Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94443
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor潘斯文zh_TW
dc.contributor.advisorStephen Payneen
dc.contributor.author毛宇真zh_TW
dc.contributor.authorYu-Zhen Maoen
dc.date.accessioned2024-08-15T17:32:49Z-
dc.date.available2024-08-16-
dc.date.copyright2024-08-15-
dc.date.issued2024-
dc.date.submitted2024-08-08-
dc.identifier.citation[1] Ince J, Banahan C, Venturini S, Alharbi M, Turner P, Oura M, Beach KW, Robinson TG, Mistri AK, Lecchini-Visintini A, Minhas JS, Chung EML. Acute ischaemic stroke diagnosis using brain tissue pulsations. J Neurol Sci. 2020 Dec 15;419:117164. doi: 10.1016/j.jns.2020.117164. Epub 2020 Oct 3.
[2] S. Vidale, E. Agostoni, Prehospital stroke scales and large vessel occlusion: a systematic review, Acta Neurol. Scand. 138 (1) (2018) 24–31.
[3] Terem I, Dang L, Champagne A, Abderezaei J, Pionteck A, Almadan Z, Lydon AM, Kurt M, Scadeng M, Holdsworth SJ. 3D amplified MRI (aMRI). Magn Reson Med. 2021 Sep;86(3):1674-1686. doi: 10.1002/mrm.28797. Epub 2021 May 5.
[4] Turner P, Banahan C, Alharbi M, Ince J, Venturini S, Berger S, Bnini I, Campbell J, Beach KW, Horsfield M, Oura M, Lecchini-Visintini A, Chung EML. Brain Tissue Pulsation in Healthy Volunteers. Ultrasound Med Biol. 2020 Dec;46(12):3268-3278. doi: 10.1016/j.ultrasmedbio.2020.08.020. Epub 2020 Sep 24.
[5] J.C. Kucewicz, B. Dunmire, D.F. Leotta, H. Panagiotides, M. Paun, K.W. Beach, Functional tissue Pulsatility imaging of the brain during visual stimulation, Ultrasound Med. Biol. 33 (5) (2007) 681–690.
[6] Chou D, Vardakis JC, Guo L, Tully BJ, Ventikos Y. A fully dynamic multi-compartmental poroelastic system: Application to aqueductal stenosis. J Biomech. 2016 Jul 26;49(11):2306-2312. doi: 10.1016/j.jbiomech.2015.11.025. Epub 2015 Nov 28.
[7] Moghadam ME, Baghal A, Payne S. Human whole-brain models of cerebral blood flow and oxygen transport. University of Oxford, Department of Biomedical Engineering.
[8] S.S. Kety, C.F. Schmidt, The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values, J. Clin. Invest. 27 (4) (1948) 476–483.
[9] H. Ito, I. Kanno, H. Iida, J. Hatazawa, E. Shimosegawa, H. Tamura, T. Okudera, Arterial fraction of cerebral blood volume in humans measured by positron emission tomography, Ann. Nucl. Med. 15 (2) (2001) 111–116, https://doi.org/10.1007/BF02988600.
[10] H. Ito, I. Kanno, H. Fukuda, Human cerebral circulation: positron emission tomography studies, Ann. Nucl. Med. 19 (2) (2005) 65–74, https://doi.org/10.1007/BF03027383.
[11] H.H. Lipowsky, Microvascular rheology and hemodynamics, Microcirculation 12(2005) 5–15.
[12] E. Vovenko, Distribution of oxygen tension on the surface of arterioles, capillaries and venules of brain cortex and in tissue in normoxia: an experimental study on rats, Pflugers Arch. 437 (1999) 617–623.
[13] Guo L, Vardakis JC, Lassila T, Mitolo M, Ravikumar N, Chou D, Lange M, Sarrami-Foroushani A, Tully BJ, Taylor ZA, Varma S, Venneri A, Frangi AF, Ventikos Y. Subject-specific multi-poroelastic model for exploring the risk factors associated with the early stages of Alzheimer’s disease. Interface Focus. 2018;8(2):20170019. doi:10.1098/rsfs.2017.0019.
[14] Shao, Y.-H., & National Taiwan University Institute of Applied Mechanics. (2000). Non-invasive measurement of mechanical properties of peripheral arteries (I). Report of the National Science Council, Project No: NSC 89-2320-B-002-149 M08.
[15] Turner P, Banahan C, Alharbi M, Ince J, Venturini S, Berger S, Bnini I, Campbell J, Beach KW, Horsfield M, Oura M, Lecchini-Visintini A, Chung EML. Brain Tissue Pulsation in Healthy Volunteers. Ultrasound Med Biol. 2020;46(12):3268-3278. doi: 10.1016/j.ultrasmedbio.2020.08.020.
[16] Ince, J., Alharbi, M., Minhas, J.S., & Chung, E.M.L. (2019). Ultrasound measurement of brain tissue movement in humans: A systematic review. Ultrasound, 28(2), 70–81. doi: 10.1177/1742271X19894601.
[17] Tully, B., & Ventikos, Y. (2011). Cerebral water transport using multiple-network poroelastic theory: Application to normal pressure hydrocephalus. Journal of Fluid Mechanics, 667, 188-215. doi:10.1017/S0022112010004428.
[18] Axpe E, Orive G, Franze K, Appel EA. Towards brain-tissue-like biomaterials. Nat Commun. 2020 Jul 9;11(1):3423. doi: 10.1038/s41467-020-17245-x. PMID: 32647269; PMCID: PMC7347841.
[19] Hinrichsen J, Reiter N, Bräuer L, Paulsen F, Kaessmair S, Budday S. Inverse identification of region-specific hyperelastic material parameters for human brain tissue. Biomech Model Mechanobiol. 2023 Oct;22(5):1729-1749. doi: 10.1007/s10237-023-01739-w. Epub 2023 Sep 7. PMID: 37676609; PMCID: PMC10511383.
[20] Hosseini-Farid M, Ramzanpour M, McLean J, Ziejewski M, Karami G. A poro-hyper-viscoelastic rate-dependent constitutive modeling for the analysis of brain tissues. J Mech Behav Biomed Mater. 2020 Feb;102:103475. doi: 10.1016/j.jmbbm.2019.103475. Epub 2019 Oct 11. PMID: 31627069.
[21] M. Hosseini-Farid, M. Ramzanpour, M. Ziejewski, G. Karami, A compressible hyper-viscoelastic material constitutive model for human brain tissue and the identification of its parameters, Int. J. Non Linear Mech. 116 (2019)147–154 .
[22] Lee SJ, King MA, Sun J, Xie HK, Subhash G, Sarntinoranont M. Measurement of viscoelastic properties in multiple anatomical regions of acute rat brain tissue slices. J Mech Behav Biomed Mater. 2014 Jan;29:213-24. doi: 10.1016/j.jmbbm.2013.08.026. Epub 2013 Sep 9. PMID: 24099950; PMCID: PMC8011428.
[23] Nagashima T, Shirakuni T, Rapoport SI. A two-dimensional, finite element analysis of vasogenic brain edema. Neurol Med Chir (Tokyo). 1990 Jan;30(1):1-9. doi: 10.2176/nmc.30.1. PMID: 1694266.
[24] E. Comellas, S. Budday, J.P. Pelteret, G.A. Holzapfel, P. Steinmann, Modeling the porous and viscous responses of human brain tissue behavior, Comput. Methods Appl. Mech. Eng. 369 (2020) 113128 .
[25] Elkin BS, Ilankova A, Morrison B. Dynamic, regional mechanical properties of the porcine brain: indentation in the coronal plane. J Biomech Eng. 2011 Jul;133(7):071009. doi: 10.1115/1.4004494. PMID: 21823748.
[26] H. Kim, B.K. Min, D.H. Park, S. Hawi, B.J. Kim, Z. Czosnyka, M. Czosnyka, M.P. Sutcliffe, D.J. Kim, Porohyperelastic anatomical models for hydrocephalus and idiopathic intracranial hypertension, J. Neurosurg. 122 (6) (2015) 1330–1340 .
[27] Miller K, Chinzei K. Constitutive modelling of brain tissue: experiment and theory. J Biomech. 1997 Nov-Dec;30(11-12):1115-21. doi: 10.1016/s0021-9290(97)00092-4. PMID: 9456379.
[28] Payne SJ. Cerebral Blood Flow and Metabolism: A Quantitative Approach. World Scientific Publishing Co. Pte. Ltd., 2017.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94443-
dc.description.abstract由於難以獲得無創的體內數據,理解腦組織的機械性質仍然具有挑戰性。本研究通過利用心臟周期引起的腦組織脈動(BTP)來估算腦部性質。研究開發了一個耦合固-液的數學模型,並使用經顱組織多普勒(TCTD)技術測量20名健康個體的腦組織位移和相應的血壓,從而獲得數據。傅里葉變換被用來推導位移和壓力信號之間的傳遞函數。
該數學模型假設腦組織可以被模擬為一個耦合固-液系統。球坐標系被應用於模型中以簡化控制方程。為了擬合數據,嘗試了兩種模型,包括耦合固-液模型及其具有多個組分的修正模型。使用MATLAB的'fminsearch'進行模型擬合,優化了包括楊氏模量(E)、泊松比(ν)、比儲量(Q)和透氣度/粘度(κ/μ)等關鍵參數。
總共嘗試了四種方法。前三種方法包括原始模型擬合、為避免負量級進行的對數變換模型擬合和修正模型擬合,這些方法擬合了由物理參數組成的無量綱參數組。然後,無量綱參數組可以計算出三個量綱參數。最後一種方法是直接擬合原始三個量綱參數,因為在無量綱參數組轉化為三個量綱參數的過程中存在問題。
擬合結果顯示所有方法的擬合曲線和損失都與實驗數據有很強的相關性。然而,參數值並不總是符合預期的量級。這種差異部分是由於缺乏已建立的比較標準。此外,這也間接表明了準確模擬腦組織性質的複雜性和挑戰性。
總結來說,雖然本研究沒有顯示出預期的結果,但仍然排除了幾種方法。儘管存在這些挑戰,本研究為利用腦組織脈動估算腦部性質的潛力和局限性提供了寶貴的見解。某些方法和模型的排除突顯了進一步改進模型以更好地考慮腦組織非線性、粘彈性和各向異性特性的必要性。該研究的方法還顯示出使用無創技術準確估算腦組織機械性質的潛力。
未來的研究應該著重於通過引入更多數據集來提高這些模型的準確性,不僅包括健康志願者,還包括患者,以獲得更準確的結果。此外,未來的研究應該探索其他可能的建模技術。通過解決本研究中識別的局限性,研究人員可以提高無創方法估算腦組織性質的可靠性。此外,將這種方法擴展到各種生理和病理狀態,以增強其臨床應用性,特別是在診斷和治療腦部疾病方面,也將是重點。
zh_TW
dc.description.abstractUnderstanding the mechanical properties of brain tissue remains challenging due to difficulties obtaining non-invasive in vivo data. This study addresses this by utilising brain tissue pulsations (BTP) from cardiac cycles to estimate cerebral properties. This study developed a coupled solid-fluid mathematical model fitted to data from 20 healthy individuals using Transcranial Tissue Doppler (TCTD) to measure brain tissue displacement and corresponding blood pressure. The Fourier transformation was used to derive transfer functions between displacement and pressure signals.
The mathematical model assumes that the brain tissue can be modelled as a coupled solid-fluid system. The spherical coordinate is applied to the model to simplify the governing equation. Two models have been tried to fit the data, including a coupled solid-fluid model and its revised model with multiple compartments. Model fitting, using MATLAB's 'fminsearch,' optimised vital parameters, including Young’s modulus (E), Poisson’s ratio (ν), specific storage (Q), and permeability over viscosity (κ/μ).
Four ways are tried in total. The first three, including original model fitting, logarithmic transformation model fitting to avoid negative magnitude, and revised model fitting, are fitting the non-dimensional groups of parameters formed by physical parameters. Then, the dimensional three can be calculated by non-dimensional groups. The last way is to directly fit the original dimensional three because problems exist from non-dimensional groups to the original three parameters.
The fitting results correlate with experimental data across all methods according to the fitting curves and loss. However, the parameter values don’t always perform well with expected magnitudes. This discrepancy is partly due to the absence of established standards for comparison. This also indirectly demonstrates the complexity and challenging nature of accurately modelling brain tissue properties.
In conclusion, although an expected result hasn’t been shown in this study, several ways are still excluded. Despite these challenges, this study provides valuable insights into the potential and limitations of using brain tissue pulsations for estimating cerebral properties. The exclusion of certain methods and models underscores the need for further refinement of more models that can better account for the nonlinear, viscoelastic, and anisotropic nature of brain tissue. This study’s approach also shows the potential for using non-invasive techniques to estimate brain tissue's mechanical properties accurately.
Future research should focus on enhancing the accuracy of these models by incorporating more datasets, not only for healthy volunteers but also for patients, to get more accurate results. Also, future research should explore other possible modelling techniques. By addressing the limitations identified in this study, researchers can improve the reliability of non-invasive methods for estimating brain tissue properties. Besides, extending this methodology to various physiological and pathological states to enhance its clinical applicability, particularly in diagnosing and treating brain disorders, will also be a focus.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T17:32:49Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-15T17:32:49Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsTable of Contents
Acknowledgements i
中文摘要 ii
Abstract iii
Table of Contents v
圖次 viii
表次 xi
1 Introduction 1
1.1 Background 1
1.2 Literature review 2
1.2.1 Clinical 3
1.2.2 Experimental 10
1.2.3 Mathematical Model 12
1.3 Aims and Scope 16
2 Materials and Methods 18
2.1 Mathematical Model 18
2.1.1 Governing Equations: 18
2.1.2 Nondimensionalization 21
2.1.3 Cartesian form 23
2.1.4 Revised Model 24
2.2 Data Acquisition 27
2.2.1 Acquisition Methods 27
2.2.2 Data Processing 29
2.3 Model Fitting 32
2.3.1 Methods and Tools 32
2.3.2 Parameters Setting 32
2.4 Conclusion 34
3 Results and Discussions 36
3.1 Fitting Results 36
3.1.1 Original Model Fitting 37
3.1.2 Logarithmic Transformation of The Parameters 38
3.1.3 Fitting with the New Model 44
3.1.4 Fitting the Original Three Parameters 50
3.2 Comparison and Discussion 58
3.3 Conclusions 61
4 Conclusions and Future Work 63
4.1 Summary of Findings 63
4.2 Limitations 64
4.3 Future Work 65
5 Reference 67

圖次
Figure 1-1 Volumetric 2D aMRI vs volumetric 3D aMRI. Anatomical reference (A), and maximum difference maps calculated from the original (unamplified) 3D cine data (B), volumetric 2D aMRI (C), and volumetric 3D aMRI (D). Volumetric 3D aMRI succeeded in capturing in- and out-of-plane motion while significantly decreasing motion artifacts compared to volumetric 2D aMRI [3]. 7
Figure 1-2 Acquisition of BTP. The predicted TCTD beam from side view (B) and top view (C) correspond to the equipment configuration (A). The forehead was the site of the probe, which was placed about 1 cm above the eyebrow's center. [1] 10
Figure 1-3 Typical non-stroke BTP signals [1]. Panel A shows consistent waveform patterns across different depths, while panel B shows slight variations in waveform patterns among different depths. 11
Figure 1-4 Typical stroke BTP signals [1] Panel A: Dramatic perturbation or departure from a regular waveform configuration. Panel B: Unlike single peaks observed in non-stroke waveforms, there are several additional peaks and oscillations after pulsations. Panel C: "The lack of discernible heartbeats." Panel D: "Inadequately correlated signals," which exhibit temporal and spatial heterogeneity [1] 12
Figure 1-5 The four-compartment MPET model. Flow is prohibited between the CSF and the arterial network, while directional transfer exists between (a) and (c), (c) and (v), (c) and (e) and finally (e) and (v)[13]. 15
Figure 2-1 Magnitude and phase of displacement and pressure as function of depth, using parameter values in Table 2-1 Typical values of model parameters and their types and sources 24
Figure 2-2 Equipment used in data acquisition [2] 29
Figure 2-3 A typical subject of arterial blood pressure (ABP) time series, peaks marked in red circles, each interval between circles representing a cardiac cycle. 30
Figure 2-4 Typical subjects of pressure and displacement in single regular cardiac cycle 30
Figure 2-5 Extraction of the average gains and phase 31
Figure 3-1 Original model fitting 37
Figure 3-2 Fitted curves correspond to different Poisson's ratio, skipping singular Jacobian matrix values. 42
Figure 3-3 Young's modulus variation with different Poisson's ratio 43
Figure 3-4 Permeability over viscosity variation with different Poisson's ratio 43
Figure 3-5 Fitted curves corresponding to different Poisson's ratios 46
Figure 3-6 Loss function of Model 2 47
Figure 3-7 fitting results at 0.49 of Poisson's ratio 48
Figure 3-8 Taking values back to the model 49
Figure 3-9 Fitting curves to different Poisson's ratio 52
Figure 3-10 fitting curves to different Poisson’s ratio 55
Figure 3-11 Fitting curves corresponding to different Poisson’s ratio 57

表次
Table 2-1 Typical values of model parameters and their types and sources 34
Table 2-2 Baseline values of non-dimensional groups 34
Table 2-3 Baseline values of model parameters and sources and/or calculations for blood flow [7]. 34
Table 3-1 Original model fitting of π1 to π4 37
Table 3-2 Results of parameters for corresponding Poisson's ratio, where Inf represents a value out of the range of the numerical solver. 40
Table 3-3 Fitted results corresponding to different Poisson's ratio 45
Table 3-4 fitted results at 0.49 of Poisson’s ratio 47
Table 3-5 fitting parameters to different Poisson’s ratio 51
Table 3-6 Fitted parameters to different Poisson’s ratio 54
Table 3-7 Fitting results corresponding to different Poisson's ratio 56
Table 3-8 Results of parameters 58
Table 3-9 Comparison of each model at ν= 0.49 59
-
dc.language.isoen-
dc.subject腦組織脈動zh_TW
dc.subject經顱組織多普勒zh_TW
dc.subject機械性質zh_TW
dc.subject無創技術zh_TW
dc.subject腦部性質估算zh_TW
dc.subject臨床應用zh_TW
dc.subject耦合固-液數學建模zh_TW
dc.subjectMechanical Propertiesen
dc.subjectBrain Tissue Pulsation(BTP)en
dc.subjectCoupled solid-fluid Mathematical Modelingen
dc.subjectCerebral Properties Estimation Clinical applicationsen
dc.subjectNon-invasive Techniquesen
dc.subjectTranscranial Tissue Doppler(TCTD)en
dc.title通過腦組織脈動估算大腦性質zh_TW
dc.titleEstimating Cerebral Properties via Brain Tissue Pulsationsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee艾洼比;吉美爾zh_TW
dc.contributor.oralexamcommitteeWahbi El-Bouri;Mohd Jamil Mohamed Mokhtarudinen
dc.subject.keyword腦組織脈動,經顱組織多普勒,機械性質,無創技術,腦部性質估算,臨床應用,耦合固-液數學建模,zh_TW
dc.subject.keywordBrain Tissue Pulsation(BTP),Transcranial Tissue Doppler(TCTD),Mechanical Properties,Non-invasive Techniques,Cerebral Properties Estimation Clinical applications,Coupled solid-fluid Mathematical Modeling,en
dc.relation.page70-
dc.identifier.doi10.6342/NTU202403075-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-10-
dc.contributor.author-college工學院-
dc.contributor.author-dept應用力學研究所-
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf2.44 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved