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Abstract

Understanding the mechanical properties of brain tissue remains challenging due to
difficulties obtaining non-invasive in vivo data. This study addresses this by utilising
brain tissue pulsations (BTP) from cardiac cycles to estimate cerebral properties. This
study developed a coupled solid-fluid mathematical model fitted to data from 20
healthy individuals using Transcranial Tissue Doppler (TCTD) to measure brain tissue
displacement and corresponding blood pressure. The Fourier transformation was used
to derive transfer functions between displacement and pressure signals.

The mathematical model assumes that the brain tissue can be modelled as a coupled
solid-fluid system. The spherical coordinate is applied to the model to simplify the
governing equation. Two models have been tried to fit the data, including a coupled
solid-fluid model and its revised model with multiple compartments. Model fitting,
using MATLAB's 'fminsearch,' optimised vital parameters, including Young’s modulus
(E), Poisson’s ratio (v), specific storage (Q), and permeability over viscosity (k/p).
Four ways are tried in total. The first three, including original model fitting, logarithmic
transformation model fitting to avoid negative magnitude, and revised model fitting,
are fitting the non-dimensional groups of parameters formed by physical parameters.
Then, the dimensional three can be calculated by non-dimensional groups. The last way
is to directly fit the original dimensional three because problems exist from non-
dimensional groups to the original three parameters.

The fitting results correlate with experimental data across all methods according to the
fitting curves and loss. However, the parameter values don’t always perform well with

expected magnitudes. This discrepancy is partly due to the absence of established
iii
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standards for comparison. This also indirectly demonstrates the complexity and
challenging nature of accurately modelling brain tissue properties.

In conclusion, although an expected result hasn’t been shown in this study, several ways
are still excluded. Despite these challenges, this study provides valuable insights into
the potential and limitations of using brain tissue pulsations for estimating cerebral
properties. The exclusion of certain methods and models underscores the need for
further refinement of more models that can better account for the nonlinear, viscoelastic,
and anisotropic nature of brain tissue. This study’s approach also shows the potential
for using non-invasive techniques to estimate brain tissue's mechanical properties
accurately.

Future research should focus on enhancing the accuracy of these models by
incorporating more datasets, not only for healthy volunteers but also for patients, to get
more accurate results. Also, future research should explore other possible modelling
techniques. By addressing the limitations identified in this study, researchers can
improve the reliability of non-invasive methods for estimating brain tissue properties.
Besides, extending this methodology to various physiological and pathological states
to enhance its clinical applicability, particularly in diagnosing and treating brain

disorders, will also be a focus.

Keywords: Brain Tissue Pulsation(BTP), Transcranial Tissue Doppler(TCTD),
Mechanical Properties, Non-invasive Techniques, Cerebral Properties Estimation

Clinical applications, Coupled solid-fluid Mathematical Modeling
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Figure 1-1 Volumetric 2D aMRI vs volumetric 3D aMRI. Anatomical reference (A),
and maximum difference maps calculated from the original (unamplified) 3D cine data
(B), volumetric 2D aMRI (C), and volumetric 3D aMRI (D). Volumetric 3D aMRI
succeeded in capturing in- and out-of-plane motion while significantly decreasing
motion artifacts compared to volumetric 2D aMRI  [3]. oo, 7
Figure 1-2 Acquisition of BTP. The predicted TCTD beam from side view (B) and top
view (C) correspond to the equipment configuration (A). The forehead was the site of
the probe, which was placed about 1 cm above the eyebrow's center. [1]................... 10
Figure 1-3 Typical non-stroke BTP signals [1]. Panel A shows consistent waveform
patterns across different depths, while panel B shows slight variations in waveform
patterns among different depths. ... 11
Figure 1-4 Typical stroke BTP signals [1] Panel A: Dramatic perturbation or departure
from a regular waveform configuration. Panel B: Unlike single peaks observed in non-
stroke waveforms, there are several additional peaks and oscillations after pulsations.
Panel C: "The lack of discernible heartbeats." Panel D: "Inadequately correlated
signals," which exhibit temporal and spatial heterogeneity [1].........cccooovriiiiiirrinnnnn. 12
Figure 1-5 The four-compartment MPET model. Flow is prohibited between the CSF
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1 Introduction

There remains a surprising lack of understanding regarding the mechanical properties
of brain tissue. Therefore, this study uses a non-invasive detection method called
transcranial tissue Doppler (TCTD) to acquire brain tissue pulsation (BTP) data. This
technique, which measures the movement of brain tissue using ultrasound waves,
allows us to study the brain non-invasively in vivo. Although the existing methods, such
as CT and MRI, can be used to infer many properties of the brain, there still are
disadvantages, such as not quickly considering mechanical properties.

This study uses brain tissue displacement and blood pressure caused by cardiac
pulsations, getting information to estimate the brain's mechanical properties through
analytical methods and mathematical models. Understanding these properties is of great
significance for treating patients with brain diseases. Additionally, the findings aim to
inform the design of better diagnostic tools and treatments for brain disorders, leading

to improved healthcare outcomes.

1.1 Background

The mechanical characteristics of brain tissue in vivo still need to be more adequately
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understood. This is partly because measurements taken from tissue outside the body

often fail to reflect in vivo conditions accurately and also due to the significant

challenges in studying organs so effectively shielded by mechanical defences. However,

these properties are crucial for comprehending how the brain reacts to mechanical

forces, such as those experienced during trauma and swelling(oedema). Improved in

situ characterisation of the brain’s mechanical properties would immensely benefit such

research. It would also facilitate the development of more precise models of these two

pathophysiological processes and enhance the availability of quantitative data for

diagnostic and therapeutic purposes.

1.2 Literature review

In order to better comprehend the illness and carry out this investigation, a multi-angle

literature evaluation is carried out. This literature review thus synthesises three key

areas of study: clinical, experimental, and mathematical modelling, aiming to

thoroughly assess their application and development in disease diagnosis and therapy.

Clinical research provides direct observations of pathology and treatment effects, while

experimental research investigates the underlying principles of pathophysiology and

interventions. Mathematical models offer precise tools for understanding complex

biological systems and predicting therapeutic outcomes. Although these fields differ in
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their research methods and focus, they all aim to advance the understanding of health

and disease, propelling progress in medical science. By integrating and analysing recent

research findings from these three areas, current therapeutic strategies can be evaluated

more comprehensively. Also, data support and theoretical foundations will be provided

for future research directions.

1.2.1 Clinical

The brain is known to pulse with every cardiac cycle, but only recently has there been

interest in quantifying cardiac-induced brain tissue pulsations, or BTPs. [4]. Newborn

infants originally found it by seeing through their fontanelle. Variations in the elasticity

of brain tissue and the transmission of arterial pulses into adjacent tissue are thought to

have a significant impact on the localized pulsations of brain tissue [4]. Brain Tissue

Pulsations (BTP) hold significant potential for clinical applications. A systematic

review [16] has summarised tissue pulsality imaging (TPI) research, indicating that

Brain disease and impaired cerebral hemodynamics may be indicated by Brain Tissue

Pulsations (BTPs) [4].

The cerebral vasculature is a huge and complex network of blood vessels that provide

blood to all regions of the brain, facilitating the transportation of glucose and oxygen.

[28]. The heartbeat is reflected in the pulsating blood flow that occurs in the brain
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arteries. This pulsatile nature of blood flow is crucial for maintaining the brain’s

metabolic demands and is characterised by periodic changes in velocity and pressure

due to the heartbeat [28]. However, the effect of tissue ischemia, as a result of ischaemic

stroke, on these brain tissue pulsations remains unclear [28].

In other words, while healthy brain tissue pulses in sync with the cardiac cycle, it is still

uncertain if ischemic stroke impairs these pulsations due to tissue ischemia. [2].

According to the study done by Ince J et al. (2020), ischeamic stroke typically results

from the blockage of major arteries that supply the brain and is the primary cause of

death and disability globally. [1]. There is no suitable method for predicting strokes

now. The stroke prediction methods available today rely on patient cooperation, take

several minutes to complete, and are subjective. According to a recent systematic study,

the average sensitivity and specificity of 19 stroke prediction measures were 80% and

68%, respectively[ 1]. Although brain imaging techniques exist, their performance is not

exceptional. Early ischemia abnormalities are often not immediately evident on CT

scans, and MRI scans can take up to 30 minutes to collect. These limitations affect the

efficacy of CT and MRI to help in the early identification of stroke [1].

With the use of X-rays and computer processing, Computed Tomography (CT) is a

medical imaging technique that produces incredibly detailed cross-sectional images of

various body parts. CT scans offer more detailed visual representations of the internal
4
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structures compared to standard X-rays, making them ideal for quickly examining

bones, muscles, fat, and organs to diagnose diseases, assess injuries, or plan surgeries.

A circular X-ray machine passes through a motorized table that the patient rests on

during a CT scan, taking pictures of the body from various angles. A computer then

processes these images to produce visual slices, which can be further reconstructed into

three-dimensional images. Due to its high resolution, CT is an indispensable diagnostic

tool in modern healthcare.

Without using ionizing radiation, magnetic resonance imaging (MRI) is a non-invasive

medical imaging method that creates high-resolution pictures of soft tissues. It operates

by aligning hydrogen protons in the body with a strong magnetic field and using

radiofrequency pulses to generate detected and processed signals into images. MRI

excels in neurological, cardiovascular, musculoskeletal, and abdominal imaging due to

its high resolution and ability to image in multiple planes. Despite its long scan times,

high costs, and contraindications for patients with metal implants, MRI's detailed

imaging capabilities and functional imaging options make it an indispensable tool in

modern medicine.

Amplified MRI (aMRI) is a revolutionary technique introduced to enhance the

visualization of pulsatile brain motion, making subtle physiological changes more

noticeable. Initially developed in 2D formats, aMRI has been advanced into 3D
5
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technology that improves the detection and imaging of brain movements across all three

spatial dimensions [3]. The 3D aMRI method provides superior image quality. It

reduces motion artefacts compared to its 2D predecessor, offering more precise insights

into the biomechanical behaviours of brain tissues influenced by cardiac pulsations and

cerebrospinal fluid (CSF) dynamics [3].

The 3D aMRI utilises a phase-based motion magnification algorithm that amplifies the

subtle motion within the brain, which is otherwise hard to detect with traditional

imaging methods [3]. This technique is particularly useful for diagnosing and

researching neurological diseases that affect the biomechanical properties of the brain

and its fluids. By capturing brain movement in three dimensions, 3D aMRI offers a

comprehensive view of the brain's biomechanical response, aiding in the understanding

of disorders such as hydrocephalus and Chiari malformation, where altered brain

motion is a key characteristic. [3].

In summary, When it comes to brain mobility, 3D aMRI provides better picture quality

than 2D aMRI and can accommodate a larger amplification factor. The comparison of

2D aMRI and 3D aMRI is shown in Figure 1-1. The coronal image's optic chiasm area

serves as a clear example of this, since brain motion there seems to be concentric rather

than inferior or superior. 3D aMRI's optical flow maps and 4D animations may open up

interesting new avenues for research into neurological conditions affecting the
6
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biomechanics and fluid dynamics of the brain [3].

3D data 2D aMRI 3D aMRI

Figure 1-1 Comparing volumetric 2D and 3D aMRIs. Volumetric 2D aMRI (C), volumetric

3D aMRI (D), and original (unamplified) 3D cine data (B) were used to generate the
maximum difference maps and the anatomical reference (A). When compared to volumetric
2D aMRI, volumetric 3D aMRI was able to capture both in- and out-of-plane motion with a

considerable reduction in motion artifacts. [3].

This study intends to give the first estimations of brain tissue motion for a broad cross-

section of healthy people for a literature review of brain tissue pulsations (BTP) [4].
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Turner P et al.(2020) first point out that the brain visibly pulsates in sync with the

cardiac cycle in newborn infants and patients undergoing neurosurgery. Variations in

brain tissue compliance and the spread of artery pulsations into the surrounding tissue

are thought to have a major impact on the regional pulsations of brain tissue. [4].

Despite the long-standing use of Doppler techniques for assessing cardiac tissue motion,

the use of Doppler ultrasound for measuring brain tissue motion is still largely

uncharted. [4]. It is worth noting that this study also mentioned the amplified MRI

(aMRI) and the relative study using this method. However, transcranial tissue Doppler

(TCTD) is an innovative method that doesn't necessitate a skilled operator, utilizing a

compact, wearable, single-element ultrasound probe. Besides, measurement can be

obtained from any position on the head through this method [4].

Case study

Brain tissue pulsations (BTPs) were measured in 24 healthy volunteers (aged 52—82)

and 14 acute ischemic stroke patients (aged 51-86) using a unique Transcranial Tissue

Doppler (TCTD) technique. All of the participants tolerated the measures well, and they

were completed quickly. [1].

The concept of measuring BTP by using Transcranial Tissue Doppler (TCTD) is

because of its advantages, such as it doesn't necessitate a skilled operator, utilizing a
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compact, wearable, single-element ultrasound probe. This is the first study to examine

if brain tissue pulsations (BTPs) are influenced by impaired tissue perfusion related to

stroke, mainly ischemic one. [1]. A "plethysmography-based" process, in which the

amount of arterial blood that enters the brain during systole surpasses the amount of

venous outflow, has been proposed by some researchers as the cause of brain tissue

pulsations (BTP). It is thought that with each cardiac cycle, the buildup of blood volume

causes a modest but noticeable contraction of the volume of the brain [5].

Expanding the brain will generate and be increased in intracranial pressure during the

cardiac cycle due to the skull's constant capacity. According to a 2007 supposition by

J.C. Kucewicz et al., the pressure-volume balance among compartments of the brain

may be relieved by the brain's descent through the foramen magnum and the consequent

displacement of cerebrospinal fluid (CSF) into the spinal canal. Another detailed

description is that brain tissue pulsations (BTPs) primarily result from the main arteries'

pulsations spreading into the delicate brain tissue around them. [5].

However, both hypotheses are still under investigation. Ince J et al. (2020) compared

brain tissue pulsations (BTPs) from stroke patients to the control subjects who had not

had a stroke using a mixed methods technique. Their work provides an initial evaluation

of the usefulness of Transcranial Tissue Doppler (TCTD) scans for the diagnosis of

acute ischemic stroke. [1].
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1.2.2 Experimental

Ince J et al. (2020) used a conventional 2 MHz probe and a portable transcranial
Doppler ultrasonography device from Spencer Technologies to record all brain tissue
pulsation (BTP) readings. Because the left side of the forehead is easier to access in an

emergency, recordings were made from both sides. [1].

A. Equipment Setup B. Estimated TCTD beam (saggital) C. Estimated TCTD beam (transverse)

Spencer
Recording
System

v

MATLAB

3-Lead ECG

Figure 1-2 Acquisition of BTP. The predicted TCTD beam from side view (B) and top view

(C) correspond to the equipment configuration (A). The forehead was the site of the probe,

which was placed about 1 cm above the eyebrow's center. [1]

Using this technique, Ince J et al. (2020) examined the tissue displacement for 30 depths

(ranging from 2 to 8 cm) inside the brain, with the data shown in MATLAB. [1]. This

study included 14 acute ischaemic stroke patients and 24 non-stroke volunteers [1]. The

non-stroke brain tissue pulsation and typical stroke brain tissue pulsation to the time in

different depths are shown in Figure 1-3 and Figure 1-4. Figure 1-4 shows 4 features to

identify recordings from stroke patients.

By comparing the signals between stroke and non-stroke signals, it was found that non-
10
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stroke signals exhibited higher consistency and typical features, such as quickly

peaking after the start of the cardiac cycle followed by a rapid return to baseline. In

contrast, stroke patients’ BTP waveforms showed significant abnormal characteristics,

such as severe waveform disruption and multiple additional peaks [1]. To explain why

individual brain tissue pulsations (BTPs) differ, however, a much deeper understanding

of the relationships between physiological changes, tissue biomechanics, and BTPs is

necessary. [1].

A. Typical non-stroke waveforms B. Typical non-stroke waveforms
S e e e e R e e e T
I s s 2N 2 Nt s s N | [ e S A At s S St S | [~
30 — NN AN AN © 30 1 o 1~ S
A A A A B U PN s A s S s At s S O
WEREATAT T T § | e R §
E EEveTTeT s | B
=50 AN A A A A AT L o o i s P e s
s S e s DR A
M- “ e T cEEN ==
60 \/,’,V’\J ’\/’V%/\f\’ 3 60] A A AN A R A AR
ENANNAAAANE NN
ST A 10 PN
T A AT ATAAARAAAT
SN AAAAAAA AN
80 EASATAZATAZATATAT Jladddd 244
o 1 2 3 4 5 6 7 8 o 1 2 3 4 5 6 7 8
Time [s] Time [s]

Figure 1-3 Normal BTP signals without strokes [1]. Panel A shows consistent waveform
patterns across different depths, while panel B shows slight variations in waveform patterns

among different depths.
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A. Severe disruption or deviation from a typical waveform shape B. Additional peaks and oscillations with each cardiac cycle
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Figure 1-4 Typical stroke BTP signals [1] Panel A: Dramatic perturbation or departure from a
regular waveform configuration. Panel B: Unlike single peaks observed in non-stroke
waveforms, there are several additional peaks and oscillations after pulsations. Panel C: "The
lack of discernible heartbeats." Panel D: "Inadequately correlated signals," which exhibit

temporal and spatial heterogeneity [1]

1.2.3 Mathematical Model

The mathematical literature review will explain how the governing equations are shown

in the next chapter. Using a unique application of a one-dimensional, fully dynamic,

multiple-network poroelastic (MPET) formulation, the study examined the effects of

intentionally produced aqueductal stenosis and atresia. [6]. Aqueductal stenosis and
12
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atresia refer to the narrowing and complete blockage of the cerebrospinal fluid flow

pathway in the brain. A high-pressure arterial network (a), a lower-pressure

arteriole/capillary network (c), an interstitial fluid (ISF)/CSF network (e), and a venous

network (v) are the components that make up the quadruple MPET system. [17].

Eq. (1) of equilibrium is needed to represent elastic deformation in a poroelastic media,

whereas Eq. (2) of Darcy's law is needed to characterize fluid flow. Mass conservation

needs to be taken into account as well. [6].

O-L'j = ZGEU + Aekké‘ij - Z aApASij (1)
A=a,e,cv
k4 M
qa = —E(Vp ) A=a,ecv ()

In the MPET framework, the initial governing equation of motion for a unit volume is

provided by:
at| Y At —pd |- = Y pA(i ) =0 (3)
A=a,e,cv A=a,ecv

where 0y ; is the stress within the solid matrix. The mean displacement of elements
forming the solid matrix is described by u;. w; is the ratio of fluid flow to cross
sectional area and Y4_; n%% + (1 — n)p, is the total density of the system, pj is the
solid density and Y4_, n? is the total porosity of all the individual fluid networks.

The equation determining the momentum of each distinct fluid network is the second

governing equation of motion:
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.. Pa /.
pi' — R — pA(b; — il;) — n_A(WiA +wiwf;) =0 (4)
Where R# is the viscous drag force (Zien-kiewicz et al., 1999) using Darcy's seepage

rule. The fluid phase's flow conservation is provided by:

. . 1, —
SApA + aéy + wii + p—APA = Z w;j(p; — pi) (5)

A=a,e,c,v

where &;; is the rate at which the strain inside the solid matrix changes. a? represents
the fluid network's Biot parameter of the fluid network in question. The right-hand side
possesses either source (8;; > 0) or sink (§;; < 0) densities. q represents the fluid flux
vector. The fluid phase continuity equations from Eq. (5) contain the sum of all flows
inside a compartment (8;;). A hydrostatic pressure gradient drives the transfer, and the
transfer coefficient w;; scales the flow from network j to network i. By deleting wy
from Eq. (4) as done by Tully and Ventilos (2011), one can then focus on the primary
variables u and p. Using Darcy’s seepage law (Zienkiewiz et al., 1999) and Eq. (4),
one therefore obtains:

wit = kijpi = kifjp” (b = i) (6)
The anisotropic permeability coefficient is defined as k{‘}. This value is substituted with

a single k4 constant (which here should be supposedly) if isotropy is assumed.

Substituting Eq. (6) into Eq. (5), one therefore will be:

SEpt + aley + [kf;p{l — ki:p®(b; — ii;)] - Z 3j=0 (7)

A=a,e,c,v
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The final form of the system yields by combining Eq. (1) and Eq(3) :

Veo— Z aAVpA + py(b —it) = 0 (@)
A=a,e,c,v
SApA + ate +V - [kA - pA(b —it) — kA Vp4] — Z 5,=0 (9
A=a,e,c,v

parenchymal tissue

venous blood

arteriole/  §y
capillary aaad ¢ Laaas
¥ blood sce> L

CSF/SF (e)!

e e e e e s -

(©)

Figure 1-5 The four compartment MPET model. There is directional transfer between (a) and
(c), (¢) and (v), (c) and (e), and lastly (e) and (v), but the CSF and the artery network are cut
off to flow. [13].

Another study also applied the MPET model. By reviewing this paper, the MPET model

employs the displacement of parenchymal tissue (u) and the pore pressures of the four

fluid compartments (pa, pc, pe, pv) as the primary variables in the governing equations.

[13]. As shown in Figure 1 5. The governing equations of Figure 1 5 are listed below(Eq.

(10) - Eq. (14))

GV?u + (G + )V.= a,Vp, + o Vp. + aeVpe + o, Vpy (10)
ap de Kk R
Saa_ta + g5 = H—ZVZpa + 354 (11)
ap Je Kk R R R
SC a_tc + O E = u_zvzpc + (Sc—>a + Sesc + Sv—>c) (12)
ap de Kk R R
Se a_te + Oe E = u_zvzpe + (Sc—>e + Sv—>e) (13)
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dp de Kk R R
- = _szpv + (Scov + 8ev) (14)

Sv?+ava ™

The equilibrium equation representing the momentum balance in the porous media is
Eq. (10); the Lame's constant is A, and the shear modulus is G.; ¢ the dilatational strain;
a; the Biot-Willis coefficient for each fluid compartment that satisfies ¢ < a, + a, +
a, +a, <1, where ¢ is the total porosity. The mass balance is described by the
continuity Eq.(11) through Eq.(14). S; stands for specific storage, which is a
measurement of each fluid compartment's released fluid volume per unit pressure in the
control volume under constant strain; For an isotropic media, k; = kil where I is the unit
tensor and ki is a constant, represents the permeability tensor for each of the four fluid
compartments. The viscosity of each fluid compartment is represented by pi. The §
terms in equation (11)-(14) define the spatially varying source ($;; > 0) or sink (8;; <

0) densities (rat of fluid transfer between networks).

1.3 Aims and Scope

The aim is to construct a mathematical model and fit it to specific data. The
mathematical model is similar to those discussed in previous literature reviews.
Transcranial tissue Doppler (TCTD) ultrasound is used to measure the displacement of
brain tissue caused by cardiac pulsations to obtain data, along with corresponding blood

pressure measurements. By acquiring synchronised ultrasound signals of displacement
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and blood pressure and applying Fourier transformation, the transfer function can be

derived by dividing the displacement signal by the blood pressure signal. This transfer

function is the data needed to fit with the mathematical model.

After the literature review, here are going to elaborate the scope. This study will then

introduce the materials and methods used in Chapter 2, including how to build Model

1 and Model 2 using different governing equations, how to obtain and process the

experimental data and the methods for fitting the models to the data. Chapter 3 will

analyse the results from Chapter 2 and make relevant comparisons. Finally, this study

will summarise the findings and discuss potential directions for future research.
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2 Materials and Methods

This chapter will introduce two mathematical models used here, which include how the
governing equation arises and how to analyse the governing equations. Also, it will
show the procedure of acquiring data from healthy volunteers, including the machine
used and the way to process data. Finally, after trying to fit the model to the data, the

results are shown in the next chapter.

2.1 Mathematical Model

2.1.1 Governing Equations:

This study hypothesizes that brain tissue can be represented as a coupled solid-fluid
system with a single fluid compartment. This assumption leads to the established

governing equations for such a system:

0w
V(V.w) — aV.pl = Ps 5z (15)

GV2
Wt T2,

v(“v)—a(v +p> (16)
\z p)=g;\av-w 0
In this model, termed Model 1, the solid component is characterised as a linear, isotropic

material with density p, shear modulus G, and Poisson’s ratio v. The fluid component

adheres to Darcy’s law, described by permeability k and viscosity p, with the Biot-
18
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Willis coefficient represented by a and specific storage denoted as Q. The fluid
experiences pressure p , while the solid undergoes displacement w . These
formulations have been supported by several studies, including those by Tully et al.
(2009), Chou et al. (2016). Vardakis et al. (2016), and Guo et al. (2018). It is important
to recognise that this biomechanical model of brain tissue simplifies the actual
complexity of a nonlinear, viscoelastic, and highly anisotropic material, which will be
revisited in the next paragraph. Additionally, using a single fluid compartment is a
simplification for the ease of this analysis.

As this study assumes brain tissue to be a linear, isotropic material and considering a
single fluid compartment, the computational process is facilitated. The model does not
fully capture the complex, nonlinear, viscoelastic, and anisotropic nature of actual brain
tissue. However, such assumptions might lead to underestimating or overestimating the
proper mechanical response, affecting the accuracy of results.

To streamline the equations, which is essential here due to the experimental data being
available only as a function of radial distance, the initial assumption is spherical
symmetry. This means that spatial variations are limited to the radial direction.

Consequently, by setting w = wr', the equations yield:

GOd [ ,0w G 0 (10%*w) a 0w

G (Pt e (e )~ = P (17)
r2or or/) 1—-2vodr\r? or r? at?
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k10<26p)_ 10(r*w) 10dp
or

ur?or r T rz or +6E (18)

given the linearity of the problem, the solution is separated into two parts: a steady-
state component and an oscillating component:
w(r,t) = wo(r) + Wy (r)el®t (19)
p(r,t) = po(r) + py(r)e’* (20)
given the periodic nature of the cardiac pulsations, the model can be simplified
significantly by assuming a sinusoidal form for the oscillating components.
Additionally, the linearity of the model allows us to analyze different harmonics of the
pulsations independently.
The attention is centered on the oscillating component, since it is the one measured in

situ. Inserting the trial solution into the two governing equations produces:

d?w, N 2dw; __ [psw? (1 +v)(1 —2v) 1 1
dr? r dr W E (1-v) (1—-v)r2
_a(l+v)(1-2v) 1 d(?py)

E(1-v) r2 dr @1
d*p, 2dp, (iwu) B (aiw,u) 1d(r?w,) 22)
dr? r dr N/ \ « Jr2 dr

where shear modulus has been replaced by Young’ s modulus using the relationship:

E

C=2awm

(23)
Note that the governing equations are second order in both pressure and displacement.

Hence, four boundary conditions are required.
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2.1.2 Nondimensionalization

While this model is considerably simplified, it still incorporates a significant number

of parameters (eight), which presents a challenge in terms of fitting from the available

experimental data. Therefore, to delve deeper into the model’s behaviour, all variables

are non-dimensionalized by using characteristic values for radius, displacement, and

pressure, represented as 1’ = — ,w' = %, and p' = %_
d*w’  2dw’ I @+v)a-2v) 1 1
>t =55 tw [Ty - —
dr’ r' dr (1-v) 1—v) 7
(1+w(@-2v) 1 d(r'?p)
= T4 2 7 (24)
1-=v) rr? dr
d*p’ 2dp" 1 d(r’zw’)
ar? T gy TP M) = M (25)
The resulting equations are thus governed by just four non-dimensional groups:

2p2

psw R
= 26
mo= = (26)
= wpRe (27)

Ty, = <0
awuR -w
KPc
aRcp.
Ly = 29

Pla Ew, (29)

Together with the Poisson’s ratio (thus reducing the number of degrees of freedom to

five). It is worth noting that two of these are of order 1, and two are much larger, which

indicates that a boundary layer is probably found in the solution, or these values might

be considerably reduced when aligned with experimental data. A boundary layer is a
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region where dependent variables would change rapidly. When having two second-
order terms among the non-dimensional groups suggests that the behaviour of the
system changes significantly over a small region. When aligning the model with
experimental data, the second-order terms might be reduced because the experimental
data might show behaviour different from the model prediction.
Four boundary conditions are necessary for this model. At the brain surface, zero
displacements (i.e., the skull remains static) and unit non-dimensional amplitude
pressure (i.e., this study references everything to this pulsation, which is defined as the
characteristic pressure) at the brain surface. At the inner surface, where r’ = §,, there
is assumed zero fluid flux (i.e., no blood flows into the ventricles), and a mixed
boundary condition for displacement (i.e., the stiffness of the ventricles is finite, so that
neither Neumann nor Dirichlet boundary conditions are appropriate). The final
boundary condition is expressed as follows:

d—W, +kw' =0 (30)

dr’
It’s worth noting that incorporating compliance effects is straightforward by making
the non-dimensional stiffness k complex (although do not adopt this here to keep the
parameter set as small as possible). Since the parameter k is difficult to estimate, an

initial setting value of 1 implies an approximately linear variation. There are, thus, in

total, seven non-dimensional parameters that govern the behaviour of the brain tissue
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in response to cardiac pulsations. The governing equations can be numerically solved

easily using a boundary value solver with the given boundary conditions.

2.1.3 Cartesian form

It first examined the governing equations in the Cartesian form to move forward,

assuming a variation with depth (x) and neglecting the effects of curvature. This

simplification allows us to present the equations more straightforwardly and facilitates

the comparison of results across different coordinate systems. Applying the same

method as previously, the governing equations yield:

dw’ 1+v)1-2v) |, 1+v)(1-2v)dp’

dx’2+n1 a—v w' =m, a—v I (31)
a*w' o dw’
dx p'(imy) = ”T3W (32)

Note that the governing equations can convert this into a fourth-order governing

equation for either displacement or pressure. Additionally, the effects of Poisson’s ratio

can be incorporated into the corresponding non-dimensional groups, thus reducing the

number of free parameters. For illustrative purposes, numerical solutions for both

coordinate systems are plotted in Figure 2-1 using the values given in Table 2-1.

Although the overall trend for displacement magnitudes is consistent, some variations

are observed (pressure curves exhibit similar behaviours), with significant differences

in phase variations. The presence of a boundary layer is also clearly evident in the
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solution. Here are going to revisit these behaviors later after a more detailed

examination of the experimental data; however, given the notable differences, this study

will adopt the spherical solution here to enhance accuracy.

Spherical co-crdinates Cartesian co-ordinates
&0 200
Displacement
Pressure 150
&40 =
= L=
= = 100
220 B
50
0" 0
0.2 0.4 0.6 0.8 1 0.z 0.4 0.6 0.8 1
Radius Radius
E 1 E 1
L _/ L
@ — a __/’
n cn
T 05 @ 05
L= L=
= =
m m
E o E o
LA 2
a2 __ Q /
(= (=
@ -0.5 @ -0.5
0.2 0.4 0.6 0.8 1 0.z 0.4 0.6 0.8 1
Fadius Radius

Figure 2-1 Magnitude and phase of displacement and pressure as function of depth, using

parameter values in Table 2-1 Typical values of model parameters and their types and sources

2.1.4 Revised Model

Here introduce this revised model for reasons which will be explained in the next

Chapter. For these reasons, Model 1 is re-evaluated in detail to separate blood pressure

into its arterial and venous compartments. By distinguishing between these two

pressures. As a result, the equations were restructured into the following three
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formulations, which are more physiologically reasonable:

d*w  2dw N (pswz (1+v)(1-2v) 1 1)

dr2 " rdr E 1—v _(1—1/); &
1-2v)(1+v) dp, 2a, dp, Z2a,
(1 -V)E (aa dr + 7 Pa T dr T Pv> 59
dw Kq (2dp d“p
(iw)ag—= -+ Q—(lw)pa1 ”a (r d;” + dr;”) = —B(Par —Pr) (34
a a

dw;
(iw)a, —— I +—(lw)pv1

Kv <2 dpvl dzpvl
Qa Ky

r dr + dr? )Z B(Pa1 — Pv1) (35)

Here, P is the coupling coefficient. The coupling coefficient B indicates the strength of
interaction or coupling between two different physical quantities. Here, it describes the
fluid transfer between different vascular compartments. Specifically, B represents the
rate of fluid flow from one vascular compartment to another due to pressure differences.
Therefore, there should be Bay representing a couple coefficient between the artery and

venous. The way to estimate Bay is shown in Eq. (36) from the study [7]:

_fe
:Bav - qga(ﬁa - ﬁv) (36)

Note that the equations can be simplified.aa is equal to av, and Q. is equal to Qy exactly.

The venous E is nearly three times of the arterialg according to a recent study by

Jozsa et al. (2020). So the magnitude of them will be set as 3%, E, respectively. The

. . . . . T w D,
nondimensionalization is the same as before: ' =— ,w' = W—l, and p,' = %,p,,’ =
c

c c

Du1, Then, the equations yield:

Pc
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d*w’ N 2 dw’ N psw?R%2 (1 +v)(1—2v) 1 1 ¢
dr'z v’ dr' E 1—v 1—vr'?
1+v)(1 —-2v)R.p.a dpa 2 dpv 2
= —p,’ 37
(1 —-Vv)Ew, drr T pPa T g T P g

d’pg 2 dp, N wuRZ ,  awpRw. 1 dw; .URZ,B

— + —_ =
arz 7 dr ¢ KQ Pa1 1 Kkp, r'%dr’
d?p, 2dp,  wuR? awpR.w, 1 dw{ ,uRZﬁ

-= ' P — 39
drlz ,rl d.r./ +1 K'Q pvl +1 Kpc T"Z dT" (pal pvl) ( )

(Pa1 = Pv) (38)

Here are going to use non-dimensional groups like before. The three equations would

become:

d*w’ 2 dw’ ( (1+v)(1-2v) 1 1> ,
1

+_ — —_
dr'z = r' dr’ 1—v 1—vr'?

A+v)(1-2v) (dp, 2 dp, 2
= — —+—p,’ 40
e (1-v) dr’ + yr Pa +dr’+r’pv (40)
d*pa 2 dps' 1 dw]
dT’; _F drar + ”T2pa1 + ”T3 /2 dr /1= —7T5(pa1 _pvl) (41)
dzpv 2 dp,’ 1 dWl 1
d.r.rz T" dr’ + ”T2pv1 + ”T3 7’2 d T = ?(pal _pvl) (42)
The resulting equations are thus governed by such five non-dimensional groups:
w?R?
= Ps > c (43)
wuR?
Ty = KQ (44)
awuR -w
7 = # (45)
C
aR
Ty = Evcvpc (46)
c
R2
ng = —E2eF (47)

Those are thus the five non-dimensional parameters this study are going to fit in this

new model.
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2.2 Data Acquisition

This section will introduce the methods of getting data and processing data. Turner P et
al. (2020) collected brain tissue pulsation data from 33 distinct depths within the brains
of volunteers using an adapted Spencer Technologies (Seattle, WA, USA) transcranial
Doppler (TCD) system with a 2-MHz transducer. TCTD data were gathered for each
participant from four different probe positions: through the left and right temporal
windows, and from the forehead above the center of each eyebrow. Each ultrasound
recording was 8s long, providing tissue motion data from 33 overlapping 3-mm sample

depths spaced 2mm apart, depths ranging from 22-86 mm.

2.2.1 Acquisition Methods

Turner P et al. (2020) use Transcranial tissue Doppler (TCTD) ultrasound to estimate
BTPs in 20 volunteers, both at rest and during a lower-leg-raise manoeuvre designed to
elevate blood pressure (BP) temporarily. This facilitated the time-series analysis of
continuous data under a repeated measures study design, in which subjects served as
their own controls. Synchronous physiological measurements for BP, forehead BTP,
and end-tidal CO; (EtCO,) were acquired using Brain Tissue Velocimetry (Brain TV),
a TCTD data acquisition prototype (Nihon Kohden, Japan), equipped with a 2 MHz

single-element TCD probe (Spencer Technologies, MA, USA). BTP measurements
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were recorded from the right side of the forehead of each participant using a custom-

made elasticated headband to hold the probe.[2]

Synchronous BP readings are acquired by using a finger-cuff Finometer system

(Finapres Medical System B.V., Enschede,NL) attached to the left wrist of each

participant, with a cuff of the appropriate size positioned around the left middle finger.

As CO; is known to impact vasodilation and cerebral autoregulatory responses,

capnography measurements of EtCO; were obtained using an OLG-3800 CO2 monitor

(Nihon Kohden, Japan), connected to a nasal cannula. A 3-lead electrocardiogram (ECG)

(Lifescope monitor, Nihon Kohden, Japan) recorded the timing of ECG wave R-R

intervals to allow adjustment for HR and beat-to-beat analysis of time-series data. All

physiological monitoring data were recorded using a sampling rate of 500 Hz.[2]

Participants sat upright with their eyes closed. In each acquisition period, a 1-minute

baseline recording at rest, a 1-minute recording of three repeated lower-leg-raise

manoeuvres, and 1 minute for recovery were included. Figure 2-2 summarises the

physiological measurement set up for the lower-leg-raise experiment. The elasticated

headband was set on the head with a 2MHz TCD ultrasound probe for detecting brain

tissue pulsation(BTP). Synchronous physiological measurements for BP, forehead BTP,

and end-tidal CO2(EtCO;) were acquired using Brain Tissue Velocimetry (Brain TV).
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Figure 2-2 Equipment used in data acquisition [2]

2.2.2 Data Processing

Finapres
Model 1
Finometer

Leg Raises

Pressure Cuff

Finometer

Frontend Box

After the data have been recorded, some processing is needed to get into a form that

can be directly compared with the model predictions. Processing initially segments the

time series of blood pressure and tissue displacement into individual cardiac cycles by

identifying peaks in the arterial blood pressure trace. It is performed by using the

function called “findpeaks” in MATLAB with the condition of appropriate minimum

peak height and minimum peak distance.
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Figure 2-3 A typical subject of arterial blood pressure (ABP) time series, peaks marked in red

circles, each interval between circles representing a cardiac cycle.

As shown in Figure 2-4, the data is divided into individual cardiac cycles and

interpolated linearly onto a regular cardiac cycle. For clarity, only a single cardiac cycle

is shown in Figure 2-4.
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Figure 2-4 Typical subjects of pressure and displacement in single regular cardiac cycle

Since everything is referenced to the blood pulsations, the displacement and the

pressure are directly comparable. Thus, the transfer function between arterial blood

pressure and displacement is calculated by using the complex Fourier transform at the
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cardiac frequency and then averaging the complex coefficients over all the cardiac

cycles. The final transfer function is obtained by dividing the complex coefficient of

displacement by the complex coefficient of pressure. Thus, there is a time-averaged

transfer function at each depth.

Data from 20 participants were utilised to generate individual gain and phase

trajectories. Although participant responses varied significantly, a consistent trend was

observed: amplitudes were minimal at the surface, increased with depth, and diminished

beyond a specific depth. This trend corresponds to the latter section of the proposed

model, as depicted in Figure 2-5 Extraction of the average gains and phase.
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Figure 2-5 Extraction of the average gains and phase

31

doi:10.6342/NTU202403075



2.3 Model Fitting

This chapter will introduce the software and coding language used and the parameters

of the mathematical model.

2.3.1 Methods and Tools

After processing the data, here are prepared to initiate the model fitting procedure. For
this purpose, the function that will be utilised is the ‘fminsearch’ function in MATLAB,
which is used for unconstrained optimisation. It finds the minimum of a scalar function
of several variables starting at an initial estimate by using the Nelder-Mead simplex
algorithm. The algorithm iteratively adjusts a set of points in the function’s domain. It
doesn’t require gradient information and works by reflecting, expanding, and
contracting these points to locate the minimum. This function is particularly useful for
nonlinear optimisation problems where the objective function, which in this case is the
governing equation, is not easily differentiable. The chosen loss function for
optimisation is the sum of absolute deviations, which will assist in identifying the

optimal curve fit. This method can be combined with fminsearch to get the best curve.

2.3.2 Parameters Setting

Here are going to consider the probable magnitudes of the four non-dimensional groups
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before examining numerical solutions. The model parameters’ typical values are given

in Table 1 below. The first three can be measured directly from the time series data, and

the typical values can be obtained from the table. The next set of four values is used

widely in the literature and is likely to show little variation from these values (the

poroelastic constant a is set to be equal to one under the assumption that the material

is fully saturated); However, the last five are much less well-known. Thus, it will be

started by adopting the values used by previous authors. These are thus the five

parameter values that are aimed to investigate here.

Parameter Value Type Sources
) O(2m) Measured Experimental
Pe 0O(1000)Pa Measured data (see
We O(100)um Measured below)
o 1 Well-known Standard
) 0.2 Well-known values widely
Ps 977kg/m? Well-known used in
Re 0.lm Well-known literature
K/[ 3.75x10- Not Well-known | Values taken
8m’s/kg from
v 0.35 Not well-known Vardakis et
E 583N/m? Not well-known al., Guo et
K 1 Not well-known | al., and Chou
Q 3.33x10°%kg/m.s | Not well-known etal.
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Table 2-1 Typical values of model parameters and their types and sources

Then, the four non-dimensional values can be calculated using the typical values above.

The initial results are shown in Table 2.

Parameter Typical value
T 0.677
2 503
3 1.67
T4 1.72x103

Table 2-2 Baseline values of non-dimensional groups

For the second model, the values of new parameters are also referenced from [7].

Parameter Value and units Source
fo 50ml/100g Kety and Schmidt [8]
o 0.0102 Tio et al. [9]; Tto et al.[10]
¢, 0.0034
o 0.0204
Da 80mmHg Vovenko [12]; Lipowsky[11]
Pc 35mmHg
Dy 20mmHg

Table 2-3 Baseline values of model parameters and sources and/or calculations for blood flow

2.4 Conclusion

[7].

This study introduces two mathematical models to investigate the mechanical

properties of brain tissue, particularly how it responds to pulsations caused by cardiac
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pulsations. This chapter elaborated on the development of the two models, data
acquisition methods from healthy volunteers, and the subsequent data processing steps.
TCTD is used to measure brain tissue displacement and corresponding blood pressure.
Fourier transformation is used to analyse the data, fitting the models to this data using

MATLAB’s ‘fminsearch’ function.
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3 Results and Discussions

This chapter will present the results obtained from the various methods described in the
previous chapter and provide detailed analyses and visual representations for each
method, allowing for a clear comparison of their performance under different
conditions. After presenting the results, this chapter will summarise the key findings,
highlighting the strengths and weaknesses of each method. Finally, it will be discussed
which method performs best overall, considering both quantitative results and
qualitative factors like ease of implementation and computational requirements. This
will help identify the most suitable method and suggest further research or improvement

areas.

3.1 Fitting Results

This section contains four parts showing what difficulties are met and how fitting is
performed. First, the difficulty showed that some of the estimated values are negative,
whereas the mechanical properties cannot be negative. After solving this problem, the
next problem is that fitting encountered unreasonable values that differ from the actual

situation. Then, something unreasonable is found in the fitting process. However,
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reasonable values are attained in the last part.

3.1.1 Original Model Fitting

The model fitting of Model 1 was initiated here, and the results from the initial fitting
are illustrated in the figure below, with all the initial values coming from Table 2-1. The
curve appears smooth. However, upon examining the parameters m; to ms, there are
negative values show up, as shown in Table 3-1, which is physically implausible as

these dimensionless parameters cannot be negative.

Fitted Model
0.5 - - - -
—fitted model
04} —experimental data| |
o
£
E 037
£
=02
o
2
0.1
0 Il Il Il Il Il
0.2 0.3 0.4 0.5 0.6 0.7 0.8
Radius
Figure 3-1 Original model fitting
T 35.35
2 -2.982x10°
Y%} 1.112x10°.
T4 2.62

Table 3-1 Original model fitting of 7t; to 14
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3.1.2 Logarithmic Transformation of The Parameters

The next step is to apply a logarithmic transformation to the parameters. Specifically,
before feeding the parameters m; through 74 into the function, they are converted to their
logarithmic equivalents, log(mi) to log(ms4). Within the function itself, m to ms are
replaced with exp(mi) to exp(m4). The main advantage of this approach is that the model
effectively fits the logarithm of ms, which ensures that even if a negative value is fitted
during the optimisation process, taking the exponential of this negative value will result
in a positive outcome. This maintains the inherent positivity of the parameters while
offering the added benefit of greater numerical stability.

By utilising this method, all parameters now yield positive values, indicating progress
towards the correct solution. The next step involves calculating the following key
parameters: v (Poisson's ratio), E (Young's modulus), Q (specific storage), and «/p
(permeability over viscosity). However, solving all four parameters simultaneously
proved challenging. Notably, Poisson’s ratio is known to generally fall within a range
of 0.35 to 0.5, a narrow interval with values that are very close but not identical, while
other parameters are not well known and have a very large range. Besides, other
parameters do not have a specific value or clearly defined range in existing literature.

Consequently, the decision is made to iterate through this range with Poisson’s ratio
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values between 0.35 and 0.49, adjusting each increment by 0.01. This iterative approach
simplifies the task by reducing the number of unknowns, leaving only three parameters
to be solved for each value of Poisson’s ratio.

Moreover, this strategy provides a more controlled and systematic approach to
parameter estimation. By carefully constraining its range, the stability and reliability of
the remaining parameter estimates are enhanced. This methodology thus enables a more
refined analysis of Young’s modulus, specific storage, and permeability over viscosity,
allowing for accurate modelling and improved insights into the underlying mechanics.

Now, let’s recall the equations of m; to 74 :

w?R?
7_[1 — pS E C (26)
_ KR 27)
T, = <0
aAwUR .w
Ty = & (28)
KDpc
aR.p.
= 29
Ty Ew, (29)

Because of knowing all the parameter values except E, k/p and Q, they can be calculated

by using the equations for n1, n3 and m2, respectively.

2p2
psw”R¢

= 48

- (48)

K _ awR.w, (49)
u T3P
wuR?

= 50

pry (50)

39

doi:10.6342/NTU202403075



The results corresponding to each individual value of v are shown in Table 3-2.

v E(Pa) Qkgms) L (m'skg) Loss(um/mme)
0.35 9.26 Inf 4.01x1071° 5.430
0.36 8.80 1.05x10'  4.00%x1071° 5.420
0.38 7.79 Inf 3.92x1071° 5.402
0.39 7.27 2.85x10'13 3.90x1071° 5.393
0.41 6.15 Inf 3.83x101° 5372
0.42 5.56 1.87x10" 3.79x1071° 5.362
0.44 4.32 Inf 3.71x1071° 5.340
0.45 3.67 6.06x10"7 3.67x1071° 5.327
0.47 2.28 Inf 3.58x1071° 5.303
0.48 1.54 5.46x10%®  3.53x1071° 5.290
0.49 0.79 1.53x10%"7  3.48x107'° 5277

Table 3-2 Results of parameters for corresponding Poisson's ratio, where Inf represents a

value out of the range of the numerical solver.

Analysis encountered significant issues. One is that infinite results in specific storage

(Q), which might mean the zero appears in the denominator during the fitting process.

Another is when evaluating the model at specific values of Poisson’s ratio, specifically

0.37, 0.40, 0.43, and 0.46. The Jacobian matrix, which is critical for understanding the

system's sensitivity and ensuring the stability of numerical solutions, became singular

at these values. The reason might be that the parameters form a redundant set or

inappropriate initial values were used. A singular Jacobian matrix implies that the
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determinant of the matrix is zero, indicating that the system of equations is either

overdetermined or underdetermined at these points. This situation leads to

computational difficulties, such as the inability to accurately invert the matrix, which is

necessary for the optimisation and fitting processes.

The singularity of the Jacobian matrix suggests that small changes in the input

parameters could result in disproportionately large changes in the output, making the

system highly unstable and unreliable. Therefore, to ensure the robustness and

reliability of the model, the decision is made to skip the results for these specific values

of Poisson’s ratio. By doing so, the computational pitfalls associated with singular

matrices were avoided, and the integrity of the fitting process was maintained.

Skipping these values, while necessary, also highlights the limitations of the current

approach and suggests that further refinement of the model or alternative numerical

techniques may be required to handle such cases more effectively in future studies. The

precise reasons for this are not yet fully understood. The resulting fitting curves are

shown in Figure 3-2. In order to observe the trend of the 3 parameters, they are plotted

with respect to the Poisson’s ratio, as shown in Figure 3-3.
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Figure 3-2 Fitted curves correspond to different Poisson's ratio, skipping singular Jacobian

matrix values.
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Figure 3-3 Young's modulus variation with different Poisson's ratio
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Figure 3-4 Permeability over viscosity variation with different Poisson's ratio
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3.1.3 Fitting with the New Model

By applying the new model and comparing it to Model 1, there is no longer the singular

Jacobian matrix. Each Poisson’s ratio has results for its corresponding parameters.

Additionally, it is found that the values are surprisingly stable, which means the

fluctuation of each parameter is less or around the order of 10%. The results of different

Poisson’s ratios by using fminsearch are shown in Table 3-3:

y E (Pa) Q(kg/m.s) E(m3s/kg) Loss(um/mmHg)
0.35 2.442x10° 7.492x10° 9.325x107 4.721
0.36 1.326x10° 1.052x10° 1.892x107° 4.708
0.37 2.735x10° 1.056x10° 2.164x107 4.695
0.38 1.223x10° 1.481x10* 3.152x107 4.680
0.39 682.8 9.800x10° 2.324x107 4.666
0.4 433.1 1.640x10° 2.881x10™! 4.652
0.41 1.961x10* 3.810x10° 1.163x108 4.637
0.42 739.7 1.268x10* 1.833x10°® 4.622
0.43 727.5 1.373x10* 1.712x108 4.606
0.44 628.4 9546 2.383x10® 4.590
045  1.149x10* 2.241x10° 2.046x10° 4.574
0.46 427.3 11.10 4.417x10° 4.557
0.47 1127 4.945%10° 1.244x108 4.540
0.48 789.5 3.542x10° 1.596x10%® 4.524
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0.49 2834 2.315%10* 2.084x1077 4.504

Table 3-3 Fitted results corresponding to different Poisson's ratio

The corresponding fitting curves are shown in Figure 3-5. The loss function is shown
in Figure 3-6 . It can be observed that the fitting curves are smooth for all values of
Poisson’s ratio, which means that the fitting appears to work well. Besides, the values
are also very reasonable. It was observed that Young’s modulus values are mostly
around one to two thousand Pa, the specific storage values fall between 10° and 10°
kg/m.s, and the permeability over viscosity values are approximately 10" m>s/kg. These
values are close to the initial estimates provided in the literature, and the loss is less
than 5 to all magnitudes of Poisson’s ratio. Because of that, the resulting model appears

to fit the data very well.
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Figure 3-5 Fitted curves corresponding to different Poisson's ratios
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Figure 3-6 Loss function of Model 2

0.5

Several sets of results that are not so unreasonable are chosen for further studies. These

results have been taken back to the model but given different results compared to the

one in the last time fitting. For example, the fitting results at Poisson’s ratio at 0.49 are

shown in Table 3-4. The corresponding fitting curve is shown in Figure 3-7.

E (Pa) Q(kg/m.s) E (m’s/kg)

0.49

2834 2.315x10*

2.084x1077

Table 3-4 fitted results at 0.49 of Poisson’s ratio
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Figure 3-7 fitting results at 0.49 of Poisson's ratio

However, when these values are taken back to the model, which means the initiated
values from Table 2-1 Typical values of model parameters and their types and sources
become the values in Table 3-4, the outcome is shown in Figure 3-8. It is totally
different from Figure 3-7, which means there are problems during the fitting process.
To put it more simply, for example, we solved an equation, but when we substituted the

solution back into the equation, we found that the original equation did not hold.
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Taking values back to model
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Figure 3-8 Taking values back to the model

After checking the fitting process, the problem showed up. Firstly, the non-dimensional

parameters that are fitted are w1 to @5, and then Young’s modulus, specific storage, and

permeability over viscosity are calculated by those non-dimensional parameters. Here,

recalling Eq. (43) to Eq. (47) again, it is easy to find that Young’s modulus E can be

calculated by Eq. (43), Specific storage can be calculated by Eq (44)., and permeability

over viscosity can be calculated by Eq (45). The equations after transformation are

shown in Eq. (48)-Eq. (50). Now three equations are used, but there are still two

equations left, Eq(46) and Eq. (47). It is easy to find that the E calculated by Eq.(48)

can’t satisfy Eq. (46) . Thus, it needs to find new ways to solving this problem.

2p2
psw”R¢
= 43
Ty = (43)
wuR?
= 44
Uy ) (44)
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_ QwuRw,

T, = ——— (45)
’ KDe
aR:p.
= 46
Ty Ew, (46)
RZ
e = _URZP (47
K
2p2
psw R
= 4
- (48)
K _ awR . w, (49)
u T3P
WUR?
Q=22 (50)
KT,

3.1.4 Fitting the Original Three Parameters

One possible way is fitting the original three parameters directly so that there would be
no problem between the five nondimensional parameters and the original three
parameters of E, Q, and «/u. Thus, it is decided to fit the original three parameters, E,
E, and Q, in different Poisson’s ratios ranging from 0.35 to 0.5, 0.01 apart.

The process of coding is quite easy, just changing the five nondimensional parameters
to the three-dimensional parameters. The fitting results for each different value of
Poisson’s ratio are shown in Table 3-5, where these three parameters are fitted directly

to the experimental data.

Xm3 Loss(um/mmHg)
% E(Pa) Q(kg/m.s) (m°s/kg)
0.35 2246 3.027x10* 4.87x1071 7.584
0.36 1389 1302 5.58x10°" 7.584
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0.37

0.38

0.39

0.4

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

670.2
1377
444.5
1508
1108
695.0
9.730
1075

4.460%10°
235.6
179.2
226.4

8.949x10*

84.15
1278
18.75
3693
1625
61.07
2.093x10°
10.73
68.63
10.73
10.92
10.78

1.409x10®

3.77x10713
6.51x10713
3.84x1072
6.08x10713
5.96x10713
3.83x1072
3.82x10
9.08x10!
7.96x10°
8.96x1072
8.65x10°'2
3.07x10!

2.06x10™*

6.674

7.585

7.585

7.585

7.586

7.553

7.584

7.516

4.574

7.518

7.518

7.519

4.701

Table 3-5 fitting parameters to different Poisson’s ratio

The corresponding curves are shown in Figure 3-9. Since the results look much worse

than before, the three parameter results will not be shown.
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Figure 3-9 Fitting curves to different Poisson's ratio

The fitting values of parameters and curves are both unexpected. The values fluctuated
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widely. Young’s modulus fluctuates from ten to nearly ninety thousand. Specific storage

and the permeability over viscosity variants are even larger. The varianting range can

attain the order of 10'°. However, since the curves show a relatively good fit at values

of Poisson’s ratio at 0.45 and 0.49, the decision was made to re-fit the model by using

the results at these two values of Poisson’s ratio as the starting condition to see if better

results could be achieved.

The results using the values obtained at a Poisson’s ratio of 0.45 as initial conditions

are shown in Table 3-6

v E(kPa) Q(kg/m.s) ~(m’s/kg) Loss(um/mmHg)
035 1240 53.93 9.173x10° 7.282
036 1173 53.82 9.185x10° 7.280
037 1104 53.72 9.192x10° 7.278
038 1033 53.62 9.207%10° 7.276
039  960.4 53.52 9.202x10° 4.666
0.4 885.2 53.42 9.219%10° 4.652
041  807.8 53.32 9.226x10° 4.637
042 7280 53.23 9.237%10° 4.622
043 6459 53.13 9.233x10° 4.606
044 5614 53.03 9.241x10° 4.591
045 4744 52.93 9.250x10° 4.574
046  384.8 52.83 9.267x10° 4.557
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0.47 292.7 52.74 9.266x10 4.540
0.48 197.9 52.64 9.270x107° 4.523

0.49 100.4 52.54 9.283x107 4.504

Table 3-6 Fitted parameters to different Poisson’s ratio

From Table 3-6, it can be seen that all three parameter values are more stable than before,
Young’s Modulus varying in a relatively small range of the order of 10, and specific
storage and permeability over viscosity over even smaller ranges, less than an order of
10. However, Young’s modulus still fluctuates quite widely compared to the other two
parameters. The corresponding fitting curves are shown in Figure 3-8, fitting curves at

different values of Poisson’s ratio.
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Figure 3-10 fitting curves to different Poisson’s ratio
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parameters is more suitable for this model with improved initial values. Then, let us see

the results of Poisson’s at 0.49, as shown in Table 3-7.

v E(kPa) Q(kg/m.s) E(m3s/ kg) Loss(um/mmHg)
0.35 1240 53.93 9.173x107 4.721
0.36 1173 53.83 9.186x107 4.708
0.37 1104 53.72 9.194x10 4.694
0.38 1033 53.62 9.207x107 4.680
0.39 960.5 53.53 9.203x10 4.666
0.4 885.3 53.43 9.214x107 4.652
0.41 807.8 53.32 9.225x107 4.637
0.42 728.0 53.23 9.237x107 4.622
0.43 645.9 53.13 9.230x107 4.606
0.44 561.4 53.03 9.243x107 4.591
0.45 474.4 52.93 9.215x10 4.574
0.46 384.8 52.833 9.266x107 4.557
0.47 292.7 52.74 9.264x10 4.540
0.48 197.9 52.64 9.277x107 4.523
0.49 100.4 52.54 9.284x10° 4.504

Table 3-7 Fitting results corresponding to different Poisson's ratio
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Figure 3-11 Fitting curves corresponding to different Poisson’s ratio

The shape and trend of the curves again demonstrate a consistent alignment with the
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observed values. It also found that all the values of the parameter fluctuate minimally,

as shown in Table 3-7. The corresponding figure is shown in Figure 3-11.

In summary, the results of Poisson’s ratio at 0.45 and 0.49 show little fluctuation, and

the fitting curves perform well, indicating that these are good initial values to use more

generally. As shown in Table 3-8. However, it is worth noting that among these two sets

of values, the only obvious difference is Young’s modulus. Young’s modulus at 0.45 of

Poisson’s ratio is nearly five times the value at 0.49, while the other two are almost the

Same.
v E (kPa) Q(kg/m.s) (m'skg)  Loss(um/mmtle)
0.45 474.4 52.93 9.250x10° 4.574
0.49 100.4 52.54 9.283x10° 4.504

Table 3-8 Results of parameters

3.2 Comparison and Discussion

This section will compare the fitting results of different models and discuss the
significance and limitations of these results. It used two different models to fit the
experimental data. The first included two equations, while the second model divided
blood pressure into arterial and venous compartments, including three equations. Both
models are mathematically compact and showed good fitting performance. The results

are summarised in Table 3.8, including previous results at Poisson’s ratio equals 0.49,
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since 0.49 of Poisson’s ratio is more likely to be a reference value.

E(Pa) Qkg/m.s)  W/p(m3s/kg) Loss(um/mmHg)

Model 1 0.7900 1.53x10%"7 3.48x10710 5.277
Model 2 2834 2.315x10* 2.084x107 4.504
Model 2 (original 3
8.949x10*  1.409x108 2.060x10™ 4.701
parameters)
Model 2 (results at
1.004 x10° 52.54 9.281x107 4.504

v equals 0.49)

Table 3-9 Comparison of each model at v=0.49

However, despite these results, there are still some issues in practical application. The

first is fitted parameters. Model 1 initially fitted the parameters at a Poisson’s ratio of

0.35 and obtained unrealistic parameter values. Then, 15 different Poisson’s ratio values

ranging from 0.35 to 0.49 were tried, but reasonable parameter values were still not

found. In the second model, which distinguishes between arterial and venous blood

pressures, which is closer to reality, the results are surprisingly stable. All the values of

the parameters fall within a relatively small interval. However, when taking the result

back to the model and trying to find a more accurate value of the parameters, the

outcome curve did not correspond to the one during fitting. Then, the problem was

found to be caused by the five non-dimensional parameters. Thus, it was decided to

directly fit the original three parameters, skipping to fit the non-dimensional parameters.

By doing this, the results can be taken back to the model and get the same curve as the
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fitting results.

According to the study done by Eneko Axpe et al. (2020). Young’s modulus of brain

tissue is typically shown to be in the range of a few hundred Pa to kPa [18]. Apparently,

it differs significantly from the fitted results. The Poisson’s ratio of brain tissue typically

fell within the range of 0.35-0.5 [20]-[27]. According to a study of mathematical fitting

done by Hinrichsen J et al. (2023), occasionally, the values of 0.45 and 0.49 were also

used for fitting the Poisson’s ratio [19]. To some extent, this is evidence to corroborate

the idea that this study is going in the right direction. Although Young’s modulus of

fitting is not expected, the choice of Poisson’s ratio still shows that this fitting has the

potential to continue. However, there currently is no standard value for evaluating the

fitting results as to whether they are right or not.

These issues indicate that there may be some unresolved problems between the

mathematical models and the experimental data. Specifically, the model assumes that

brain tissue is a linear, isotropic material, but in reality, brain tissue is nonlinear,

viscoelastic, and highly anisotropic. Together with the subarachnoid space and the

variable permeability of the brain, all may lead to a mismatch between the model and

actual conditions. The sample size was limited to 20 healthy individuals, which may

not represent the broader population. This small sample size might lead to biased results

that do not reflect the general population's diversity.
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To improve the model's accuracy, more complex tissue models, such as viscoelastic or

anisotropic properties, need to be considered, as well as the subarachnoid space and

variable permeability, in particular between grey and white matter. Increasing the

sample size and including individuals from different age groups and with various

medical conditions will also help improve the model’s applicability. While this study

has made some preliminary achievements, further optimisation and validation are

needed to estimate brain tissue's mechanical properties accurately. It must be considered

more complex biomechanical properties and broader data sources to achieve improved

results.

3.3 Conclusions

This section explores numerous methods to refine the model and improve the accuracy

of calculations. This included adjusting various parameters, experimenting with

different fitting algorithms, and applying several mathematical transformations.

Despite rigorous testing and careful implementation, it faced consistent difficulties in

obtaining reliable and consistent parameter values. While this study has not yet

achieved the desired results, the efforts have highlighted the complexity of accurately

modelling the mechanical properties of brain tissue. The challenges encountered

underscore the need for further refining models and developing more advanced
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techniques. It remains optimistic that future studies can overcome these challenges and

achieve the goals with continued research and the incorporation of more realistic tissue

models and diverse datasets.
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4 Conclusions and Future Work

This study aimed to estimate the values of the mechanical properties of brain tissue
from BTP recordings. Although estimating these robustly proved more challenging than
expected, it is important to recognise that this is only a preliminary investigation. The
results of this study lay the groundwork and exclude incorrect ways for future studies.
With continued effort and exploration, more comprehensive and conclusive findings

are anticipated in subsequent studies.

4.1 Summary of Findings

This study aimed to estimate the mechanical properties of brain tissue using a coupled
solid-fluid mathematical model based on brain tissue pulsations (BTP). The key
findings can be summarised as follows. The model performed well in fitting brain tissue
responses to cardiac pulsations, demonstrating a high correlation with experimental
data, as shown in Figure 3-2, Figure 3-5, Figure 3-10 and Figure 3-11. Despite
significant variability among subjects, the model shows good performance at Poisson’s
ratio, which equals 0.45 and 0.49, which means that the properties of the brain appear

to be close to incompressible. These two values are the same as those used by
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Hinrichsen J et al. (2023) in a previous study for fitting.

The initial values of Young’s modulus estimated at 0.45 and 0.49 Poisson’s ratio are

474.4kPa and 100.4kPa, respectively, which are very different from the values done by

Axpe E et al. (2020). The specific storage and permeability over viscosity still do not

have a standard value yet. Although what this study estimated may not be the correct

answer, it does show a consistent behaviour in the last fitting of Model 2. However, due

to large individual differences, the specific values of the mechanical properties remain

uncertain. These results suggest that the proposed model has the potential for non-

invasive assessment of brain mechanical properties, but that further optimisation and

validation are needed.

4.2 Limitations

Although this study has considerable results on the mechanical properties of brain tissue,

it is obvious that this study has limitations, including methodological limitations, data

limitations, and scope limitations. Methodological limitations include that the model

assumes linear, isotropic properties of brain tissue, which simplifies the tissue's

complex, nonlinear, and anisotropic nature. Besides, the subarachnoid space and the

variable permeability of the brain would also affect the fitting process. These should be

considered in future work so that this study can attain an outcome that may be closer to
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reality.

Data limitations include the fact that the sample size was limited to 20 healthy

individuals, which is enough to give a good start but not enough to go further. Obviously,

these cannot represent the broader population. Scope limitations: The studies focused

on healthy individuals and the applicability of the results to pathological conditions

remains uncertain. More data, including both healthy individuals and patients, will need

to be collected and applied for future research. Acknowledging these limitations is

essential for accurately interpreting the results and guiding future research.

4.3 Future Work

Future work will focus on the problems that haven’t been solved yet, extending current

research and exploring new directions to enhance the model’s robustness and

applicability. One of the unresolved problems is the applicability and accuracy of the

model. Although the multi-compartment nature of the blood flow is considered, it still

has the potential to be more accurate, such as considering the variable permeability of

the brain tissue. In addition, the model's performance can be assessed by applying it to

different physiological and pathological states, such as brain trauma or

neurodegenerative diseases. These will help validate and refine the model to ensure it

accurately represents different states of brain health.
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For extending the research, this study can be expanded to include a larger and more

diverse sample size. This should cover different age groups, genders, and individuals

with varying medical histories. By doing this, the model may be able to reflect a wider

range of human variability, improving its generalizability and accuracy. New research

directions will include complex tissue models and will develop and integrate more

tissue models that account for viscoelastic and anisotropic properties. These models

should also consider the impact of the subarachnoid space and variable permeability on

brain mechanics. Such enhancements will provide a more comprehensive

understanding of brain tissue behaviour under different conditions.

Besides, future work also includes incorporating patient data to obtain and analyse data

from patients with various neurological conditions to compare with the data from

healthy individuals. Understanding the differences between healthy and pathological

brain tissue properties will help clinical applications and model diagnostic capabilities.

By solving these problems, this study will have a more comprehensive understanding

of the properties of brain tissue, contributing more to clinical and physiology.

66

doi:10.6342/NTU202403075



5 Reference

[1] Ince J, Banahan C, Venturini S, Alharbi M, Turner P, Oura M, Beach KW,
Robinson TG, Mistri AK, Lecchini-Visintini A, Minhas JS, Chung EML. Acute
ischaemic stroke diagnosis using brain tissue pulsations. J Neurol Sci. 2020 Dec
15;419:117164. doi: 10.1016/j.jns.2020.117164. Epub 2020 Oct 3.

[2] S. Vidale, E. Agostoni, Prehospital stroke scales and large vessel occlusion: a
systematic review, Acta Neurol. Scand. 138 (1) (2018) 24-31.

[3] Terem I, Dang L, Champagne A, Abderezaei J, Pionteck A, Almadan Z, Lydon
AM, Kurt M, Scadeng M, Holdsworth SJ. 3D amplified MRI (aMRI). Magn Reson
Med. 2021 Sep;86(3):1674-1686. doi: 10.1002/mrm.28797. Epub 2021 May 5.

[4] Turner P, Banahan C, Alharbi M, Ince J, Venturini S, Berger S, Bnini I, Campbell
J, Beach KW, Horsfield M, Oura M, Lecchini-Visintini A, Chung EML. Brain
Tissue Pulsation in Healthy Volunteers. Ultrasound Med Biol. 2020
Dec;46(12):3268-3278. doi: 10.1016/j.ultrasmedbio.2020.08.020. Epub 2020 Sep
24,

[5] J.C. Kucewicz, B. Dunmire, D.F. Leotta, H. Panagiotides, M. Paun, K.W. Beach,
Functional tissue Pulsatility imaging of the brain during visual stimulation,
Ultrasound Med. Biol. 33 (5) (2007) 681-690.

[6] Chou D, Vardakis JC, Guo L, Tully BJ, Ventikos Y. A fully dynamic multi-
compartmental poroelastic system: Application to aqueductal stenosis. J] Biomech.
2016 Jul 26;49(11):2306-2312. doi: 10.1016/j.jbiomech.2015.11.025. Epub 2015

Nov 28.
67

doi:10.6342/NTU202403075



[7] Moghadam ME, Baghal A, Payne S. Human whole-brain models of cerebral blood
flow and oxygen transport. University of Oxford, Department of Biomedical
Engineering.

[8] S.S. Kety, C.F. Schmidt, The nitrous oxide method for the quantitative
determination of cerebral blood flow in man: theory, procedure and normal values,
J. Clin. Invest. 27 (4) (1948) 476-483.

[9] H. Ito, I. Kanno, H. Iida, J. Hatazawa, E. Shimosegawa, H. Tamura, T. Okudera,
Arterial fraction of cerebral blood volume in humans measured by positron
emission tomography, Ann. Nucl. Med. 15 (2) (2001) 111-116,
https://doi.org/10.1007/BF02988600.

[10] H. Tto, 1. Kanno, H. Fukuda, Human cerebral circulation: positron emission
tomography  studies, Ann. Nucl. Med. 19 (2) (2005) 65-74,
https://doi.org/10.1007/BF03027383.

[11] H.H. Lipowsky, Microvascular rheology and hemodynamics, Microcirculation
12(2005) 5-15.

[12] E. Vovenko, Distribution of oxygen tension on the surface of arterioles, capillaries
and venules of brain cortex and in tissue in normoxia: an experimental study on
rats, Pflugers Arch. 437 (1999) 617-623.

[13] Guo L, Vardakis JC, Lassila T, Mitolo M, Ravikumar N, Chou D, Lange M,
Sarrami-Foroushani A, Tully BJ, Taylor ZA, Varma S, Venneri A, Frangi AF,
Ventikos Y. Subject-specific multi-poroelastic model for exploring the risk factors
associated with the early stages of Alzheimer’s disease. Interface Focus.
2018;8(2):20170019. doi:10.1098/rsf5.2017.0019.

[14] Shao, Y.-H., & National Taiwan University Institute of Applied Mechanics. (2000).

Non-invasive measurement of mechanical properties of peripheral arteries (I).
68

doi:10.6342/NTU202403075



Report of the National Science Council, Project No: NSC 89-2320-B-002-149
MOS.

[15] Turner P, Banahan C, Alharbi M, Ince J, Venturini S, Berger S, Bnini I, Campbell
J, Beach KW, Horsfield M, Oura M, Lecchini-Visintini A, Chung EML. Brain
Tissue Pulsation in Healthy Volunteers. Ultrasound Med Biol. 2020;46(12):3268-
3278. doi: 10.1016/j.ultrasmedbio.2020.08.020.

[16] Ince, J., Alharbi, M., Minhas, J.S., & Chung, E.M.L. (2019). Ultrasound
measurement of brain tissue movement in humans: A systematic review.
Ultrasound, 28(2), 70-81. doi: 10.1177/1742271X19894601.

[17] Tully, B., & Ventikos, Y. (2011). Cerebral water transport using multiple-network
poroelastic theory: Application to normal pressure hydrocephalus. Journal of Fluid
Mechanics, 667, 188-215. doi:10.1017/S0022112010004428.

[18] Axpe E, Orive G, Franze K, Appel EA. Towards brain-tissue-like biomaterials.
Nat Commun. 2020 Jul 9;11(1):3423. doi: 10.1038/s41467-020-17245-x. PMID:
32647269; PMCID: PMC7347841.

[19] Hinrichsen J, Reiter N, Brauer L, Paulsen F, Kaessmair S, Budday S. Inverse
identification of region-specific hyperelastic material parameters for human brain
tissue. Biomech Model Mechanobiol. 2023 Oct;22(5):1729-1749. doi:
10.1007/s10237-023-01739-w. Epub 2023 Sep 7. PMID: 37676609; PMCID:
PMC10511383.

[20] Hosseini-Farid M, Ramzanpour M, McLean J, Ziejewski M, Karami G. A poro-
hyper-viscoelastic rate-dependent constitutive modeling for the analysis of brain
tissues. J Mech Behav Biomed Mater. 2020 Feb;102:103475. doi:
10.1016/5.jmbbm.2019.103475. Epub 2019 Oct 11. PMID: 31627069.

[21] M. Hosseini-Farid, M. Ramzanpour, M. Ziejewski, G. Karami, A compressible
69

doi:10.6342/NTU202403075



hyper-viscoelastic material constitutive model for human brain tissue and the
identification of its parameters, Int. J. Non Linear Mech. 116 (2019)147-154 .

[22] Lee SJ, King MA, Sun J, Xie HK, Subhash G, Sarntinoranont M. Measurement of
viscoelastic properties in multiple anatomical regions of acute rat brain tissue
slices. J Mech Behav Biomed Mater. 2014 Jan;29:213-24. doi:
10.1016/5.jmbbm.2013.08.026. Epub 2013 Sep 9. PMID: 24099950; PMCID:
PMCS8011428.

[23] Nagashima T, Shirakuni T, Rapoport SI. A two-dimensional, finite element
analysis of vasogenic brain edema. Neurol Med Chir (Tokyo). 1990 Jan;30(1):1-
9. doi: 10.2176/nmc.30.1. PMID: 1694266.

[24] E. Comellas, S. Budday, J.P. Pelteret, G.A. Holzapfel, P. Steinmann, Modeling the
porous and viscous responses of human brain tissue behavior, Comput. Methods
Appl. Mech. Eng. 369 (2020) 113128 .

[25] Elkin BS, Ilankova A, Morrison B. Dynamic, regional mechanical properties of
the porcine brain: indentation in the coronal plane. J Biomech Eng. 2011
Jul;133(7):071009. doi: 10.1115/1.4004494. PMID: 21823748.

[26] H. Kim, B.K. Min, D.H. Park, S. Hawi, B.J. Kim, Z. Czosnyka, M. Czosnyka, M.P.
Sutcliffe, D.J. Kim, Porohyperelastic anatomical models for hydrocephalus and
idiopathic intracranial hypertension, J. Neurosurg. 122 (6) (2015) 1330-1340 .

[27] Miller K, Chinzei K. Constitutive modelling of brain tissue: experiment and theory.
J  Biomech. 1997 Nov-Dec;30(11-12):1115-21.  doi:  10.1016/s0021-
9290(97)00092-4. PMID: 9456379.

[28] Payne SJ. Cerebral Blood Flow and Metabolism: A Quantitative Approach. World

Scientific Publishing Co. Pte. Ltd., 2017.

70

doi:10.6342/NTU202403075





