“’wﬁ‘fﬁffwyH&'ﬂw

el S
-wWme- |

FFT *e
FFT Outputl FFT Output2 FFT Output3

N . ] ..

1 “‘.A by | i,l “‘|\" {
'.V"J.-.‘-,"l;-ur"‘l’f.‘m‘.ﬂ‘ﬂ“x‘i.ﬂ“.‘h.‘l“ﬁ‘\ “\le"'f\Jf’-l‘”-'l“\u"JVW/"’\ M ‘*‘vwﬁ\'*‘ﬂﬂm‘f" ',M“
Bl 2.3 ~ STFT #£if - ($#2~p Jeon et al., 2020)
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#2457 o STFT i % X(t, w) ¥ Mg T 258 45

X(t,w) = %foox(t)h(t —1)e /¥t

Xt f) = foox(t)h(t — T)e /2Tty

BP o wi R o h(T) 5 T Slico ¥ TR BT A

WA o j e mBcH o - dd S o i §E# B S i Hamming ¥ 17

&) e
(1, |t]| <0
h(®) = {0, lt] >0
K28 F AT S
t .
X(t,f) :f x(T)e_]ZTL'w‘L'dT
-t

(2. 7)

(4 2.8)

Sl BT T S

A

(4 2.9)

X 2.10)

§ 30T Sl E R 1 0 STET § 84305 P (2 5L 5 3R N o 452 > 8 A
5 AT K Hcp & F PR AJE G 4 1 B o i F o STET #13% B enphip & 478 %
€ " PEAE B] (Spectrogram)?) ;% & IR > K fh o FERT 0 GEhP] S HE F o pLARAD 1L e

RPN AT PR AN IR (B2.4)

<1Hz

BHZ [um/s?]

frequency / Hz
= N W a U O N O W

~N

v

period / seconds

22:00 May-05 02:00 04:00

22

06:00 08:

BB TS E RS 2T R B 2022
E 50 4P iesrRlE A AN R e S H R AL o (BB~ NASA)
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22 IiPM B gL

Snieder and Wapenaar (2010)s7 7 7 F R E - BUEZF Y s BiEZg 2@
oA g S T B e e g2 CCFs ¢ F P2 i g 8L2 /P /1 T 4p
en TE - BEARALL R BRSNS B T - BELLR L BE A B B
RS TG RE S R AR BT E IR e k28 P # % G EGFs
fpie o HP MBI T RERD o - P Y O HNRERERA L RE 0 T

Boa— ¥ BN u,(x) ks 5% B R EGFs ¥ & 7 5

= n

GO0 2,0 = )ty (Wit (£ )05 (@ H (£) (¢ 2.11)

n

He sx 2200 E- 8 0t 2B w, s WA nh S > HO)E R S
(Heaviside function) » 4+ f FFRF 5 0> & PR 5 1 j&_CCFs 42 ¥ 5| EGFs i 42 -
FAREL R b VAT A

v(x,t) = Z(ansin(a)nt) + bycos(wyt))u, (x) £2.12)

27 W Thikan frb, A9 E 5 R N BRI L AR FE L AR D

RN TS PR LR

{(anam)(: flbn)bri)(; S8nm (3% 2.13)

HeY > (Ve E SEHGEEFAE > Opn » o B 5 S ¥ (Kronecker Delta

Function) » § H-AkARF F 5 1> 2 4pF P 0 32% > 328 A % x,frag 91 CCFs:

1 (T ‘
Cup(T) = ?J‘ (v(xy, t + T)V(xp, t))dt (¢ 2.14)
0

He T 2REAA LR T IApM? St B R (LagTime) - 4 % » #-3% 2.14
GEA P RN R 212 X BB T @I T de i B 1 )% 5 2,13

P BEREE 4\2,3,‘3,,['53 fLZH- 42> V47 5
1 T
Cao@® = Y SunCeadun(i) [ {coslaon (e +0)] cos(ont)
0
n

+ sin[w, (t + 7)] sin(w,t)}dt

_ zn:gun(xA)un(xB)cos(wnf) (* 2.15)

V21580 201 27 di s BT > 0pF 0 ¥ FDSG(xy, x5, T) 0 M BT <OFF > ¥
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7 31SG(xy, x5, —T) ° F4* » CCFs &2 EGFs 2. B el 27 & 77 5 :

Cap(7) = S[G(x4, x5, T) + G(x4, x5, —7)] (5% 2.16)
gt 2.16 0 2 ¥ 1 gk CCFs ndp i @ f 4p 03t EGFs 2 2 5 £ $1 i
Boshdpde o BAROM B AT P B TRE RN SRR AL 2T i B 4R

CCFs ¥ JEB~a jplzh2. B EGFs ihjp (=2 3| p¥ o Stehly et al. (2007)5%7 5 %+ 2
PP L B GRG0 BRI A FIT A 2 deen (B 2.5) 0

A

-200 -150 -100 -50 0 50 100 150 200
Time [S]
B 2.5 CCFs & EGFs B 27 L. Bl ¢ F R4 7 p 1999 I 2005 # j&— $+il=

¢ P EGFs e iz d F A T 2000 # 5 7 i CCFs dpde o i a5¢ Jaik 3 10-20 )

HiF o T RARFE - 5 1o (#1P~ P Stehly et al., 2007)
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2.3

BEHAT AP

3t H ¢ > 3 4p ks (Cross correlation)® — &% kT8 » 3 HL2 B 49 22 {r R
B izt 2 2 s TR LS BREERE P2 Bl ko AnEMAREY o gL E T
i aAf R ¥ FT AL LI LA AFRDTRE - B BT AR D
B w o Blde s BiEEP T EBFRF RS E 7257 CCFs (hpLipl
SvEb Bdem ks i (B 2.6)
T T T T
0

—~ 500
£
=
3
c
3
20
(e}
1000
e .«Nwwm-wﬁ{' V\N\—-w AN N E NP NI i P A A ,‘\,‘ —
| Il
A '\.. ‘\f’\_ ~ “ WLV - AL A A
1500~ 1 s 3 P | 1 TR | [ 1 | — P | 1 T | IR 1 1 1 ]
-600 -400 -200 0 200 400 600
Time (s)
B 2.6 BB mkit CCFs 7 &) o 2 ¢ ¥ 4% 7 Bl CCFs 5P|k B 7] > §

d mME T

Ed A

PN

P Rl -

0 it B 95 )3

T R

7 e

e PR

A ]

o e i 6 R
» CCFs i % T mEHAK (B 2.7)
k—-i”"g Aa\-#mpﬁ?- E),%IF Eb %’i’(

B¥ iy € ¥ CCFs et f at B ~ JRiFEI4p = &

% m L o

(#P~p Jingetal., 2016)

8 55
e

CCFs (Stechly et al., 2006) °
R oo FEEIRA ]
ENAEE - R = & = e

F

A [C 3N
‘E/—g&g ’ lé ‘{F"

VR Z LR L (B 2.8) o Flt 0 & fi3f CCFs

D F P

B % -
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TIME DIFFERENCE (s)
{=]
=

TIME DIFFERENCE (s)
=]
=

1
1
1
I
1
T
1
1
]

(=]
(5]
1

1.0

-90°

0°

90° 180° 270°

RECONSTRUCTED
Ps SIGNAL

Y B CCFs » ()43 A F e B8LR (Yo & )& ipl sk, &

3
Xp ' iAo 1 &P CCFs a5k o (b)F B wk B-8Lk 1] i i) =k 31 55 ¢ CCFs

2 pER B g it o (0)?7F CCFs 2 4r g% > 3040.6 fiA 2 = Bk > %

PE NGRS w0 A FHAE o (#P- A Snieder and Wapenaar., 2010)

) °°°°° o
©
° o :[oﬂ 2]
© o ©
o ° o
o © °
5] ° o
°

°

© o
° o ©

o

o

cross-corrleation 1-2

cross-corrleation 1-2

M"\/W\IV"VVVV‘

time

B 2. 8~wk ko F kit CCFs g’

=

time +

ARG A F D Y R

CCFs T R 2AHFA M o iR % B IR B E RSO RF B HBES w4

Ak P hESE Y o (3P~ p Stechly et al., 2006)
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S
a
‘F}-
g
(‘Fﬂ'
v a
h 2

IR B E AT > CCFs § % I F L o blde o fiT
Bk R Ll ot FER T 6 L kAR e AR Y L Al g £ Pk
ANH D EAERBEAL RS A B A TR TR R B RazEia g A
FERT AR ANEL AT Fplak2 BIRGIoIn ) B D iR et > M g
HGEE R F P FRHTE AN E BT FERR (R2.9) 2581 i
SR E oA e PR 2 B el A e Pl EE 2 B el AR B A TR SRR

o AR EAER > B FH/B oo 7 ERE ¢ U BL T 4 FEE -

(a)4-8s Land-Land (b) 25-50 s
T 250

Inter-station distance (km)

-50 [ .50
Cross—correlation time (s)

(d) 25-50's

§| X g

Inter-station distance (km)

5 8 8 3 8 8
Inter-station distance (km)

L8
g

50 :
-100 100 150 -150 -100 100 150

8 3 8 8 3 8

Inter-station distance (km)

3

Lo
g

-100

100 150 Sso “100

-50 o 50
Cross—correlation time (s)

B 2.9 3 3T pEio Lmiai R o (a~b)pEd -t Plak¥ o (c~d)i=

-50 50
Cross—correlation time (s)

PRk PR o (e~ )% -8 IE PR o (3P~ b Rathnayaka and Gao, 2017)
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BE R Koo

s BRREMGRAAR LES A F > A2

g e T

R & S g IR PP ST B 2 8 F R 0 J 3 CCFs 0% S o Bt o

> N o B Ll ™\ ™\ = 32—
=gy ¥R 2 WA R IR EUR A F B RsEA F 2 B enh 2 (] 2.10) - ﬁ;}%\ﬁ__ﬂ
E5% o Pl e CCFs 3 R sbin 82 w e Jh £ L AP ¥ B A & 0 @ ¥
B RS B R IR SRR S ' e
0 Cross-Correlation Functions (CCFs)
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s # et g 2 o5
b * g = . A i g‘
o J I S LS 54 3 < / P _
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,t,:n Sy . ‘.A., o [ ] g —0.5
TR AR . 2
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;,,f 'ﬁ.':.‘ P _é » | \ “a [
b S E— / A R Y R N f’f\\\,_,
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B 2.10~

Mzl EASDIRE i 2= R
F Ao R R R

Pk 1ensg B g3l (% ¢

L300 5 Wl R A Tk iR gt CCFs chfs 88 o 4 w2 >t 2 fp) 2
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Bleb 1 X PRI 2 s R B o o PlEk 2 B3E T

xR SPIE f
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AT
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P-i# {7 2% (Fast Marching Method, FMM) #_% & % # = ;2 (Narrow Band
Method) s 78 3+ 5 H ¥ o #* = i $oi~ & Sethian (1996)5157 § ¢ 4% 41 > # ¢ fz
-t B yE (Front Propagation)sif® 48 » 43 %] * >t @ vfsd B § H 3 v anffim -
FMM i & 2 8L0 5 3 st B e Fod 40 BhT) i & e R b e pF I & jE4E > 3
© BLEH YRR EARE] (Song et al, 2017) ~ + 28 (Leliévre et al., 2011) ~ fr§5 L
22 (Song et al., 2013) % 4f 3
FMM At P24 42 & Kj2425 > 42 (Eikonal Equation) » %3 25 ¢ » f2.a
AL UR RAAFIRATY BEnER AL R RRAPAFENTTERZLR
b ko B - BRI RN 2 T AT R
VT Cx, y)| = s(x,¥) (3% 2.17)
HeY T, y) sy RA R s(y)i- BEAR R o 58 2,17 38P 0 A e
2m R BEE R A F W o AN 21TREFEIT T AT B
T, —Di*T;;,0)"
+max(D,” Ty, — +yTU,O) (54 2.13)
B ooni G A A GREE (8] RRE DT 8 —Dy T 5 AP S licez B 7

SCey)? = max(Dy*

xR Sde s DT —DY T AR S B ys B i adk &or
Wi F e LS R BRERFIEIL P ALAE IR XA EEYSE

2 S HP AT B

( Tij—Ti—1
DUty =g
Tiv1,j — Ty
)P =g
DYT.. = —Ti'j —Tij
17Ny AR
T .. —T..
+y __TLj+1 i,j .
le Tij = A—h ;7\‘ 2. 19)

#8219 F » 502,18 ¢ 5 AT 5

[ s (TU Ti—1,j Tiz1,j —Tij ) |
2 | s an )|
s(x,y)? =|
y “T, Ty 2
Ah ’ AR (3% 2.20)
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1957 & RIL (Fermat's Principle) » # Rk @ 3RE /T 5 42 P e > oBE T o F]pt j87

EPRE TR EREREE o8 220F &7 5

T, i —min(Ti—y ;, Tiz17)]
s(x,y)z — i,j (A;l 1,j l+1,])

[T; j — min(Ti,j—l; Ti,j+1)-
Ah ] (3% 2.21)

FoA G IERATE E AL G =AM EH R (Alive Points) 0 2 Arp

+

Bk BYEpE R gk F 4 2 (NarrowBand Points) > 7 e 328 e 2 & { #78 B B:E
PF R englk ik 3g gk (FarAway Points) » o A3 8 b+ 24 ByLpF R gl o 'FT i A
FAYED e BB EER R Ea® o BB F Y B %%“f v TAe 2 EHEEP o

FBFORTBERMABEN » F A BT o do S qpAREEY G R B R A R iTE Bhin
T o Bots 0 P E FIPBDBIERFT o dok FIARNBERET e S EE 0 B R

ATEBEPER RF O] E Aok FIRBE DB R & AR RRT i
WA BRI R REPN T B (2.11) ¢

|
(3

NarrowBand

Source ¢

£ 25N V=Y 25N
A\ \r \VJ A\
. OO0 y.
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N o o
ﬁ A4 A\ 4 A4 l 9—
N N OO o
A A A\
OO OO
g OO0
Ve N o> Van Y o o Van
S o U U OUT UV
(\ o o o o O P o o ~S o
—O—0O—C0 O—0O—10V—"~0V0—0——0 j: ©
(} oO—O—O0n O OOl O OO o
O 00— 00U 00— 00— 00— 0—0U—0—90O

FarAway values T

B 2.11 - FMM 7 % B - 33 f Alashloo et al., 2016)

30

doi:10.6342/NTU202403669



25 BAR S ERRIBEHBEDY

B2 F 5 €8s 5893 (Comell Multi-grid Coupled Tsunami Model,
COMCOT)A - f&* »+ i s ¥ 2 cng UL A KA v G RIfefziarg 2 &
R P 5 83 R cCOMCOT cfbdr 2 Auhse v 5% 7 5 e i
AN FRA- A RS AT KA B T S f‘-"—gfﬂ i B 59 R JRA Fe A
il 4 B R4 o COMCOT (hip$ 72 WAt H 3oxant 82 2 > R4 v j9488

S B IR S EAR S 4R A R PIE R B AR B R S odTe S s R

e 2o AR OE L > TR EREOIER o

COMCOT & #kiFeha o @ 3% 20 3 I k]S 4230 35 R R e i

bR AR RS AR > T AT A
(dn 0P 0Q

6t+0x+6y 0
aP 677
1
ar TG =0
9Q on
[ 3¢ T9 5, =0 £ 2.22)
He ’77;w%iy§7‘f*’}‘5*ﬁ"fi%’Hﬁ’ﬁi?’gég‘_*%cﬂgﬁap;x—%@_pﬁ—,
’Egﬁg Q y1ra-Fm%ﬁ7f§ Eﬂ -&r{}'—aﬁg—fg ,,Lp‘?%,l)&J ’Eljéwltﬁ%ﬁ-%ﬂ
]b}/‘s: J\/}i ﬁi}\"v %\, P:
ran 1 ap (COquQ) .,
ot Rcosqb 61/) o
aP gH 0n
) = =0
6t+Rcos¢6¢ rQ
dQ gHon
\ 3 " RapTIPE0 (3% 2.23)
FPUOYAER G HRORGEMBLFLPAA P SRS P E TR D

HB QLRI H =T A E o3 RIBRY DR R % B & B fE2bR P
K AR

LT R

S
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( 677 oP 6Q _0
at ax ay
aP+a PZ +— (PQ>+ H077+ =0
Vot Tox ay\H /) T9 5 T
aQ PQ Q? an
wt+w< )+%(ﬁ'+gH%ﬂ”W‘0 (% 2.24)
BY o xR o0y e b B .

#34% Lin et al. (2015) »

45 HiF* COMCOT 425 k2% 2011 2 p AL A+ 2P A F &

F (W 2. 12) ke % & Feip 7 | E

W I R o

Latitude (N)

#59 COMCOT #2F & 3

T s el B o B PEIE R
PES Vﬁ/,i "5 g4

B HYpAP 3 B3 0 4P COMCOT A fis
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1
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08+
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200 300 400

time (min)
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@ 2. 12 ~ NDBC_21413 i ;7 P32 COMCOT #icdy civt i o = B &g o 80 07 B 2k e

=% o LB AEAS G o (FEP~p Linetal., 2015)
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31 FTH XA ILiAL

RGO TR KR S NOAA 7 DART 4 b o 2 frﬁ?“% e
N #uﬁ;ﬁr 77 B BPR A TR It TER B 29 Bl FRE
o4t (B3 1) FRFERIEE T 20082 1% 1p 3 2017 & 12 % 31 p > 33"
10 # o FHAAmit42 ¢ 35 DART B 4 ??f‘“?‘ CHEE A AT BT SRR

RE1LZ dadp o T R %%ﬁiﬁ% EEFEmN & o
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21418
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3.2 %%ﬁ&aﬁﬁ#»ﬁ

A7 75 DART FHE S REPL 07 B BPRFAFTH - b 2Rl
W RRG - RO BB RS ¢ HRRHRE AR T
AT TS AP G R TR F AT (e A2) o Rl B CCFs FF
& 4P e P~ & (Sampling Rate) » 4 7 L8 7 £ A7B~ 4% (Resample) > #-F 4L B~
FWAFLIE NS - BERE T - p L AINERRETRSFEE D L5
5760 i FALBE > MFR A 4T EFE M o ST 1S 0 B A 17 F IRk PSD &2 FEIE R
APRATEGFTROBEE S BN E s FHIRILE T SO (e A3)

I I I
~ o)) Ul
o o o

Power Spectral Density [db]
I

—-90 — —
10~4 1073 10~

Frequency [HZ]

Bl 3.2 DART TR s FHHB R - 2 F BB RES 27 (R3.1) Fé B

N

SRR 5 AT ArER Y 2 IGWsHE 5 ## B (0.001-0.01 Hz) » IGWs e £ &% F
FORlAE (F ) s ENT A AR (FJ )R 0 AT fTE (%4 )R ¥
NWW3 i3 sr Rz s B4 F4p 5 (B 1.6) -

34

doi:10.6342/NTU202403669



FIpt o AP R E IR R T R T B R T e A Lk (2 d R B
(

L
9 DART 46403 Blxk (B 3.3~ B 3.4)2&2 =t a Lok (4 %) DART 32411 i

s (F13.5 B 3.6)5 6] -
46403
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32411
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SEEERRE A PFRIGWs chit £t L E 5o %a 0 d s
#ERSFTEARF B BRIET :"._'rﬁ;:g:isiégpgaﬁﬂ’,;puog,,wr,wugﬁﬁq
PoAPHpERR AL W FHEEFRHR{rf CEFREFTL 0%
S R 1 3 O FEJ SARECLRIESS SR LRl S SRR 3 (G g
B4 o 3 AP alsE Y B IRk o pteb s A el i IGWs ¢ PSD HEE B 1
SR Y LR AR IR (R 3.7) -

TG o R FRARRFEFAP FERERRS AL AR DR R
BEREFH A -+ RPFAP BRMBFERH{AREA X EERBARS chE IS
T T LS PSD kAR A HE 0 F RATIRIRY Rk Ak EY i en B A
o bl BB ISR ok kPR E BRARRS LR e B R
R4S ¥ IE g PSD A AT kB IRLfRR A FORE (F3.7) -

T
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|
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w
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|
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w

Power Spectral Density [db]

=75

B3 7 -IGWs # ZHERECEREN c AR RENI R hF 0 i 7 (B 3.
1) IGWs ehig # &% Ediss > L 533 o ma BB F Aid ¥ B &% 7 i s
EE 2R (£3.1)-
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Event Date Location

Earthquake (Mw 6.2) 2008.02.27 Bonin Islands, Japan
Earthquake (Mw 8.1)  2009.09.29 Samoa Islands, Samoa
Earthquake (Mw 6.3)  2010.02.27 Salta Province, Argentina
Storm Activity 2010.11.02 North Pacific

Earthquake (Mw 9.1) 2011.03.11 Honshu, Japan

Earthquake (Mw 7.9)  2013.02.06 Solomon Islands, Solomon
Earthquake (Mw 6.9)  2016.12.09 Solomon Islands, Solomon

Z 3.1~ R E EAE L

38
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3.3 MSNoise

M T % Lecocq et al. (2014)#7 R 4 - Monitoring Seismic Velocity Changes
Using Ambient Seismic Noise (MSNoise) #%3;% > :%4%;% ¥~ 2 Python 3 3 % B o
BmE > B % 20 g2 BB RN HT R - MSNoise ¢ & BF AN E- 2
%R T AR AR AR 0 R AT AL I E B AR A (dUt) B A
He o3 Far R0~ 3 4pkiz- 8 (Compute CC) ~ fp4e (Stack) ~ # #4L % I 4p B
3+ (Compute MWCS) % - k5| & i R R —‘ﬂ“ el - BEEPN R
B A 454z (B 3. 8)

Compute
Scan Define (G T > Compute Plot
Seismic New ) Cross- Stack Doublet dt/t 4
Archive ewJobs Correlation (MWCS) i .

B 3. 8 ~ MSNoise /47 [] - (#2~p Lecocq et al., 2014)

MSNoise ¢ s - B3I H38 e 0 > g @R Az;;;g e o B S Bk Fe AR
Fing kR RSy PR Y H g e FmN o - HRF T TR AT
FE e pb ot FL - BRIREE ¥ 2T A F - g icfo 4] MSNoise (4258 45
v ARG Fo #u| E_Python 3% 3 £ F A AL 3B B iroif Bt # 17 MSNoise

P Hduzryae

'ﬁ"t

FE o Jm W B R e Powoe o F S M
MSNoise & $7re i cTFT § > T BT AT nB S o Bildoo L3 2 S H B At TR E

| (Lecocqetal.,2017) ~ " Livf 3¢ %0 4 ciog & % it chp % (Cabrera-Pérez etal., 2023;
Donaldson etal., 2017) ~ X ik 3 22 % &4 1 3F cd it % ¢ (Jamesetal.,,2019) » 12 2
7k "ﬁn’: i“ 4p B 3R 4233 & (Mordret et al., 2016; Sergeant et al., 2020) &4 & * % &)
Br 7 MSNoise * %A EH T PRI P F 2 har? > P fgkisg 4 ond
# > & MSNoise 7 e b 5 421 5 A7 38 T RLIEY S o
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34 FRERM

TR i (Normalization)si & B en i oy i & — B 1R 2F 4= B & 4R 8 2
TR BRAZFE ARG R o AFF Y AT * R 2 MSNoise ® 0 F
i h H R RERPFRSE LI R AGL k¢ AR R
% One-bit ~ Winsorizing ¥¥ Whitening °

BPFRF S AR 2 G 0 One-bit 1™ 2 5 %§ & Bi#chpand f 5 T+ -1
SR 3 AR UATES TR B o p e R T B Sl iR Bicdy > A
# B M HLZ 2wkt (Signal to Noise Ratio, SNR) (Cupillard et al., 2010) c ¥ = > & >
Winsorizing #07 j* Pl 3 B #chp iRy @ 0 -2 U4 A ;fz‘:?;%%]]:\ VR
B ERHERER AT R SRR X RV F YL
(Biiyiikakpnar et al., 2018) o fdf J38 i+ 214 > 6 > Whitening 537 ;% & #-pF ff 388 F
FAES 2 ERBIPFBLEOBEMHFY 2RI i £ REFLPFIN 5
Li AR Bo MM TS LR R R B L ¥ AR ERE A4 (Liand
Lee, 2023) - 1245 > Tsai and Ko (2022)e%7 3 % > f#f 5% + # * Whitening &
L ¥ BPR #7343 ciE KR 4 Bk TR > EFRE F %% o d 3 BPR 0
HEH LD EFH AP (B 3.2) ERE P APHFHEF 2 1201032
WHEEREZ L o F)pt > A 2010 & 37 11 pApAsy goirilde arn
L5 b 0 i {7 Whitening & 21 @ (& endht (B 3.9 2T B 3. 11) »
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32411

Freq.: 0.001 [Hz] Freq.: 0.002 [Hz] Freq.: 0.003 [Hz] Freq.: 0.004 [Hz] Freq.: 0.005 [Hz]

120°E T50°E 160° 1S0°W120°W 90°W 60°W  120°E I50°E 160° 150°WI20°W 90°W G0°W

1 50 500 0 1000 1250 1500 1750 2000 2250
Ray path density {per square 0.5 degrees)

Bl A4.7~-DART 32411 plzb2 A B - BP d 23+ d 32T &7)
$O(S AT R DA A

7€_0.001Hz

ff

B4 & Fg 0.001Hz 5 # w5 chpd e 2
o ES (A4 OE A MR R B R -

N

32412

.:[).[)02 [Hz] Freq.: 0.003 [Hz] Freq.:[) 004 [Hz] Freq.:D.DOB [Hz]

130°E T50°E 180° 150°W120°W B0°W E0°W

1000 1250 1500
Raey path density {per square 0.5 degrees)

s
a8

B A4.8~DART 32412 plzpz jh BEIE-BP d = 3 + + 37 %55 € 0.001Hz

2 ¢ (B4 G)E TR DAL D

m~

Bde o FFE 0.001Hz % 7 S Hf & o B gL T o
= ;‘éé (%44 ,j‘s)%\, - Ay O F =

118

doi:10.6342/NTU202403669



32413

Freq.: 0.001 [Hz] Freq.: 0.002 [Hz]

Freq.: 0.003 [Hz]

Freq.: 0.004 [Hz] Freq.: 0.005 [Hz]
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43413

Freq.: 0.004 [Hz]

Freq.: 0.003 [Hz]
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46403

Freq.: 0.001 [Hz] Freq.: 0.002 [Hz] Freq.: 0.003 [Hz] Freq.: 0.004 [Hz] Freq.: 0.005 [Hz]

Freq.: 0.006 [Hz] Freq.: 0.007 [Hz]
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Freq 0.001 [Hz] Freq.: 0.002 [Hz] Freq.: 0.003 [Hz] Freq.: 0.004 [Hz] Freq.: 0.005 [Hz]
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46407

Freq.: 0.004 [Hz] Freq.: 0.005 [Hz]

Freq.: 0.001 [Hz] Freq.: 0.002 [Hz] Freq.: 0.003 [Hz]

Freq.: 0.008 [Hz] Freq.: 0.009 [Hz]
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Freq.: 0.004 [Hz]
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Freq.: 0.002 [Hz] Freq.: 0.003 [Hz]

Freq.: 0.004 [Hz] Freq.:0.005 [Hz]

Freq 0.001 [Hz]

Freq.: 0.006 [Hz] Freq.: 0.008 [Hz]

Freg.: 0.007 [Hz]
=S .

Freg.: 0.009 [Hz]

1000 1250 1500
Ray path density {per square 0.5 degrees)
¢ d 2
- I
:"' E?

ES
=L

«(

B A4. 18~ DART 46410 jp|=k2_ 4 &

22} & @
N ? )i zzh: & @

B4 &g 0.001Hz 5 ¢ w4 & e

S (A K)ERT

’(((

123

1750

2250

+d 3 T %5748 0.001Hz
(¢ A7 B @A AL

doi:10.6342/NTU202403669



46411

Freq 0.005 [Hz]
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46413

Freq.: 0.001 [Hz] Freq.: 0.002 [Hz] Freq.: 0.003 [Hz] Freq.: 0.004 [Hz] Freq.: 0.005 [Hz]
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51426

Freq.: 0.004 [Hz] Freq.: 0.005 [Hz]
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52402

Freq.: 0.006 [Hz] Freg.: 0.007 [Hz]

Ray path density {per square 0.5 degrees)
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Freq.: 0.005 [Hz]

Freq.: 0.002 [Hz]
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