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中文摘要 

由於難以獲得無創的體內數據，理解腦組織的機械性質仍然具有挑戰性。本研究通過利

用心臟周期引起的腦組織脈動（BTP）來估算腦部性質。研究開發了一個耦合固-液的數

學模型，並使用經顱組織多普勒（TCTD）技術測量 20名健康個體的腦組織位移和相應

的血壓，從而獲得數據。傅里葉變換被用來推導位移和壓力信號之間的傳遞函數。 

該數學模型假設腦組織可以被模擬為一個耦合固-液系統。球坐標系被應用於模型中以

簡化控制方程。為了擬合數據，嘗試了兩種模型，包括耦合固-液模型及其具有多個組分

的修正模型。使用 MATLAB 的'fminsearch'進行模型擬合，優化了包括楊氏模量（E）、

泊松比（ν）、比儲量（Q）和透氣度/粘度（κ/μ）等關鍵參數。 

總共嘗試了四種方法。前三種方法包括原始模型擬合、為避免負量級進行的對數變換模

型擬合和修正模型擬合，這些方法擬合了由物理參數組成的無量綱參數組。然後，無量

綱參數組可以計算出三個量綱參數。最後一種方法是直接擬合原始三個量綱參數，因為

在無量綱參數組轉化為三個量綱參數的過程中存在問題。 

擬合結果顯示所有方法的擬合曲線和損失都與實驗數據有很強的相關性。然而，參數值

並不總是符合預期的量級。這種差異部分是由於缺乏已建立的比較標準。此外，這也間

接表明了準確模擬腦組織性質的複雜性和挑戰性。 

總結來說，雖然本研究沒有顯示出預期的結果，但仍然排除了幾種方法。儘管存在這些

挑戰，本研究為利用腦組織脈動估算腦部性質的潛力和局限性提供了寶貴的見解。某些

方法和模型的排除突顯了進一步改進模型以更好地考慮腦組織非線性、粘彈性和各向異

性特性的必要性。該研究的方法還顯示出使用無創技術準確估算腦組織機械性質的潛力。 

未來的研究應該著重於通過引入更多數據集來提高這些模型的準確性，不僅包括健康志

願者，還包括患者，以獲得更準確的結果。此外，未來的研究應該探索其他可能的建模

技術。通過解決本研究中識別的局限性，研究人員可以提高無創方法估算腦組織性質的

可靠性。此外，將這種方法擴展到各種生理和病理狀態，以增強其臨床應用性，特別是

在診斷和治療腦部疾病方面，也將是重點。 

 

 

 

關鍵詞：腦組織脈動，經顱組織多普勒，機械性質，無創技術，腦部性質估算，臨床應

用，耦合固-液數學建模 
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Abstract 

Understanding the mechanical properties of brain tissue remains challenging due to 

difficulties obtaining non-invasive in vivo data. This study addresses this by utilising 

brain tissue pulsations (BTP) from cardiac cycles to estimate cerebral properties. This 

study developed a coupled solid-fluid mathematical model fitted to data from 20 

healthy individuals using Transcranial Tissue Doppler (TCTD) to measure brain tissue 

displacement and corresponding blood pressure. The Fourier transformation was used 

to derive transfer functions between displacement and pressure signals.  

The mathematical model assumes that the brain tissue can be modelled as a coupled 

solid-fluid system. The spherical coordinate is applied to the model to simplify the 

governing equation. Two models have been tried to fit the data, including a coupled 

solid-fluid model and its revised model with multiple compartments. Model fitting, 

using MATLAB's 'fminsearch,' optimised vital parameters, including Young’s modulus 

(E), Poisson’s ratio (ν), specific storage (Q), and permeability over viscosity (κ/μ). 

Four ways are tried in total. The first three, including original model fitting, logarithmic 

transformation model fitting to avoid negative magnitude, and revised model fitting, 

are fitting the non-dimensional groups of parameters formed by physical parameters. 

Then, the dimensional three can be calculated by non-dimensional groups. The last way 

is to directly fit the original dimensional three because problems exist from non-

dimensional groups to the original three parameters. 

The fitting results correlate with experimental data across all methods according to the 

fitting curves and loss. However, the parameter values don’t always perform well with 

expected magnitudes. This discrepancy is partly due to the absence of established 
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standards for comparison. This also indirectly demonstrates the complexity and 

challenging nature of accurately modelling brain tissue properties. 

In conclusion, although an expected result hasn’t been shown in this study, several ways 

are still excluded. Despite these challenges, this study provides valuable insights into 

the potential and limitations of using brain tissue pulsations for estimating cerebral 

properties. The exclusion of certain methods and models underscores the need for 

further refinement of more models that can better account for the nonlinear, viscoelastic, 

and anisotropic nature of brain tissue. This study’s approach also shows the potential 

for using non-invasive techniques to estimate brain tissue's mechanical properties 

accurately.  

Future research should focus on enhancing the accuracy of these models by 

incorporating more datasets, not only for healthy volunteers but also for patients, to get 

more accurate results. Also, future research should explore other possible modelling 

techniques. By addressing the limitations identified in this study, researchers can 

improve the reliability of non-invasive methods for estimating brain tissue properties. 

Besides, extending this methodology to various physiological and pathological states 

to enhance its clinical applicability, particularly in diagnosing and treating brain 

disorders, will also be a focus.  

 

 

 

 

Keywords: Brain Tissue Pulsation(BTP), Transcranial Tissue Doppler(TCTD), 

Mechanical Properties, Non-invasive Techniques, Cerebral Properties Estimation 

Clinical applications, Coupled solid-fluid Mathematical Modeling
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1 Introduction 

There remains a surprising lack of understanding regarding the mechanical properties 

of brain tissue. Therefore, this study uses a non-invasive detection method called 

transcranial tissue Doppler (TCTD) to acquire brain tissue pulsation (BTP) data. This 

technique, which measures the movement of brain tissue using ultrasound waves, 

allows us to study the brain non-invasively in vivo. Although the existing methods, such 

as CT and MRI, can be used to infer many properties of the brain, there still are 

disadvantages, such as not quickly considering mechanical properties.  

This study uses brain tissue displacement and blood pressure caused by cardiac 

pulsations, getting information to estimate the brain's mechanical properties through 

analytical methods and mathematical models. Understanding these properties is of great 

significance for treating patients with brain diseases. Additionally, the findings aim to 

inform the design of better diagnostic tools and treatments for brain disorders, leading 

to improved healthcare outcomes. 

1.1 Background 

The mechanical characteristics of brain tissue in vivo still need to be more adequately 
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understood. This is partly because measurements taken from tissue outside the body 

often fail to reflect in vivo conditions accurately and also due to the significant 

challenges in studying organs so effectively shielded by mechanical defences. However, 

these properties are crucial for comprehending how the brain reacts to mechanical 

forces, such as those experienced during trauma and swelling(oedema). Improved in 

situ characterisation of the brain’s mechanical properties would immensely benefit such 

research. It would also facilitate the development of more precise models of these two 

pathophysiological processes and enhance the availability of quantitative data for 

diagnostic and therapeutic purposes. 

1.2 Literature review 

In order to better comprehend the illness and carry out this investigation, a multi-angle 

literature evaluation is carried out. This literature review thus synthesises three key 

areas of study: clinical, experimental, and mathematical modelling, aiming to 

thoroughly assess their application and development in disease diagnosis and therapy. 

Clinical research provides direct observations of pathology and treatment effects, while 

experimental research investigates the underlying principles of pathophysiology and 

interventions. Mathematical models offer precise tools for understanding complex 

biological systems and predicting therapeutic outcomes. Although these fields differ in 
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their research methods and focus, they all aim to advance the understanding of health 

and disease, propelling progress in medical science. By integrating and analysing recent 

research findings from these three areas, current therapeutic strategies can be evaluated 

more comprehensively. Also, data support and theoretical foundations will be provided 

for future research directions. 

1.2.1 Clinical 

The brain is known to pulse with every cardiac cycle, but only recently has there been 

interest in quantifying cardiac-induced brain tissue pulsations, or BTPs. [4]. Newborn 

infants originally found it by seeing through their fontanelle. Variations in the elasticity 

of brain tissue and the transmission of arterial pulses into adjacent tissue are thought to 

have a significant impact on the localized pulsations of brain tissue [4]. Brain Tissue 

Pulsations (BTP) hold significant potential for clinical applications. A systematic 

review [16] has summarised tissue pulsality imaging (TPI) research, indicating that 

Brain disease and impaired cerebral hemodynamics may be indicated by Brain Tissue 

Pulsations (BTPs) [4]. 

The cerebral vasculature is a huge and complex network of blood vessels that provide 

blood to all regions of the brain, facilitating the transportation of glucose and oxygen. 

[28]. The heartbeat is reflected in the pulsating blood flow that occurs in the brain 
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arteries. This pulsatile nature of blood flow is crucial for maintaining the brain’s 

metabolic demands and is characterised by periodic changes in velocity and pressure 

due to the heartbeat [28]. However, the effect of tissue ischemia, as a result of ischaemic 

stroke, on these brain tissue pulsations remains unclear [28].  

In other words, while healthy brain tissue pulses in sync with the cardiac cycle, it is still 

uncertain if ischemic stroke impairs these pulsations due to tissue ischemia. [2]. 

According to the study done by Ince J et al. (2020), ischeamic stroke typically results 

from the blockage of major arteries that supply the brain and is the primary cause of 

death and disability globally. [1]. There is no suitable method for predicting strokes 

now. The stroke prediction methods available today rely on patient cooperation, take 

several minutes to complete, and are subjective. According to a recent systematic study, 

the average sensitivity and specificity of 19 stroke prediction measures were 80% and 

68%, respectively[1]. Although brain imaging techniques exist, their performance is not 

exceptional. Early ischemia abnormalities are often not immediately evident on CT 

scans, and MRI scans can take up to 30 minutes to collect. These limitations affect the 

efficacy of CT and MRI to help in the early identification of stroke [1]. 

With the use of X-rays and computer processing, Computed Tomography (CT) is a 

medical imaging technique that produces incredibly detailed cross-sectional images of 

various body parts. CT scans offer more detailed visual representations of the internal 
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structures compared to standard X-rays, making them ideal for quickly examining 

bones, muscles, fat, and organs to diagnose diseases, assess injuries, or plan surgeries. 

A circular X-ray machine passes through a motorized table that the patient rests on 

during a CT scan, taking pictures of the body from various angles. A computer then 

processes these images to produce visual slices, which can be further reconstructed into 

three-dimensional images. Due to its high resolution, CT is an indispensable diagnostic 

tool in modern healthcare. 

Without using ionizing radiation, magnetic resonance imaging (MRI) is a non-invasive 

medical imaging method that creates high-resolution pictures of soft tissues. It operates 

by aligning hydrogen protons in the body with a strong magnetic field and using 

radiofrequency pulses to generate detected and processed signals into images. MRI 

excels in neurological, cardiovascular, musculoskeletal, and abdominal imaging due to 

its high resolution and ability to image in multiple planes. Despite its long scan times, 

high costs, and contraindications for patients with metal implants, MRI's detailed 

imaging capabilities and functional imaging options make it an indispensable tool in 

modern medicine. 

Amplified MRI (aMRI) is a revolutionary technique introduced to enhance the 

visualization of pulsatile brain motion, making subtle physiological changes more 

noticeable. Initially developed in 2D formats, aMRI has been advanced into 3D 
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technology that improves the detection and imaging of brain movements across all three 

spatial dimensions [3]. The 3D aMRI method provides superior image quality. It 

reduces motion artefacts compared to its 2D predecessor, offering more precise insights 

into the biomechanical behaviours of brain tissues influenced by cardiac pulsations and 

cerebrospinal fluid (CSF) dynamics [3]. 

The 3D aMRI utilises a phase-based motion magnification algorithm that amplifies the 

subtle motion within the brain, which is otherwise hard to detect with traditional 

imaging methods [3]. This technique is particularly useful for diagnosing and 

researching neurological diseases that affect the biomechanical properties of the brain 

and its fluids. By capturing brain movement in three dimensions, 3D aMRI offers a 

comprehensive view of the brain's biomechanical response, aiding in the understanding 

of disorders such as hydrocephalus and Chiari malformation, where altered brain 

motion is a key characteristic. [3]. 

In summary, When it comes to brain mobility, 3D aMRI provides better picture quality 

than 2D aMRI and can accommodate a larger amplification factor. The comparison of 

2D aMRI and 3D aMRI is shown in Figure 1-1. The coronal image's optic chiasm area 

serves as a clear example of this, since brain motion there seems to be concentric rather 

than inferior or superior. 3D aMRI's optical flow maps and 4D animations may open up 

interesting new avenues for research into neurological conditions affecting the 
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biomechanics and fluid dynamics of the brain [3]. 

 
Figure 1-1 Comparing volumetric 2D and 3D aMRIs. Volumetric 2D aMRI (C), volumetric 

3D aMRI (D), and original (unamplified) 3D cine data (B) were used to generate the 

maximum difference maps and the anatomical reference (A). When compared to volumetric 

2D aMRI, volumetric 3D aMRI was able to capture both in- and out-of-plane motion with a 

considerable reduction in motion artifacts. [3].  

This study intends to give the first estimations of brain tissue motion for a broad cross-

section of healthy people for a literature review of brain tissue pulsations (BTP) [4]. 
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Turner P et al.(2020) first point out that the brain visibly pulsates in sync with the 

cardiac cycle in newborn infants and patients undergoing neurosurgery. Variations in 

brain tissue compliance and the spread of artery pulsations into the surrounding tissue 

are thought to have a major impact on the regional pulsations of brain tissue. [4]. 

Despite the long-standing use of Doppler techniques for assessing cardiac tissue motion, 

the use of Doppler ultrasound for measuring brain tissue motion is still largely 

uncharted. [4]. It is worth noting that this study also mentioned the amplified MRI 

(aMRI) and the relative study using this method. However, transcranial tissue Doppler 

(TCTD) is an innovative method that doesn't necessitate a skilled operator, utilizing a 

compact, wearable, single-element ultrasound probe. Besides, measurement can be 

obtained from any position on the head through this method [4].  

Case study 

Brain tissue pulsations (BTPs) were measured in 24 healthy volunteers (aged 52–82) 

and 14 acute ischemic stroke patients (aged 51–86) using a unique Transcranial Tissue 

Doppler (TCTD) technique. All of the participants tolerated the measures well, and they 

were completed quickly. [1].  

The concept of measuring BTP by using Transcranial Tissue Doppler (TCTD) is 

because of its advantages, such as it doesn't necessitate a skilled operator, utilizing a 
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compact, wearable, single-element ultrasound probe. This is the first study to examine 

if brain tissue pulsations (BTPs) are influenced by impaired tissue perfusion related to 

stroke, mainly ischemic one. [1]. A "plethysmography-based" process, in which the 

amount of arterial blood that enters the brain during systole surpasses the amount of 

venous outflow, has been proposed by some researchers as the cause of brain tissue 

pulsations (BTP). It is thought that with each cardiac cycle, the buildup of blood volume 

causes a modest but noticeable contraction of the volume of the brain [5].  

Expanding the brain will generate and be increased in intracranial pressure during the 

cardiac cycle due to the skull's constant capacity. According to a 2007 supposition by 

J.C. Kucewicz et al., the pressure-volume balance among compartments of the brain 

may be relieved by the brain's descent through the foramen magnum and the consequent 

displacement of cerebrospinal fluid (CSF) into the spinal canal. Another detailed 

description is that brain tissue pulsations (BTPs) primarily result from the main arteries' 

pulsations spreading into the delicate brain tissue around them. [5].  

However, both hypotheses are still under investigation. Ince J et al. (2020) compared 

brain tissue pulsations (BTPs) from stroke patients to the control subjects who had not 

had a stroke using a mixed methods technique. Their work provides an initial evaluation 

of the usefulness of Transcranial Tissue Doppler (TCTD) scans for the diagnosis of 

acute ischemic stroke. [1].  
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1.2.2 Experimental 

Ince J et al. (2020) used a conventional 2 MHz probe and a portable transcranial 

Doppler ultrasonography device from Spencer Technologies to record all brain tissue 

pulsation (BTP) readings. Because the left side of the forehead is easier to access in an 

emergency, recordings were made from both sides. [1]. 

 

Figure 1-2 Acquisition of BTP. The predicted TCTD beam from side view (B) and top view 

(C) correspond to the equipment configuration (A). The forehead was the site of the probe, 

which was placed about 1 cm above the eyebrow's center. [1] 

Using this technique, Ince J et al. (2020) examined the tissue displacement for 30 depths 

(ranging from 2 to 8 cm) inside the brain, with the data shown in MATLAB. [1]. This 

study included 14 acute ischaemic stroke patients and 24 non-stroke volunteers [1]. The 

non-stroke brain tissue pulsation and typical stroke brain tissue pulsation to the time in 

different depths are shown in Figure 1-3 and Figure 1-4. Figure 1-4 shows 4 features to 

identify recordings from stroke patients.  

By comparing the signals between stroke and non-stroke signals, it was found that non-
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stroke signals exhibited higher consistency and typical features, such as quickly 

peaking after the start of the cardiac cycle followed by a rapid return to baseline. In 

contrast, stroke patients’ BTP waveforms showed significant abnormal characteristics, 

such as severe waveform disruption and multiple additional peaks [1]. To explain why 

individual brain tissue pulsations (BTPs) differ, however, a much deeper understanding 

of the relationships between physiological changes, tissue biomechanics, and BTPs is 

necessary. [1]. 

 

 

Figure 1-3 Normal BTP signals without strokes [1]. Panel A shows consistent waveform 

patterns across different depths, while panel B shows slight variations in waveform patterns 

among different depths. 
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Figure 1-4 Typical stroke BTP signals [1] Panel A: Dramatic perturbation or departure from a 

regular waveform configuration. Panel B: Unlike single peaks observed in non-stroke 

waveforms, there are several additional peaks and oscillations after pulsations. Panel C: "The 

lack of discernible heartbeats." Panel D: "Inadequately correlated signals," which exhibit 

temporal and spatial heterogeneity [1] 

1.2.3 Mathematical Model 

The mathematical literature review will explain how the governing equations are shown 

in the next chapter. Using a unique application of a one-dimensional, fully dynamic, 

multiple-network poroelastic (MPET) formulation, the study examined the effects of 

intentionally produced aqueductal stenosis and atresia. [6]. Aqueductal stenosis and 
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atresia refer to the narrowing and complete blockage of the cerebrospinal fluid flow 

pathway in the brain. A high-pressure arterial network (a), a lower-pressure 

arteriole/capillary network (c), an interstitial fluid (ISF)/CSF network (e), and a venous 

network (v) are the components that make up the quadruple MPET system. [17]. 

Eq. (1) of equilibrium is needed to represent elastic deformation in a poroelastic media, 

whereas Eq. (2) of Darcy's law is needed to characterize fluid flow. Mass conservation 

needs to be taken into account as well. [6].  

𝜎𝑖𝑗 = 2𝐺𝜖𝑖𝑗 + 𝜆𝜖𝑘𝑘𝛿𝑖𝑗 − ∑ 𝛼𝐴𝑝𝐴𝛿𝑖𝑗
𝐴=𝑎,𝑒,𝑐,𝑣

(1) 

𝒒𝐴 = −
𝑘𝐴
𝜇𝐴
(∇𝑝𝐴), 𝐴 = 𝑎, 𝑒, 𝑐, 𝑣 (2) 

In the MPET framework, the initial governing equation of motion for a unit volume is 

provided by: 

𝜎𝑖𝑗,𝑗 + [ ∑ (𝑛𝐴(𝜌𝐴 − 𝜌𝑠) + 𝜌𝑠)

𝐴=𝑎,𝑒,𝑐,𝑣

] (𝑏𝑖 − 𝑢̈𝑖) − ∑ 𝜌𝐴(𝑤̇𝑖
𝐴 + 𝑤𝑗

𝐴𝑤𝑖,𝑗
𝐴 ) = 0

𝐴=𝑎,𝑒,𝑐,𝑣

 (3) 

where 𝜎𝑖𝑗,𝑗 is the stress within the solid matrix. The mean displacement of elements 

forming the solid matrix is described by 𝑢𝑖 . 𝑤𝑖  is the ratio of fluid flow to cross 

sectional area and ∑ 𝑛𝑎𝜌𝑎 + (1 − 𝑛)𝜌𝑠
𝐴
𝑎=1  is the total density of the system, 𝜌𝑠  is the 

solid density and ∑ 𝑛𝑎𝐴
𝑎=1  is the total porosity of all the individual fluid networks. 

The equation determining the momentum of each distinct fluid network is the second 

governing equation of motion:  
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𝑝𝑖
𝐴 − 𝑅𝑖

𝐴 − 𝜌𝐴(𝑏𝑖 − 𝑢̈𝑖) −
𝜌𝐴
𝑛𝐴
(𝑤̇𝑖

𝐴 + 𝑤𝑗
𝐴𝑤𝑖,𝑗

𝐴 ) = 0 (4) 

Where 𝑅𝑖
𝐴 is the viscous drag force (Zien-kiewicz et al., 1999) using Darcy's seepage 

rule. The fluid phase's flow conservation is provided by: 

𝑆𝜀
𝐴𝑝̇𝐴 + 𝛼𝐴𝜀𝑖̇𝑖 + 𝑤𝑖,𝑖

𝐴 +
1

𝜌𝐴
𝜌̇𝐴 = ∑ 𝜔𝑖𝑗(𝑝𝑗 − 𝑝𝑖)

⏞        

𝑠̂𝑖𝑗

 

𝐴=𝑎,𝑒,𝑐,𝑣

(5) 

where 𝜀𝑖̇𝑖 is the rate at which the strain inside the solid matrix changes. 𝛼𝐴 represents 

the fluid network's Biot parameter of the fluid network in question. The right-hand side 

possesses either source (𝑠̂𝑖𝑗 > 0) or sink (𝑠̂𝑖𝑗 < 0) densities. 𝒒 represents the fluid flux 

vector. The fluid phase continuity equations from Eq. (5) contain the sum of all flows 

inside a compartment (𝑠̂𝑖𝑗). A hydrostatic pressure gradient drives the transfer, and the 

transfer coefficient 𝜔𝑖𝑗 scales the flow from network 𝑗 to network 𝑖. By deleting 𝑤𝐴 

from Eq. (4) as done by Tully and Ventilos (2011), one can then focus on the primary 

variables 𝑢 and 𝑝. Using Darcy’s seepage law (Zienkiewiz et al., 1999) and Eq. (4), 

one therefore obtains: 

𝑤𝑖
𝐴 = 𝑘𝑖𝑗

𝐴𝑝𝑖
𝐴 − 𝑘𝑖𝑗

𝐴𝜌𝐴(𝑏𝑗 − 𝑢̈𝑗) (6) 

The anisotropic permeability coefficient is defined as 𝑘𝑖𝑗
𝐴 . This value is substituted with 

a single 𝑘𝐴  constant (which here should be supposedly) if isotropy is assumed. 

Substituting Eq. (6) into Eq. (5), one therefore will be: 

𝑆𝜀
𝑎𝑝̇𝑎 + 𝛼𝑎𝜀𝑖𝑖 + [𝑘𝑖𝑗

𝑎𝑝𝑖
𝑎 − 𝑘𝑖𝑗

𝑎𝜌𝑎(𝑏𝑗 − 𝑢̈𝑗)] − ∑ 𝑠̂𝑖𝑗 = 0

𝐴=𝑎,𝑒,𝑐,𝑣

(7) 
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The final form of the system yields by combining Eq. (1) and Eq(3) :  

∇ ∙ 𝝈 − ∑ 𝛼𝐴∇𝑝𝐴 + 𝜌𝑠(𝒃 − 𝒖̈) = 0

𝐴=𝑎,𝑒,𝑐,𝑣

(8) 

𝑆𝜀
𝐴𝑝𝐴̇ + 𝛼𝐴𝜺̇ + ∇ ∙ [𝑘𝐴 ∙ 𝜌𝐴(𝒃 − 𝒖̈) − 𝑘𝐴 ∙ ∇𝜌𝐴] − ∑ 𝑠̂𝑖𝑗

𝐴=𝑎,𝑒,𝑐,𝑣

= 0 (9) 

 

Figure 1-5 The four compartment MPET model. There is directional transfer between (a) and 

(c), (c) and (v), (c) and (e), and lastly (e) and (v), but the CSF and the artery network are cut 

off to flow. [13]. 

Another study also applied the MPET model. By reviewing this paper, the MPET model 

employs the displacement of parenchymal tissue (u) and the pore pressures of the four 

fluid compartments (pa, pc, pe, pv) as the primary variables in the governing equations. 

[13]. As shown in Figure 1 5. The governing equations of Figure 1 5 are listed below(Eq. 

(10) – Eq. (14)) 

𝐺∇2𝒖 + (𝐺 + 𝜆)∇ε= αa∇pa + αc∇pc + αe∇pe + αv∇pv (10) 

𝑆𝑎
∂pa
∂t
+ αa

∂ε

∂t
=
𝐤a
μa
∇2pa + ŝ𝑐→𝑎  (11) 

𝑆𝑐
∂pc
∂t
+ αc

∂ε

∂t
=
𝐤c
μ𝑐
∇2pc + (ŝ𝑐→𝑎 + ŝ𝑒→𝑐 + ŝ𝑣→𝑐) (12) 

𝑆𝑒
∂pe
∂t
+ αe

∂ε

∂t
=
𝐤e
μ𝑒
∇2pe + (ŝ𝑐→𝑒 + ŝ𝑣→𝑒) (13) 
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𝑆𝑣
∂pv
∂t
+ αv

∂ε

∂t
=
𝐤v
μ𝑣
∇2pv + (ŝ𝑐→𝑣 + ŝ𝑒→𝑣) (14) 

The equilibrium equation representing the momentum balance in the porous media is 

Eq. (10); the Lame's constant is λ, and the shear modulus is G.; 𝜀 the dilatational strain; 

𝛼𝑖 the Biot-Willis coefficient for each fluid compartment that satisfies 𝜙 ≤ 𝛼𝑎 + 𝛼𝑐 +

𝛼𝑒 + 𝛼𝑣 ≤ 1 , where 𝜙  is the total porosity. The mass balance is described by the 

continuity Eq.(11) through Eq.(14). 𝑆𝑖   stands for specific storage, which is a 

measurement of each fluid compartment's released fluid volume per unit pressure in the 

control volume under constant strain; For an isotropic media, ki = kiI where I is the unit 

tensor and ki is a constant, represents the permeability tensor for each of the four fluid 

compartments. The viscosity of each fluid compartment is represented by μi.. The 𝑠̂ 

terms in equation (11)-(14) define the spatially varying source (𝑠̂𝑖𝑗 > 0) or sink (𝑠̂𝑖𝑗 <

0) densities (rat of fluid transfer between networks). 

1.3 Aims and Scope 

The aim is to construct a mathematical model and fit it to specific data. The 

mathematical model is similar to those discussed in previous literature reviews. 

Transcranial tissue Doppler (TCTD) ultrasound is used to measure the displacement of 

brain tissue caused by cardiac pulsations to obtain data, along with corresponding blood 

pressure measurements. By acquiring synchronised ultrasound signals of displacement 
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and blood pressure and applying Fourier transformation, the transfer function can be 

derived by dividing the displacement signal by the blood pressure signal. This transfer 

function is the data needed to fit with the mathematical model. 

After the literature review, here are going to elaborate the scope. This study will then 

introduce the materials and methods used in Chapter 2, including how to build Model 

1 and Model 2 using different governing equations, how to obtain and process the 

experimental data and the methods for fitting the models to the data. Chapter 3 will 

analyse the results from Chapter 2 and make relevant comparisons. Finally, this study 

will summarise the findings and discuss potential directions for future research. 
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2 Materials and Methods 

This chapter will introduce two mathematical models used here, which include how the 

governing equation arises and how to analyse the governing equations. Also, it will 

show the procedure of acquiring data from healthy volunteers, including the machine 

used and the way to process data. Finally, after trying to fit the model to the data, the 

results are shown in the next chapter. 

2.1 Mathematical Model 

2.1.1 Governing Equations: 

This study hypothesizes that brain tissue can be represented as a coupled solid-fluid 

system with a single fluid compartment. This assumption leads to the established 

governing equations for such a system:  

𝐺∇2𝑤 +
𝐺

1 − 2𝑣
∇(∇.w) − 𝛼∇. 𝑝𝐼 = 𝜌𝑠

𝜕2𝑤

𝜕𝑡2
(15) 

∇. (
𝜅

𝜇
∇𝑝 ) =

𝜕

𝜕𝑡
(𝛼∇.w +

𝑝

𝑄
) (16) 

In this model, termed Model 1, the solid component is characterised as a linear, isotropic 

material with density ρ, shear modulus G, and Poisson’s ratio ν. The fluid component 

adheres to Darcy’s law, described by permeability κ and viscosity μ, with the Biot-
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Willis coefficient represented by α  and specific storage denoted as Q . The fluid 

experiences pressure p , while the solid undergoes displacement w . These 

formulations have been supported by several studies, including those by Tully et al. 

(2009), Chou et al. (2016). Vardakis et al. (2016), and Guo et al. (2018). It is important 

to recognise that this biomechanical model of brain tissue simplifies the actual 

complexity of a nonlinear, viscoelastic, and highly anisotropic material, which will be 

revisited in the next paragraph. Additionally, using a single fluid compartment is a 

simplification for the ease of this analysis.  

As this study assumes brain tissue to be a linear, isotropic material and considering a 

single fluid compartment, the computational process is facilitated. The model does not 

fully capture the complex, nonlinear, viscoelastic, and anisotropic nature of actual brain 

tissue. However, such assumptions might lead to underestimating or overestimating the 

proper mechanical response, affecting the accuracy of results. 

To streamline the equations, which is essential here due to the experimental data being 

available only as a function of radial distance, the initial assumption is spherical 

symmetry. This means that spatial variations are limited to the radial direction. 

Consequently, by setting w = w𝐫̂̂ , the equations yield: 

𝐺

𝑟2
𝜕

𝜕𝑟
(𝑟2

𝜕𝑤

𝜕𝑟
) +

𝐺

1 − 2𝑣

𝜕

𝜕𝑟
(
1

𝑟2
𝜕(𝑟2𝑤)

𝜕𝑟
) −

𝛼

𝑟2
= 𝜌𝑠

𝜕2𝑤

𝜕𝑡2
 (17) 
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𝑘

𝜇

1

𝑟2
𝜕

𝜕𝑟
(𝑟2

𝜕𝑝

𝜕𝑟
) = 𝛼

1

𝑟2
𝜕(𝑟2𝑤)

𝜕𝑟
+
1

𝑄

𝜕𝑝

𝜕𝑡
(18) 

given the linearity of the problem, the solution is separated into two parts: a steady-

state component and an oscillating component: 

𝑤(𝑟, 𝑡) = 𝑤0(𝑟) + 𝑤̂1(𝑟)𝑒
𝑖𝜔𝑡 (19) 

𝑝(𝑟, 𝑡) = 𝑝0(𝑟) + 𝑝̂1(𝑟)𝑒
𝑖𝜔𝑡 (20) 

given the periodic nature of the cardiac pulsations, the model can be simplified 

significantly by assuming a sinusoidal form for the oscillating components. 

Additionally, the linearity of the model allows us to analyze different harmonics of the 

pulsations independently. 

The attention is centered on the oscillating component, since it is the one measured in 

situ. Inserting the trial solution into the two governing equations produces: 

𝑑2𝑤̂1
𝑑𝑟2

+
2

𝑟

𝑑𝑤̂1
𝑑𝑟

+ 𝑤̂1 [
𝜌𝑠𝜔

2

𝐸

(1 + 𝜈)(1 − 2𝜈)

(1 − 𝜈)
−

1

(1 − 𝜈)

1

𝑟2
]

=
𝛼(1 + 𝜈)(1 − 2𝜈)

𝐸(1 − 𝜈)

1

𝑟2
𝑑(𝑟2𝑝̂1)

𝑑𝑟
(21)

 

𝑑2𝑝̂1
𝑑𝑟2

+
2

𝑟

𝑑𝑝̂1
𝑑𝑟

− 𝑝̂1 (
𝑖𝜔𝜇

𝜅𝑄
) = (

𝛼𝑖𝜔𝜇

𝜅
)
1

𝑟2
𝑑(𝑟2𝑤̂1)

𝑑𝑟
(22) 

where shear modulus has been replaced by Young’ s modulus using the relationship: 

𝐺 =
𝐸

2(1 + 𝜈)
(23) 

Note that the governing equations are second order in both pressure and displacement. 

Hence, four boundary conditions are required. 
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2.1.2 Nondimensionalization 

While this model is considerably simplified, it still incorporates a significant number 

of parameters (eight), which presents a challenge in terms of fitting from the available 

experimental data. Therefore, to delve deeper into the model’s behaviour, all variables 

are non-dimensionalized by using characteristic values for radius, displacement, and 

pressure, represented as 𝑟′ =
𝑟

𝑅𝑐
 , w′ =

𝑤̂1

𝑤𝑐
, 𝑎𝑛𝑑 𝑝′ =

𝑝1

𝑝𝑐
. 

𝑑2w′

𝑑𝑟′2
+
2

𝑟′
𝑑w′

𝑑𝑟′
+w′ [𝜋1

(1 + 𝜈)(1 − 2𝜈)

(1 − 𝜈)
−

1

(1 − 𝜈)

1

𝑟′2
]

= 𝜋4
(1 + 𝜈)(1 − 2𝜈)

(1 − 𝜈)

1

𝑟𝑟′2
𝑑(𝑟′

2
𝑝′)

𝑑𝑟′
(24)

 

𝑑2𝑝′

𝑑𝑟′2
+
2

𝑟′
𝑑𝑝′

𝑑𝑟′
− 𝑝′(𝑖𝜋2) = 𝑖𝜋3

1

𝑟′2
𝑑(𝑟′

2
w′)

𝑑𝑟′
(25) 

The resulting equations are thus governed by just four non-dimensional groups: 

𝜋1 = 
𝜌𝑠𝜔

2𝑅𝑐
2

𝐸
(26) 

𝜋2 =
𝜔𝜇𝑅𝑐

2

𝜅𝑄
(27) 

𝜋3 =
𝛼𝜔𝜇𝑅𝑐𝑤𝑐
𝜅𝑝𝑐

(28) 

𝑝𝑖4 =
𝛼𝑅𝑐𝑝𝑐
𝐸𝑤𝑐

(29) 

Together with the Poisson’s ratio (thus reducing the number of degrees of freedom to 

five). It is worth noting that two of these are of order 1, and two are much larger, which 

indicates that a boundary layer is probably found in the solution, or these values might 

be considerably reduced when aligned with experimental data. A boundary layer is a 
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region where dependent variables would change rapidly. When having two second-

order terms among the non-dimensional groups suggests that the behaviour of the 

system changes significantly over a small region. When aligning the model with 

experimental data, the second-order terms might be reduced because the experimental 

data might show behaviour different from the model prediction. 

Four boundary conditions are necessary for this model. At the brain surface, zero 

displacements (i.e., the skull remains static) and unit non-dimensional amplitude 

pressure (i.e., this study references everything to this pulsation, which is defined as the 

characteristic pressure) at the brain surface. At the inner surface, where 𝒓′ = 𝜹,, there 

is assumed zero fluid flux (i.e., no blood flows into the ventricles), and a mixed 

boundary condition for displacement (i.e., the stiffness of the ventricles is finite, so that 

neither Neumann nor Dirichlet boundary conditions are appropriate). The final 

boundary condition is expressed as follows: 

𝑑𝑤′

𝑑𝑟′
+ 𝑘𝑤′ = 0 (30) 

It’s worth noting that incorporating compliance effects is straightforward by making 

the non-dimensional stiffness 𝒌 complex (although do not adopt this here to keep the 

parameter set as small as possible). Since the parameter 𝒌 is difficult to estimate, an 

initial setting value of 1 implies an approximately linear variation. There are, thus, in 

total, seven non-dimensional parameters that govern the behaviour of the brain tissue 
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in response to cardiac pulsations. The governing equations can be numerically solved 

easily using a boundary value solver with the given boundary conditions.  

2.1.3 Cartesian form 

It first examined the governing equations in the Cartesian form to move forward, 

assuming a variation with depth (x) and neglecting the effects of curvature. This 

simplification allows us to present the equations more straightforwardly and facilitates 

the comparison of results across different coordinate systems. Applying the same 

method as previously, the governing equations yield: 

𝑑2𝑤′

𝑑𝑥′2
+ 𝜋1

(1 + 𝜈)(1 − 2𝜈)

(1 − 𝜈)
𝑤′ = 𝜋4

(1 + 𝜈)(1 − 2𝜈)

(1 − 𝜈)

𝑑𝑝′

𝑑𝑥′
(31) 

𝑑2𝑤′

𝑑𝑥′
− 𝑝′(𝑖𝜋2) = 𝑖𝜋3

𝑑𝑤′

𝑑𝑥′
(32) 

Note that the governing equations can convert this into a fourth-order governing 

equation for either displacement or pressure. Additionally, the effects of Poisson’s ratio 

can be incorporated into the corresponding non-dimensional groups, thus reducing the 

number of free parameters. For illustrative purposes, numerical solutions for both 

coordinate systems are plotted in Figure 2-1 using the values given in Table 2-1. 

Although the overall trend for displacement magnitudes is consistent, some variations 

are observed (pressure curves exhibit similar behaviours), with significant differences 

in phase variations. The presence of a boundary layer is also clearly evident in the 



doi:10.6342/NTU202403075

24 

 

solution. Here are going to revisit these behaviors later after a more detailed 

examination of the experimental data; however, given the notable differences, this study 

will adopt the spherical solution here to enhance accuracy. 

 

Figure 2-1 Magnitude and phase of displacement and pressure as function of depth, using 

parameter values in Table 2-1 Typical values of model parameters and their types and sources 

2.1.4 Revised Model 

Here introduce this revised model for reasons which will be explained in the next 

Chapter. For these reasons, Model 1 is re-evaluated in detail to separate blood pressure 

into its arterial and venous compartments. By distinguishing between these two 

pressures. As a result, the equations were restructured into the following three 
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formulations, which are more physiologically reasonable: 

𝑑2𝑤

𝑑𝑟2
+
2

𝑟

𝑑𝑤

𝑑𝑟
+ (

𝜌𝑠𝜔
2

𝐸

(1 + 𝜈)(1 − 2𝜈)

1 − 𝜈
−

1

(1 − 𝜈)

1

𝑟
)𝑤

=
(1 − 2𝜈)(1 + 𝜈)

(1 − 𝜈)𝐸
(𝛼𝑎

𝑑𝑝𝑎
𝑑𝑟

+
2𝛼𝑎
𝑟
𝑝𝑎 + 𝛼𝑣

𝑑𝑝𝑣
𝑑𝑟

+
2𝛼𝑣
𝑟
𝑝𝑣) (33)

 

(𝑖𝜔)𝛼𝑎
𝑑𝑤1
𝑑𝑟

+
1

𝑄𝑎
(𝑖𝜔)𝑝𝑎1 −

𝜅𝑎
𝜇𝑎
(
2

𝑟

𝑑𝑝𝑎1
𝑑𝑟

+
𝑑2𝑝𝑎1
𝑑𝑟2

) =  −𝛽(𝑝𝑎1 − 𝑝𝑣1) (34) 

(𝑖𝜔)𝛼𝑣
𝑑𝑤1
𝑑𝑟

+
1

𝑄𝑎
(𝑖𝜔)𝑝𝑣1 −

𝜅𝑣
𝜇𝑣
(
2

𝑟

𝑑𝑝𝑣1
𝑑𝑟

+
𝑑2𝑝𝑣1
𝑑𝑟2

) =  𝛽(𝑝𝑎1 − 𝑝𝑣1) (35)  

Here, β is the coupling coefficient. The coupling coefficient β indicates the strength of 

interaction or coupling between two different physical quantities. Here, it describes the 

fluid transfer between different vascular compartments. Specifically, β represents the 

rate of fluid flow from one vascular compartment to another due to pressure differences. 

Therefore, there should be βav representing a couple coefficient between the artery and 

venous. The way to estimate βav is shown in Eq. (36) from the study [7]: 

𝛽𝑎𝑣 = 
𝑓𝐺̅

𝜙̅𝑎(𝑝̅𝑎 − 𝑝̅𝑣)
(36)  

Note that the equations can be simplified.αa is equal to αv, and Qa is equal to Qv exactly. 

The venous 
𝜅

𝜇
  is nearly three times of the arterial 

𝜅

𝜇
  according to a recent study by 

Jozsa et al. (2020). So the magnitude of them will be set as 3
𝜅

𝜇
, 
𝜅

𝜇
, respectively. The 

nondimensionalization is the same as before: 𝑟′ =
𝑟

𝑅𝑐
 , 𝑤′ =

𝑤̂1

𝑤𝑐
, 𝑎𝑛𝑑 𝑝𝑎′ =

𝑝𝑎1

𝑝𝑐
, 𝑝𝑣′ =

𝑝𝑣1

𝑝𝑐
. Then, the equations yield: 
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𝑑2𝑤′

𝑑𝑟′2
+
2

r′
𝑑𝑤′

𝑑𝑟′
+ (

𝜌𝑠𝜔
2𝑅𝑐

2

𝐸

(1 + 𝜈)(1 − 2𝜈)

1 − 𝜈
−

1

1 − 𝜈

1

𝑟′2
)𝑤′

=
(1 + 𝜈)(1 − 2𝜈)𝑅𝑐𝑝𝑐𝛼

(1 − 𝜈)𝐸𝑤𝑐
 (
𝑑𝑝𝑎

′

𝑑𝑟′
+
2

𝑟′
𝑝𝑎 +

𝑑𝑝𝑣
′

𝑑𝑟′
+
2

𝑟′
𝑝𝑣′) (37)

 

−
𝑑2𝑝𝑎

′

𝑑𝑟′2
−
2

𝑟′
𝑑𝑝𝑎′

𝑑𝑟′
+ 𝑖

𝜔𝜇𝑅𝑐
2

𝜅𝑄
𝑝𝑎1
′ + 𝑖

𝛼𝜔𝜇𝑅𝑐𝑤𝑐
𝜅𝑝𝑐

1

𝑟′2
𝑑𝑤1

′

𝑑𝑟′
= −

𝜇𝑅𝑐
2𝛽

𝜅
(𝑝𝑎1 − 𝑝𝑣1) (38) 

−
𝑑2𝑝𝑣

′

𝑑𝑟′2
−
2

𝑟′
𝑑𝑝𝑣′

𝑑𝑟′
+ 𝑖

𝜔𝜇𝑅𝑐
2

𝜅𝑄
𝑝𝑣1
′ + 𝑖

𝛼𝜔𝜇𝑅𝑐𝑤𝑐
𝜅𝑝𝑐

1

𝑟′2
𝑑𝑤1

′

𝑑𝑟′
= 
𝜇𝑅𝑐

2𝛽

3𝜅
(𝑝𝑎1 − 𝑝𝑣1) (39) 

Here are going to use non-dimensional groups like before. The three equations would 

become: 

𝑑2𝑤′

𝑑𝑟′2
+
2

𝑟′
𝑑𝑤′

𝑑𝑟′
+ (𝜋1

(1 + 𝜈)(1 − 2𝜈)

1 − 𝜈
−

1

1 − 𝜈

1

𝑟′2
)𝑤′

= 𝜋4
(1 + 𝜈)(1 − 2𝜈)

(1 − 𝜈)
 (
𝑑𝑝𝑎

′

𝑑𝑟′
+
2

𝑟′
𝑝𝑎 +

𝑑𝑝𝑣
′

𝑑𝑟′
+
2

𝑟′
𝑝𝑣′) (40)

 

−
𝑑2𝑝𝑎

′

𝑑𝑟′2
−
2

𝑟′
𝑑𝑝𝑎′

𝑑𝑟′
+ 𝑖𝜋2𝑝𝑎1

′ + 𝑖𝜋3
1

𝑟′2
𝑑𝑤1

′

𝑑𝑟′
= −𝜋5(𝑝𝑎1 − 𝑝𝑣1) (41) 

−
𝑑2𝑝𝑣

′

𝑑𝑟′2
−
2

𝑟′
𝑑𝑝𝑣′

𝑑𝑟′
+ 𝑖𝜋2𝑝𝑣1

′ + 𝑖𝜋3
1

𝑟′2
𝑑𝑤1

′

𝑑𝑟′
= 
𝜋1
3
(𝑝𝑎1 − 𝑝𝑣1) (42) 

The resulting equations are thus governed by such five non-dimensional groups: 

𝜋1 =
𝜌𝑠𝜔

2𝑅𝑐
2

𝐸
(43) 

𝜋2 =
𝜔𝜇𝑅𝑐

2

𝜅𝑄
(44) 

𝜋3 =
𝛼𝜔𝜇𝑅𝑐𝑤𝑐
𝜅𝑝𝑐

(45) 

𝜋4 =
𝛼𝑅𝑐𝑝𝑐
𝐸𝑤𝑐

(46) 

𝜋5 = −
𝜇𝑅𝑐

2𝛽

𝜅
(47) 

Those are thus the five non-dimensional parameters this study are going to fit in this 

new model. 
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2.2 Data Acquisition 

This section will introduce the methods of getting data and processing data. Turner P et 

al. (2020) collected brain tissue pulsation data from 33 distinct depths within the brains 

of volunteers using an adapted Spencer Technologies (Seattle, WA, USA) transcranial 

Doppler (TCD) system with a 2-MHz transducer. TCTD data were gathered for each 

participant from four different probe positions: through the left and right temporal 

windows, and from the forehead above the center of each eyebrow. Each ultrasound 

recording was 8s long, providing tissue motion data from 33 overlapping 3-mm sample 

depths spaced 2mm apart, depths ranging from 22-86 mm. 

2.2.1 Acquisition Methods 

Turner P et al. (2020) use Transcranial tissue Doppler (TCTD) ultrasound to estimate 

BTPs in 20 volunteers, both at rest and during a lower-leg-raise manoeuvre designed to 

elevate blood pressure (BP) temporarily. This facilitated the time-series analysis of 

continuous data under a repeated measures study design, in which subjects served as 

their own controls. Synchronous physiological measurements for BP, forehead BTP, 

and end-tidal CO2 (EtCO2) were acquired using Brain Tissue Velocimetry (Brain TV), 

a TCTD data acquisition prototype (Nihon Kohden, Japan), equipped with a 2 MHz 

single-element TCD probe (Spencer Technologies, MA, USA). BTP measurements 
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were recorded from the right side of the forehead of each participant using a custom-

made elasticated headband to hold the probe.[2] 

Synchronous BP readings are acquired by using a finger-cuff Finometer system 

(Finapres Medical System B.V., Enschede,NL) attached to the left wrist of each 

participant, with a cuff of the appropriate size positioned around the left middle finger. 

As CO2 is known to impact vasodilation and cerebral autoregulatory responses, 

capnography measurements of EtCO2 were obtained using an OLG-3800 CO2 monitor 

(Nihon Kohden, Japan), connected to a nasal cannula. A 3-lead electrocardiogram (ECG) 

(Lifescope monitor, Nihon Kohden, Japan) recorded the timing of ECG wave R-R 

intervals to allow adjustment for HR and beat-to-beat analysis of time-series data. All 

physiological monitoring data were recorded using a sampling rate of 500 Hz.[2] 

Participants sat upright with their eyes closed. In each acquisition period, a 1-minute 

baseline recording at rest, a 1-minute recording of three repeated lower-leg-raise 

manoeuvres, and 1 minute for recovery were included. Figure 2-2 summarises the 

physiological measurement set up for the lower-leg-raise experiment. The elasticated 

headband was set on the head with a 2MHz TCD ultrasound probe for detecting brain 

tissue pulsation(BTP). Synchronous physiological measurements for BP, forehead BTP, 

and end-tidal CO2(EtCO2) were acquired using Brain Tissue Velocimetry (Brain TV). 
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Figure 2-2 Equipment used in data acquisition [2] 

2.2.2 Data Processing 

After the data have been recorded, some processing is needed to get into a form that 

can be directly compared with the model predictions. Processing initially segments the 

time series of blood pressure and tissue displacement into individual cardiac cycles by 

identifying peaks in the arterial blood pressure trace. It is performed by using the 

function called “findpeaks” in MATLAB with the condition of appropriate minimum 

peak height and minimum peak distance.  

 



doi:10.6342/NTU202403075

30 

 

 

Figure 2-3 A typical subject of arterial blood pressure (ABP) time series, peaks marked in red 

circles, each interval between circles representing a cardiac cycle. 

As shown in Figure 2-4, the data is divided into individual cardiac cycles and 

interpolated linearly onto a regular cardiac cycle. For clarity, only a single cardiac cycle 

is shown in Figure 2-4. 

 

Figure 2-4 Typical subjects of pressure and displacement in single regular cardiac cycle 

Since everything is referenced to the blood pulsations, the displacement and the 

pressure are directly comparable. Thus, the transfer function between arterial blood 

pressure and displacement is calculated by using the complex Fourier transform at the 



doi:10.6342/NTU202403075

31 

 

cardiac frequency and then averaging the complex coefficients over all the cardiac 

cycles. The final transfer function is obtained by dividing the complex coefficient of 

displacement by the complex coefficient of pressure. Thus, there is a time-averaged 

transfer function at each depth.  

Data from 20 participants were utilised to generate individual gain and phase 

trajectories. Although participant responses varied significantly, a consistent trend was 

observed: amplitudes were minimal at the surface, increased with depth, and diminished 

beyond a specific depth. This trend corresponds to the latter section of the proposed 

model, as depicted in Figure 2-5 Extraction of the average gains and phase. 

 

Figure 2-5 Extraction of the average gains and phase 
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2.3 Model Fitting 

This chapter will introduce the software and coding language used and the parameters 

of the mathematical model. 

2.3.1 Methods and Tools 

After processing the data, here are prepared to initiate the model fitting procedure. For 

this purpose, the function that will be utilised is the ‘fminsearch’ function in MATLAB, 

which is used for unconstrained optimisation. It finds the minimum of a scalar function 

of several variables starting at an initial estimate by using the Nelder-Mead simplex 

algorithm. The algorithm iteratively adjusts a set of points in the function’s domain. It 

doesn’t require gradient information and works by reflecting, expanding, and 

contracting these points to locate the minimum. This function is particularly useful for 

nonlinear optimisation problems where the objective function, which in this case is the 

governing equation, is not easily differentiable. The chosen loss function for 

optimisation is the sum of absolute deviations, which will assist in identifying the 

optimal curve fit. This method can be combined with fminsearch to get the best curve. 

2.3.2 Parameters Setting 

Here are going to consider the probable magnitudes of the four non-dimensional groups 
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before examining numerical solutions. The model parameters’ typical values are given 

in Table 1 below. The first three can be measured directly from the time series data, and 

the typical values can be obtained from the table. The next set of four values is used 

widely in the literature and is likely to show little variation from these values (the 

poroelastic constant 𝛂 is set to be equal to one under the assumption that the material 

is fully saturated); However, the last five are much less well-known. Thus, it will be 

started by adopting the values used by previous authors. These are thus the five 

parameter values that are aimed to investigate here. 

Parameter Value Type Sources 

𝜔 O(2π) Measured Experimental 

data (see 

below) 

pc O(1000)Pa Measured 

wc O(100)μm Measured 

α 1 Well-known Standard 

values widely 

used in 

literature 

δ 0.2 Well-known 

ρs 977kg/m3 Well-known 

Rc 0.1m Well-known 

κ/μ 3.75×10-

8m3s/kg 

Not Well-known Values taken 

from 

Vardakis et 

al., Guo et 

al., and Chou 

et al. 

ν 0.35 Not well-known 

E 583N/m2 Not well-known 

κ 1 Not well-known 

Q 3.33×103kg/m.s Not well-known 
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Table 2-1 Typical values of model parameters and their types and sources 

Then, the four non-dimensional values can be calculated using the typical values above. 

The initial results are shown in Table 2.  

Parameter Typical value 

π1 0.677 

π2 503 

π3 1.67 

π4 1.72×103 

Table 2-2 Baseline values of non-dimensional groups 

For the second model, the values of new parameters are also referenced from [7]. 

Parameter Value and units Source 

𝑓𝐺̅  50ml/100g Kety and Schmidt [8] 

𝜙̅𝑎 0.0102 Tio et al. [9]; Ito et al.[10] 

𝜙̅𝑐 0.0034  

𝜙̅𝑣 0.0204  

𝑝̅𝑎 80mmHg Vovenko [12]; Lipowsky[11] 

𝑝̅𝑐 35mmHg  

𝑝̅𝑣 20mmHg  

Table 2-3 Baseline values of model parameters and sources and/or calculations for blood flow 

[7]. 

2.4 Conclusion 

This study introduces two mathematical models to investigate the mechanical 

properties of brain tissue, particularly how it responds to pulsations caused by cardiac 
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pulsations. This chapter elaborated on the development of the two models, data 

acquisition methods from healthy volunteers, and the subsequent data processing steps. 

TCTD is used to measure brain tissue displacement and corresponding blood pressure. 

Fourier transformation is used to analyse the data, fitting the models to this data using 

MATLAB’s ‘fminsearch’ function. 
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3 Results and Discussions 

This chapter will present the results obtained from the various methods described in the 

previous chapter and provide detailed analyses and visual representations for each 

method, allowing for a clear comparison of their performance under different 

conditions. After presenting the results, this chapter will summarise the key findings, 

highlighting the strengths and weaknesses of each method. Finally, it will be discussed 

which method performs best overall, considering both quantitative results and 

qualitative factors like ease of implementation and computational requirements. This 

will help identify the most suitable method and suggest further research or improvement 

areas. 

3.1 Fitting Results 

This section contains four parts showing what difficulties are met and how fitting is 

performed. First, the difficulty showed that some of the estimated values are negative, 

whereas the mechanical properties cannot be negative. After solving this problem, the 

next problem is that fitting encountered unreasonable values that differ from the actual 

situation. Then, something unreasonable is found in the fitting process. However, 
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reasonable values are attained in the last part. 

3.1.1 Original Model Fitting 

The model fitting of Model 1 was initiated here, and the results from the initial fitting 

are illustrated in the figure below, with all the initial values coming from Table 2-1. The 

curve appears smooth. However, upon examining the parameters π1 to π4, there are 

negative values show up, as shown in Table 3-1, which is physically implausible as 

these dimensionless parameters cannot be negative. 

 

Figure 3-1 Original model fitting 

π1 35.35 

π2 -2.982×106 

π3 1.112×106. 

π4 2.62 

Table 3-1 Original model fitting of π1 to π4  
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3.1.2 Logarithmic Transformation of The Parameters 

The next step is to apply a logarithmic transformation to the parameters. Specifically, 

before feeding the parameters π1 through π4 into the function, they are converted to their 

logarithmic equivalents, log(π1) to log(π4). Within the function itself, π1 to π4 are 

replaced with exp(π1) to exp(π4). The main advantage of this approach is that the model 

effectively fits the logarithm of πs, which ensures that even if a negative value is fitted 

during the optimisation process, taking the exponential of this negative value will result 

in a positive outcome. This maintains the inherent positivity of the parameters while 

offering the added benefit of greater numerical stability.  

By utilising this method, all parameters now yield positive values, indicating progress 

towards the correct solution. The next step involves calculating the following key 

parameters: ν (Poisson's ratio), E (Young's modulus), Q (specific storage), and κ/μ 

(permeability over viscosity). However, solving all four parameters simultaneously 

proved challenging. Notably, Poisson’s ratio is known to generally fall within a range 

of 0.35 to 0.5, a narrow interval with values that are very close but not identical, while 

other parameters are not well known and have a very large range. Besides, other 

parameters do not have a specific value or clearly defined range in existing literature. 

Consequently, the decision is made to iterate through this range with Poisson’s ratio 
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values between 0.35 and 0.49, adjusting each increment by 0.01. This iterative approach 

simplifies the task by reducing the number of unknowns, leaving only three parameters 

to be solved for each value of Poisson’s ratio. 

Moreover, this strategy provides a more controlled and systematic approach to 

parameter estimation. By carefully constraining its range, the stability and reliability of 

the remaining parameter estimates are enhanced. This methodology thus enables a more 

refined analysis of Young’s modulus, specific storage, and permeability over viscosity, 

allowing for accurate modelling and improved insights into the underlying mechanics. 

Now, let’s recall the equations of π1 to π4： 

𝜋1 =
𝜌𝑠𝜔

2𝑅𝑐
2

𝐸
(26) 

𝜋2 =
𝜔𝜇𝑅𝑐

2

𝜅𝑄
(27) 

𝜋3 =
𝛼𝜔𝜇𝑅𝑐𝑤𝑐
𝜅𝑝𝑐

(28) 

𝜋4 =
𝛼𝑅𝑐𝑝𝑐
𝐸𝑤𝑐

(29) 

Because of knowing all the parameter values except E, κ/μ and Q, they can be calculated 

by using the equations for π1, π3 and π2, respectively.  

𝐸 =
𝜌𝑠𝜔

2𝑅𝑐
2

𝜋1
(48) 

𝜅

𝜇
=
𝛼𝜔𝑅𝑐𝑤𝑐
𝜋3𝑝𝑐

(49) 

𝑄 =
𝜔𝜇𝑅𝑐

2

𝜅𝜋2
(50) 
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The results corresponding to each individual value of ν are shown in Table 3-2.  

v E(Pa) Q(kg/m.s) 
𝜅

𝜇
(m3s/kg) Loss(μm/mmHg) 

0.35 9.26 Inf 4.01×10-10 5.430 

0.36 8.80 1.05×10115 4.00×10-10 5.420 

0.38 7.79 Inf 3.92×10-10 5.402 

0.39 7.27 2.85×10113 3.90×10-10 5.393 

0.41 6.15 Inf 3.83×10-10 5.372 

0.42 5.56 1.87×1013 3.79×10-10 5.362 

0.44 4.32 Inf 3.71×10-10 5.340 

0.45 3.67 6.06×1017 3.67×10-10 5.327 

0.47 2.28 Inf 3.58×10-10 5.303 

0.48 1.54 5.46×10268 3.53×10-10 5.290 

0.49 0.79 1.53×10217 3.48×10-10 5.277 

Table 3-2 Results of parameters for corresponding Poisson's ratio, where Inf represents a 

value out of the range of the numerical solver.  

Analysis encountered significant issues. One is that infinite results in specific storage 

(Q), which might mean the zero appears in the denominator during the fitting process. 

Another is when evaluating the model at specific values of Poisson’s ratio, specifically 

0.37, 0.40, 0.43, and 0.46. The Jacobian matrix, which is critical for understanding the 

system's sensitivity and ensuring the stability of numerical solutions, became singular 

at these values. The reason might be that the parameters form a redundant set or 

inappropriate initial values were used. A singular Jacobian matrix implies that the 
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determinant of the matrix is zero, indicating that the system of equations is either 

overdetermined or underdetermined at these points. This situation leads to 

computational difficulties, such as the inability to accurately invert the matrix, which is 

necessary for the optimisation and fitting processes. 

The singularity of the Jacobian matrix suggests that small changes in the input 

parameters could result in disproportionately large changes in the output, making the 

system highly unstable and unreliable. Therefore, to ensure the robustness and 

reliability of the model, the decision is made to skip the results for these specific values 

of Poisson’s ratio. By doing so, the computational pitfalls associated with singular 

matrices were avoided, and the integrity of the fitting process was maintained. 

Skipping these values, while necessary, also highlights the limitations of the current 

approach and suggests that further refinement of the model or alternative numerical 

techniques may be required to handle such cases more effectively in future studies. The 

precise reasons for this are not yet fully understood. The resulting fitting curves are 

shown in Figure 3-2. In order to observe the trend of the 3 parameters, they are plotted 

with respect to the Poisson’s ratio, as shown in Figure 3-3. 
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Figure 3-2 Fitted curves correspond to different Poisson's ratio, skipping singular Jacobian 

matrix values. 
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Figure 3-3 Young's modulus variation with different Poisson's ratio 

 

Figure 3-4 Permeability over viscosity variation with different Poisson's ratio 
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3.1.3 Fitting with the New Model 

By applying the new model and comparing it to Model 1, there is no longer the singular 

Jacobian matrix. Each Poisson’s ratio has results for its corresponding parameters. 

Additionally, it is found that the values are surprisingly stable, which means the 

fluctuation of each parameter is less or around the order of 102. The results of different 

Poisson’s ratios by using fminsearch are shown in Table 3-3:  

𝜈 E (Pa) Q(kg/m.s) 
𝜅

𝜇
(m3s/kg) Loss(μm/mmHg) 

0.35 2.442×105 7.492×105 9.325×10-9 4.721 

0.36 1.326×103 1.052×106 1.892×10-9 4.708 

0.37 2.735×103 1.056×106 2.164×10-9 4.695 

0.38 1.223×103 1.481×104 3.152×10-7 4.680 

0.39 682.8 9.800×105 2.324×10-9 4.666 

0.4 433.1 1.640×106 2.881×10-11 4.652 

0.41 1.961×104 3.810×105 1.163×10-8 4.637 

0.42 739.7 1.268×104 1.833×10-8 4.622 

0.43 727.5 1.373×104 1.712×10-8 4.606 

0.44 628.4 9546 2.383×10-8 4.590 

0.45 1.149×104 2.241×105 2.046×10-8 4.574 

0.46 427.3 11.10 4.417×10-5 4.557 

0.47 1127 4.945×105 1.244×10-8 4.540 

0.48 789.5 3.542×105 1.596×10-8 4.524 
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0.49 2834 2.315×104 2.084×10-7 4.504 

Table 3-3 Fitted results corresponding to different Poisson's ratio 

The corresponding fitting curves are shown in Figure 3-5. The loss function is shown 

in Figure 3-6 . It can be observed that the fitting curves are smooth for all values of 

Poisson’s ratio, which means that the fitting appears to work well. Besides, the values 

are also very reasonable. It was observed that Young’s modulus values are mostly 

around one to two thousand Pa, the specific storage values fall between 105 and 106 

kg/m.s, and the permeability over viscosity values are approximately 10-8 m3s/kg. These 

values are close to the initial estimates provided in the literature, and the loss is less 

than 5 to all magnitudes of Poisson’s ratio. Because of that, the resulting model appears 

to fit the data very well. 
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Figure 3-5 Fitted curves corresponding to different Poisson's ratios 
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Figure 3-6 Loss function of Model 2 

Several sets of results that are not so unreasonable are chosen for further studies. These 

results have been taken back to the model but given different results compared to the 

one in the last time fitting. For example, the fitting results at Poisson’s ratio at 0.49 are 

shown in Table 3-4. The corresponding fitting curve is shown in Figure 3-7. 

𝜈 E (Pa) Q(kg/m.s) 
κ

μ
 (m3s/kg) 

0.49 2834 2.315×104 2.084×10-7 

Table 3-4 fitted results at 0.49 of Poisson’s ratio 
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Figure 3-7 fitting results at 0.49 of Poisson's ratio 

However, when these values are taken back to the model, which means the initiated 

values from Table 2-1 Typical values of model parameters and their types and sources 

become the values in Table 3-4, the outcome is shown in Figure 3-8. It is totally 

different from Figure 3-7, which means there are problems during the fitting process. 

To put it more simply, for example, we solved an equation, but when we substituted the 

solution back into the equation, we found that the original equation did not hold. 
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Figure 3-8 Taking values back to the model 

After checking the fitting process, the problem showed up. Firstly, the non-dimensional 

parameters that are fitted are π1 to π5, and then Young’s modulus, specific storage, and 

permeability over viscosity are calculated by those non-dimensional parameters. Here, 

recalling Eq. (43) to Eq. (47) again, it is easy to find that Young’s modulus E can be 

calculated by Eq. (43), Specific storage can be calculated by Eq (44)., and permeability 

over viscosity can be calculated by Eq (45). The equations after transformation are 

shown in Eq. (48)-Eq. (50). Now three equations are used, but there are still two 

equations left, Eq(46) and Eq. (47). It is easy to find that the E calculated by Eq.(48) 

can’t satisfy Eq. (46) . Thus, it needs to find new ways to solving this problem. 

𝜋1 =
𝜌𝑠𝜔

2𝑅𝑐
2

𝐸
(43) 

𝜋2 =
𝜔𝜇𝑅𝑐

2

𝜅𝑄
(44) 
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𝜋3 =
𝛼𝜔𝜇𝑅𝑐𝑤𝑐
𝜅𝑝𝑐

(45) 

𝜋4 =
𝛼𝑅𝑐𝑝𝑐
𝐸𝑤𝑐

(46) 

𝜋5 = −
𝜇𝑅𝑐

2𝛽

𝜅
(47) 

𝐸 = 
𝜌𝑠𝜔

2𝑅𝑐
2

𝜋1
(48) 

𝜅

𝜇
=
𝛼𝜔𝑅𝑐𝑤𝑐
 𝜋3𝑝𝑐

(49) 

𝑄 =
𝜔𝜇𝑅𝑐

2

𝜅𝜋2
(50) 

3.1.4 Fitting the Original Three Parameters 

One possible way is fitting the original three parameters directly so that there would be 

no problem between the five nondimensional parameters and the original three 

parameters of E, Q, and κ/μ. Thus, it is decided to fit the original three parameters, E, 

𝜅

𝜇
, and Q, in different Poisson’s ratios ranging from 0.35 to 0.5, 0.01 apart. 

The process of coding is quite easy, just changing the five nondimensional parameters 

to the three-dimensional parameters. The fitting results for each different value of 

Poisson’s ratio are shown in Table 3-5, where these three parameters are fitted directly 

to the experimental data. 

𝜈 E(Pa) Q(kg/m.s) 
𝜅

𝜇
(m3s/kg) Loss(μm/mmHg) 

0.35 2246 3.027×104 4.87×10-13 7.584 

0.36 1389 1302 5.58×10-13 7.584 
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0.37 670.2 84.15 3.77×10-13 6.674 

0.38 1377 1278 6.51×10-13 7.585 

0.39 444.5 18.75 3.84×10-12 7.585 

0.4 1508 3693 6.08×10-13 7.585 

0.41 1108 1625 5.96×10-13 7.586 

0.42 695.0 61.07 3.83×10-12 7.553 

0.43 9.730 2.093×106 3.82×10-14 7.584 

0.44 1075 10.73 9.08×10-11 7.516 

0.45 4.460×105 68.63 7.96×10-5 4.574 

0.46 235.6 10.73 8.96×10-12 7.518 

0.47 179.2 10.92 8.65×10-12 7.518 

0.48 226.4 10.78 3.07×10-11 7.519 

0.49 8.949×104 1.409×108 2.06×10-4 4.701 

Table 3-5 fitting parameters to different Poisson’s ratio 

The corresponding curves are shown in Figure 3-9. Since the results look much worse 

than before, the three parameter results will not be shown.  

 



doi:10.6342/NTU202403075

52 

 

 

Figure 3-9 Fitting curves to different Poisson's ratio 

The fitting values of parameters and curves are both unexpected. The values fluctuated 
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widely. Young’s modulus fluctuates from ten to nearly ninety thousand. Specific storage 

and the permeability over viscosity variants are even larger. The varianting range can 

attain the order of 1010. However, since the curves show a relatively good fit at values 

of Poisson’s ratio at 0.45 and 0.49, the decision was made to re-fit the model by using 

the results at these two values of Poisson’s ratio as the starting condition to see if better 

results could be achieved. 

The results using the values obtained at a Poisson’s ratio of 0.45 as initial conditions 

are shown in Table 3-6 

v E(kPa) Q(kg/m.s) 
𝜅

𝜇
(m3s/kg) Loss(μm/mmHg) 

0.35 1240 53.93 9.173×10-5 7.282 

0.36 1173 53.82 9.185×10-5 7.280 

0.37 1104 53.72 9.192×10-5 7.278 

0.38 1033 53.62 9.207×10-5 7.276 

0.39 960.4 53.52 9.202×10-5 4.666 

0.4 885.2 53.42 9.219×10-5 4.652 

0.41 807.8 53.32 9.226×10-5 4.637 

0.42 728.0 53.23 9.237×10-5 4.622 

0.43 645.9 53.13 9.233×10-5 4.606 

0.44 561.4 53.03 9.241×10-5 4.591 

0.45 474.4 52.93 9.250×10-5 4.574 

0.46 384.8 52.83 9.267×10-5 4.557 
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0.47 292.7 52.74 9.266×10-5 4.540 

0.48 197.9 52.64 9.270×10-5 4.523 

0.49 100.4 52.54 9.283×10-5 4.504 

Table 3-6 Fitted parameters to different Poisson’s ratio 

From Table 3-6, it can be seen that all three parameter values are more stable than before, 

Young’s Modulus varying in a relatively small range of the order of 10, and specific 

storage and permeability over viscosity over even smaller ranges, less than an order of 

10. However, Young’s modulus still fluctuates quite widely compared to the other two 

parameters. The corresponding fitting curves are shown in Figure 3-8, fitting curves at 

different values of Poisson’s ratio. 
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Figure 3-10 fitting curves to different Poisson’s ratio 

The curves look much better when compared to Figure 3-9. That means this set of 
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parameters is more suitable for this model with improved initial values. Then, let us see 

the results of Poisson’s at 0.49, as shown in Table 3-7. 

v E(kPa) Q(kg/m.s) 
𝜅

𝜇
(m3s/kg) Loss(μm/mmHg) 

0.35 1240 53.93 9.173×10-5 4.721 

0.36 1173 53.83 9.186×10-5 4.708 

0.37 1104 53.72 9.194×10-5 4.694 

0.38 1033 53.62 9.207×10-5 4.680 

0.39 960.5 53.53 9.203×10-5 4.666 

0.4 885.3 53.43 9.214×10-5 4.652 

0.41 807.8 53.32 9.225×10-5 4.637 

0.42 728.0 53.23 9.237×10-5 4.622 

0.43 645.9 53.13 9.230×10-5 4.606 

0.44 561.4 53.03 9.243×10-5 4.591 

0.45 474.4 52.93 9.215×10-5 4.574 

0.46 384.8 52.833 9.266×10-5 4.557 

0.47 292.7 52.74 9.264×10-5 4.540 

0.48 197.9 52.64 9.277×10-5 4.523 

0.49 100.4 52.54 9.284×10-5 4.504 

Table 3-7 Fitting results corresponding to different Poisson's ratio 
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Figure 3-11 Fitting curves corresponding to different Poisson’s ratio 

The shape and trend of the curves again demonstrate a consistent alignment with the 
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observed values. It also found that all the values of the parameter fluctuate minimally, 

as shown in Table 3-7. The corresponding figure is shown in Figure 3-11. 

In summary, the results of Poisson’s ratio at 0.45 and 0.49 show little fluctuation, and 

the fitting curves perform well, indicating that these are good initial values to use more 

generally. As shown in Table 3-8. However, it is worth noting that among these two sets 

of values, the only obvious difference is Young’s modulus. Young’s modulus at 0.45 of 

Poisson’s ratio is nearly five times the value at 0.49, while the other two are almost the 

same.  

ν E (kPa) Q(kg/m.s) 
𝜅

𝜇
(m3s/kg) Loss(μm/mmHg) 

0.45 474.4 52.93 9.250×10-5 4.574 

0.49 100.4 52.54 9.283×10-5 4.504 

Table 3-8 Results of parameters 

3.2 Comparison and Discussion 

This section will compare the fitting results of different models and discuss the 

significance and limitations of these results. It used two different models to fit the 

experimental data. The first included two equations, while the second model divided 

blood pressure into arterial and venous compartments, including three equations. Both 

models are mathematically compact and showed good fitting performance. The results 

are summarised in Table 3.8, including previous results at Poisson’s ratio equals 0.49, 
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since 0.49 of Poisson’s ratio is more likely to be a reference value. 

 E(Pa) Q(kg/m.s) κ/μ(m3s/kg) Loss(μm/mmHg) 

Model 1 0.7900 1.53×10217 3.48×10-10 5.277 

Model 2 2834 2.315×104 2.084×10-7 4.504 

Model 2 (original 3 

parameters) 
8.949×104 1.409×108 2.060×10-4 4.701 

Model 2 (results at 

ν equals 0.49) 
1.004 ×105 52.54 9.281×10-5 4.504 

Table 3-9 Comparison of each model at ν= 0.49 

However, despite these results, there are still some issues in practical application. The 

first is fitted parameters. Model 1 initially fitted the parameters at a Poisson’s ratio of 

0.35 and obtained unrealistic parameter values. Then, 15 different Poisson’s ratio values 

ranging from 0.35 to 0.49 were tried, but reasonable parameter values were still not 

found. In the second model, which distinguishes between arterial and venous blood 

pressures, which is closer to reality, the results are surprisingly stable. All the values of 

the parameters fall within a relatively small interval. However, when taking the result 

back to the model and trying to find a more accurate value of the parameters, the 

outcome curve did not correspond to the one during fitting. Then, the problem was 

found to be caused by the five non-dimensional parameters. Thus, it was decided to 

directly fit the original three parameters, skipping to fit the non-dimensional parameters. 

By doing this, the results can be taken back to the model and get the same curve as the 
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fitting results.  

According to the study done by Eneko Axpe et al. (2020). Young’s modulus of brain 

tissue is typically shown to be in the range of a few hundred Pa to kPa [18]. Apparently, 

it differs significantly from the fitted results. The Poisson’s ratio of brain tissue typically 

fell within the range of 0.35-0.5 [20]-[27]. According to a study of mathematical fitting 

done by Hinrichsen J et al. (2023), occasionally, the values of 0.45 and 0.49 were also 

used for fitting the Poisson’s ratio [19]. To some extent, this is evidence to corroborate 

the idea that this study is going in the right direction. Although Young’s modulus of 

fitting is not expected, the choice of Poisson’s ratio still shows that this fitting has the 

potential to continue. However, there currently is no standard value for evaluating the 

fitting results as to whether they are right or not.  

These issues indicate that there may be some unresolved problems between the 

mathematical models and the experimental data. Specifically, the model assumes that 

brain tissue is a linear, isotropic material, but in reality, brain tissue is nonlinear, 

viscoelastic, and highly anisotropic. Together with the subarachnoid space and the 

variable permeability of the brain, all may lead to a mismatch between the model and 

actual conditions. The sample size was limited to 20 healthy individuals, which may 

not represent the broader population. This small sample size might lead to biased results 

that do not reflect the general population's diversity. 
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To improve the model's accuracy, more complex tissue models, such as viscoelastic or 

anisotropic properties, need to be considered, as well as the subarachnoid space and 

variable permeability, in particular between grey and white matter. Increasing the 

sample size and including individuals from different age groups and with various 

medical conditions will also help improve the model’s applicability. While this study 

has made some preliminary achievements, further optimisation and validation are 

needed to estimate brain tissue's mechanical properties accurately. It must be considered 

more complex biomechanical properties and broader data sources to achieve improved 

results. 

3.3 Conclusions 

This section explores numerous methods to refine the model and improve the accuracy 

of calculations. This included adjusting various parameters, experimenting with 

different fitting algorithms, and applying several mathematical transformations. 

Despite rigorous testing and careful implementation, it faced consistent difficulties in 

obtaining reliable and consistent parameter values. While this study has not yet 

achieved the desired results, the efforts have highlighted the complexity of accurately 

modelling the mechanical properties of brain tissue. The challenges encountered 

underscore the need for further refining models and developing more advanced 
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techniques. It remains optimistic that future studies can overcome these challenges and 

achieve the goals with continued research and the incorporation of more realistic tissue 

models and diverse datasets. 
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4 Conclusions and Future Work 

This study aimed to estimate the values of the mechanical properties of brain tissue 

from BTP recordings. Although estimating these robustly proved more challenging than 

expected, it is important to recognise that this is only a preliminary investigation. The 

results of this study lay the groundwork and exclude incorrect ways for future studies. 

With continued effort and exploration, more comprehensive and conclusive findings 

are anticipated in subsequent studies. 

4.1 Summary of Findings 

This study aimed to estimate the mechanical properties of brain tissue using a coupled 

solid-fluid mathematical model based on brain tissue pulsations (BTP). The key 

findings can be summarised as follows. The model performed well in fitting brain tissue 

responses to cardiac pulsations, demonstrating a high correlation with experimental 

data, as shown in Figure 3-2, Figure 3-5, Figure 3-10 and Figure 3-11. Despite 

significant variability among subjects, the model shows good performance at Poisson’s 

ratio, which equals 0.45 and 0.49, which means that the properties of the brain appear 

to be close to incompressible. These two values are the same as those used by 
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Hinrichsen J et al. (2023) in a previous study for fitting. 

The initial values of Young’s modulus estimated at 0.45 and 0.49 Poisson’s ratio are 

474.4kPa and 100.4kPa, respectively, which are very different from the values done by 

Axpe E et al. (2020). The specific storage and permeability over viscosity still do not 

have a standard value yet. Although what this study estimated may not be the correct 

answer, it does show a consistent behaviour in the last fitting of Model 2. However, due 

to large individual differences, the specific values of the mechanical properties remain 

uncertain. These results suggest that the proposed model has the potential for non-

invasive assessment of brain mechanical properties, but that further optimisation and 

validation are needed. 

4.2 Limitations 

Although this study has considerable results on the mechanical properties of brain tissue, 

it is obvious that this study has limitations, including methodological limitations, data 

limitations, and scope limitations. Methodological limitations include that the model 

assumes linear, isotropic properties of brain tissue, which simplifies the tissue's 

complex, nonlinear, and anisotropic nature. Besides, the subarachnoid space and the 

variable permeability of the brain would also affect the fitting process. These should be 

considered in future work so that this study can attain an outcome that may be closer to 
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reality.  

Data limitations include the fact that the sample size was limited to 20 healthy 

individuals, which is enough to give a good start but not enough to go further. Obviously, 

these cannot represent the broader population. Scope limitations: The studies focused 

on healthy individuals and the applicability of the results to pathological conditions 

remains uncertain. More data, including both healthy individuals and patients, will need 

to be collected and applied for future research. Acknowledging these limitations is 

essential for accurately interpreting the results and guiding future research. 

4.3 Future Work 

Future work will focus on the problems that haven’t been solved yet, extending current 

research and exploring new directions to enhance the model’s robustness and 

applicability. One of the unresolved problems is the applicability and accuracy of the 

model. Although the multi-compartment nature of the blood flow is considered, it still 

has the potential to be more accurate, such as considering the variable permeability of 

the brain tissue. In addition, the model's performance can be assessed by applying it to 

different physiological and pathological states, such as brain trauma or 

neurodegenerative diseases. These will help validate and refine the model to ensure it 

accurately represents different states of brain health.  
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For extending the research, this study can be expanded to include a larger and more 

diverse sample size. This should cover different age groups, genders, and individuals 

with varying medical histories. By doing this, the model may be able to reflect a wider 

range of human variability, improving its generalizability and accuracy. New research 

directions will include complex tissue models and will develop and integrate more 

tissue models that account for viscoelastic and anisotropic properties. These models 

should also consider the impact of the subarachnoid space and variable permeability on 

brain mechanics. Such enhancements will provide a more comprehensive 

understanding of brain tissue behaviour under different conditions.   

Besides, future work also includes incorporating patient data to obtain and analyse data 

from patients with various neurological conditions to compare with the data from 

healthy individuals. Understanding the differences between healthy and pathological 

brain tissue properties will help clinical applications and model diagnostic capabilities. 

By solving these problems, this study will have a more comprehensive understanding 

of the properties of brain tissue, contributing more to clinical and physiology. 
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