請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94319完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王暉 | zh_TW |
| dc.contributor.advisor | Huei Wang | en |
| dc.contributor.author | 鄭又華 | zh_TW |
| dc.contributor.author | Yu-Hua Cheng | en |
| dc.date.accessioned | 2024-08-15T16:47:50Z | - |
| dc.date.available | 2024-08-16 | - |
| dc.date.copyright | 2024-08-15 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-06 | - |
| dc.identifier.citation | [1] N. DOCOMO, "5G Evolution and 6G (version 3.0)," White Paper February 2021.
[2] T. S. Rappaport et al., "Wireless Communications and Applications Above 100 GHz: Opportunities and Challenges for 6G and Beyond," IEEE Access, vol. 7, pp. 78729-78757, 2019, doi: 10.1109/access.2019.2921522. [3] K. B. Letaief, W. Chen, Y. Shi, J. Zhang, and Y.-J. A. Zhang, "The Roadmap to 6G: AI Empowered Wireless Networks," IEEE Communications Magazine, vol. 57, no. 8, pp. 84-90, 2019, doi: 10.1109/mcom.2019.1900271. [4] Z. Zhang et al., "6G Wireless Networks: Vision, Requirements, Architecture, and Key Technologies," IEEE Vehicular Technology Magazine, vol. 14, no. 3, pp. 28-41, 2019, doi: 10.1109/mvt.2019.2921208. [5] W. Saad, M. Bennis, and M. Chen, "A Vision of 6G Wireless Systems: Applications, Trends, Technologies, and Open Research Problems," IEEE Network, vol. 34, no. 3, pp. 134-142, 2020, doi: 10.1109/mnet.001.1900287. [6] Y. Xing and T. S. Rappaport, "Terahertz Wireless Communications: Co-Sharing for Terrestrial and Satellite Systems Above 100 GHz," IEEE Communications Letters, vol. 25, no. 10, pp. 3156-3160, 2021, doi: 10.1109/lcomm.2021.3088270. [7] Y. Xing and T. S. Rappaport, "Propagation measurement system and approach at 140 GHz-moving to 6G and above 100 GHz," in 2018 IEEE global communications Conference (GLOBECOM), 2018: IEEE, pp. 1-6. [8] Y. Yang, A. Shutler, and D. Grischkowsky, "Measurement of the transmission of the atmosphere from 0.2 to 2 THz," Opt Express, vol. 19, no. 9, pp. 8830-8, Apr 25 2011, doi: 10.1364/OE.19.008830. [9] D. Henke, J. Di Francesco, L. Knee, and S. Claude, "Coherent Multibeam Arrays Using a Cold Aperture Stop," IEEE Transactions on Terahertz Science and Technology, vol. 6, no. 4, pp. 601-610, 2016, doi: 10.1109/tthz.2016.2576358. [10] J. Carpenter, D. Iono, L. Testi, N. Whyborn, A. Wootten, and N. Evans, "Subject: The ALMA Development Roadmap," 2018. [11] T. Liithi, D. Rabanus, U. Graf, C. Granet, and A. Murkt, "A new multibeam receiver for KOS1VIA with scalable fully reflective focal plane array optics," 2005. [12] P. E. Dewdney, P. J. Hall, R. T. Schilizzi, and T. J. L. W. Lazio, "The Square Kilometre Array," Proceedings of the IEEE, vol. 97, no. 8, pp. 1482-1496, 2009, doi: 10.1109/jproc.2009.2021005. [13] A. Wootten and A. R. Thompson, "The Atacama Large Millimeter/Submillimeter Array," Proceedings of the IEEE, vol. 97, no. 8, pp. 1463-1471, 2009, doi: 10.1109/jproc.2009.2020572. [14] M. Tarenghi, "The atacama large millimeter/submillimeter array: overview & status," Science with the Atacama Large Millimeter Array: A New Era for Astrophysics, pp. 1-7, 2008. [15] L. Wu, A. Li, and H. C. Luong, "A 4-path 42.8-to-49.5 GHz LO generation with automatic phase tuning for 60 GHz phased-array receivers," IEEE journal of solid-state circuits, vol. 48, no. 10, pp. 2309-2322, 2013. [16] B. Sun et al., "A 6-Bit E-band Vector-Sum Phase Shifter With Transformer-Based Hybrid in 65nm CMOS," in 2023 IEEE MTT-S International Wireless Symposium (IWS), 2023: IEEE, pp. 1-3. [17] H. Li, J. Chen, D. Hou, and W. Hong, "A W-band 6-bit phase shifter with 7 dB gain and 1.35° RMS phase error in 130 nm SiGe BiCMOS," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 10, pp. 1839-1843, 2019. [18] B. Wang, H. Gao, M. Matters-Kammerer, and P. Baltus, "A 60 GHz 360° phase shifter with 2.7° phase resolution and 1.4° RMS phase error in a 40-nm CMOS technology," in 2018 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2018: IEEE, pp. 144-147. [19] C. Zhou, H. Qian, and Z. Yu, "A lumped Elements varactor-loaded Transmission-Line phase shifter at 60GHz," in 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology, 2010: IEEE, pp. 656-658. [20] W.-T. Li, Y.-C. Chiang, J.-H. Tsai, H.-Y. Yang, J.-H. Cheng, and T.-W. Huang, "60-GHz 5-bit phase shifter with integrated VGA phase-error compensation," IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 3, pp. 1224-1235, 2013. [21] S. Y. Kim and G. M. Rebeiz, "A low-power BiCMOS 4-element phased array receiver for 76–84 GHz radars and communication systems," IEEE Journal of Solid-State Circuits, vol. 47, no. 2, pp. 359-367, 2011. [22] A. R. Vilenskiy, Y. Zhang, V. Vassilev, V. Chernikov, and M. V. Ivashina, "Wideband Reflection-Type pin Diode Phase Shifters in GaAs MMIC Technology at W-Band," in 2023 18th European Microwave Integrated Circuits Conference (EuMIC), 2023: IEEE, pp. 209-212. [23] M. Tabesh, A. Arbabian, and A. Niknejad, "60GHz low-loss compact phase shifters using a transformer-based hybrid in 65nm CMOS," in 2011 IEEE custom integrated circuits conference (CICC), 2011: IEEE, pp. 1-4. [24] Y.-T. Chang and H.-C. Lu, "A low power broadband K-band low noise amplifier," in 2014 Asia-Pacific Microwave Conference, 2014: IEEE, pp. 223-225. [25] Y.-T. Chang and H.-C. Lu, "A V-Band Low-Power Digital Variable-Gain Low-Noise Amplifier Using Current-Reused Technique With Stable Matching and Maintained OP1dB," IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 11, pp. 4404-4417, 2019, doi: 10.1109/tmtt.2019.2938752. [26] H.-T. Chou, Z.-L. Ke, and H.-K. Chiou, "A low power compact size forward body-biased K-band CMOS low noise amplifier," in Asia-Pacific Microwave Conference 2011, 2011: IEEE, pp. 494-497. [27] Y.-H. Lin, S.-C. Hsiao, J.-H. Tsai, and T.-W. Huang, "A 0.7-mW V-Band Transformer-Based Positive- Feedback Receiver Front-End in a 65-nm CMOS," IEEE Microwave and Wireless Components Letters, vol. 30, no. 6, pp. 613-616, 2020, doi: 10.1109/lmwc.2020.2988350. [28] Y. Chen, "Design of microwave ultra-low-power low noise amplifier and millimeter-wave doherty power amplifier," Master Thesis, National Taiwan University, 2019. [29] Y. Chen, Y.-H. Lin, C.-C. Chiong, and H. Wang, "A 0.38-V, sub-mW 5-GHz low noise amplifier with 43.6% bandwidth for next generation radio astronomical receivers in 90-nm CMOS," in 2018 IEEE/MTT-S International Microwave Symposium-IMS, 2018: IEEE, pp. 1491-1494. [30] V. Bhagavatula and J. C. Rudell, "Analysis and Design of a Transformer-Feedback-Based Wideband Receiver," IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 3, pp. 1347-1358, 2013, doi: 10.1109/tmtt.2013.2244904. [31] P.-Y. Chang, S.-H. Su, S. S. H. Hsu, W.-H. Cho, and J.-D. Jin, "An Ultra-Low-Power Transformer-Feedback 60 GHz Low-Noise Amplifier in 90 nm CMOS," IEEE Microwave and Wireless Components Letters, vol. 22, no. 4, pp. 197-199, 2012, doi: 10.1109/lmwc.2012.2187883. [32] X. Meng and R. Zhou, "A K-Band Ultra-Compact Gm-Boost LNA Using One Multi-Coupled Transformer in 65-nm CMOS," IEEE Microwave and Wireless Components Letters, vol. 32, no. 8, pp. 976-978, 2022, doi: 10.1109/lmwc.2022.3155669. [33] S. Kong, H.-D. Lee, S. Jang, J. Park, K.-S. Kim, and K.-C. Lee, "A 28-GHz CMOS LNA with stability-enhanced G m-boosting technique using transformers," in 2019 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2019: IEEE, pp. 7-10. [34] M. Keshavarz Hedayati, A. Abdipour, R. Sarraf Shirazi, C. Cetintepe, and R. B. Staszewski, "A 33-GHz LNA for 5G Wireless Systems in 28-nm Bulk CMOS," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 65, no. 10, pp. 1460-1464, 2018, doi: 10.1109/tcsii.2018.2859187. [35] M. Huang, J.-H. Tsai, and T.-W. Huang, "A 917-µW Q-band transformer-feedback current-reused LNA using 90-nm CMOS technology," in 2012 IEEE/MTT-S International Microwave Symposium Digest, 2012: IEEE, pp. 1-3. [36] H. Chen, L. Wu, W. Che, Q. Xue, and H. Zhu, "A wideband LNA based on current-reused CS-CS topology and gm-boosting technique for 5G application," in 2019 IEEE Asia-Pacific Microwave Conference (APMC), 2019: IEEE, pp. 1158-1160. [37] K.-C. Chang, B.-Z. Lu, Y. Wang, C.-C. Chiong, and H. Wang, "A 17.7-42.9-GHz Low Power Low Noise Amplifier with 83% Fractional Bandwidth for Radio Astronomical Receivers in 65-nm CMOS," presented at the 2020 IEEE Asia-Pacific Microwave Conference (APMC), 2020. [38] K.-C. Chang, Y. Wang, and H. Wang, "Design of a 1.8-mW K-Band Low Noise Amplifier with 19.3-dB Gain and 3.3-dB Noise Figure in 90-nm CMOS," presented at the 2021 IEEE Asia-Pacific Microwave Conference (APMC), 2021. [39] K. Moez and M. Elmasry, "A 10dB 44GHz loss-compensated CMOS distributed amplifier," in 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, 2007: IEEE, pp. 548-621. [40] L.-H. Lu, T.-Y. Chen, and Y.-J. Lin, "A 32-GHz non-uniform distributed amplifier in 0.18-μm CMOS," IEEE microwave and wireless components letters, vol. 15, no. 11, pp. 745-747, 2005. [41] A. Jahanian and P. Heydari, "A CMOS distributed amplifier with distributed active input balun using GBW and linearity enhancing techniques," IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 5, pp. 1331-1341, 2012. [42] J.-C. Kao, P. Chen, P.-C. Huang, and H. Wang, "A Novel Distributed Amplifier With High Gain, Low Noise, and High Output Power in 0.18-um CMOS Technology," IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 4, pp. 1533-1542, 2013. [43] K. Eriksson, I. Darwazeh, and H. Zirath, "InP DHBT distributed amplifiers with up to 235-GHz bandwidth," IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 4, pp. 1334-1341, 2015. [44] T. Jyo et al., "A 241-GHz-bandwidth distributed amplifier with 10-dBm P1dB in 0.25-μm InP DHBT technology," in 2019 IEEE MTT-S International Microwave Symposium (IMS), 2019: IEEE, pp. 1430-1433. [45] A. Arbabian and A. M. Niknejad, "A three-stage cascaded distributed amplifier with GBW exceeding 1.5 THz," in 2012 IEEE Radio Frequency Integrated Circuits Symposium, 2012: IEEE, pp. 211-214. [46] C.-M. Hsu, Y. Wang, and H. Wang, "A 14-91 GHz Distributed Amplifier in 65-nm CMOS," in 2020 IEEE Asia-Pacific Microwave Conference (APMC), 2020: IEEE, pp. 1009-1011. [47] O. El-Aassar and G. M. Rebeiz, "A DC-to-108-GHz CMOS SOI distributed power amplifier and modulator driver leveraging multi-drive complementary stacked cells," IEEE Journal of Solid-State Circuits, vol. 54, no. 12, pp. 3437-3451, 2019. [48] Y.-H. Cheng, C.-C. Chiong, Y.-S. Wang, and H. Wang, "A 1.4-mW Ka-band Low Noise Amplifier Using Self-Resonant Transformer Matching in 90-nm CMOS Process," in 2023 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 2023: IEEE, pp. 14-16. [49] "Absolute phase." https://en.wikipedia.org/wiki/Absolute_phase (accessed. [50] 暐. 曾, "應用於微波頻段之低雜訊放大器及相移器之研究 = Investigation of low noise amplifier and phase shifter for microwave applications / 曾暐哲(Wei-Je Tseng)[撰]," Investigation of low noise amplifier and phase shifter for microwave applications., 碩士論文--國立臺灣大學電信工程學研究所, 2008. [51] "MICRWAVES101." https://www.microwaves101.com/ (accessed. [52] D. M. Pozar, Microwave Engineering. John wiley & sons, 2021. [53] 朋. 彭, "應用於微波與毫米波之相移器的研製 = Design of phase shifter for microwave and millimeter-wave applications / 彭朋瑞(Pen-Jui Peng)撰," Design of phase shifter for microwave and millimeter-wave applications., 碩士論文--國立臺灣大學電信工程學研究所, 2010. [54] F. Ellinger, H. Jackel, and W. Bachtold, "Varactor-loaded transmission-line phase shifter at C-band using lumped elements," IEEE Transactions on Microwave Theory and Techniques, vol. 51, no. 4, pp. 1135-1140, 2003. [55] T. Shimura, T. Ohshima, and Y. Ohashi, "Low power consumption vector-sum phase shifters using zero-pi amplifiers for millimeter-wave beamforming," in 2017 47th European Microwave Conference (EuMC), 2017: IEEE, pp. 42-45. [56] A. Asoodeh and M. Atarodi, "A Full 360-degree Vector-Sum Phase Shifter With Very Low RMS Phase Error Over a Wide Bandwidth," IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 6, pp. 1626-1634, 2012. [57] F. Liu, J. Xu, J.-Y. Pu, J.-H. Su, and L. Zhu, "A Hybrid Architecture 360-degree Phase Shifter With Continuously Tunable Phase Shift and Low In-Band Phase Error," IEEE Transactions on Microwave Theory and Techniques, 2024. [58] F. Ellinger, R. Vogt, and W. Bachtold, "Compact reflective-type phase-shifter MMIC for C-band using a lumped-element coupler," IEEE Transactions on Microwave Theory and Techniques, vol. 49, no. 5, pp. 913-917, 2001. [59] D.-W. Kang, H. D. Lee, C.-H. Kim, and S. Hong, "Ku-band MMIC phase shifter using a parallel resonator with 0.18-um CMOS technology," IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 1, pp. 294-301, 2006. [60] P.-J. Peng, "Design of Phase Shifter for Microwave and Millimeter-wave Applications," Graduate Institute of Communication Engineering, National Taiwan University, 2010. [Online]. Available: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/47227 [61] M. Wang, F. Ullah, X. Wang, Y. Xiao, and Y. Liu, "A 25-31 GHz 6-bit switch-type phase shifter in 0.13 um SOI CMOS process for 5G mmWave phased array communications," in 2018 14th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), 2018: IEEE, pp. 1-3. [62] M.-C. Yeh, Z.-M. Tsai, R.-C. Liu, K.-Y. Lin, Y.-T. Chang, and H. Wang, "Design and analysis for a miniature CMOS SPDT switch using body-floating technique to improve power performance," IEEE transactions on Microwave Theory and Techniques, vol. 54, no. 1, pp. 31-39, 2006. [63] 崇. 吳, "應用於相位陣列系統中之線性化功率放大器和相移器 = Linearized power amplifier and phase shifter for phase array system applications / 吳崇漢(Chung-Han Wu)[撰]," Linearized power amplifier and phase shifter for phase array system applications., 碩士論文--國立臺灣大學電信工程學研究所, 2010. [64] "Kepler focal plane assembly." https://www.nasa.gov/image-article/kepler-focal-plane-assembly/ (accessed NOV 19, 2008). [65] B. Razavi and R. Behzad, RF microelectronics. 2012. [66] B.-Z. Lu, Y. Wang, Y.-C. Wu, C.-C. Chiong, and H. Wang, "A submilliwatt K-band low-noise amplifier for next generation radio astronomical receivers in 65-nm CMOS process," IEEE Microwave and Wireless Components Letters, vol. 30, no. 7, pp. 669-672, 2020. [67] M.-H. Li, Y. Wang, and H. Wang, "A 50–67-GHz ultralow-power LNA using double-transformer-coupling technique and self-resonant matching in 90-nm CMOS," IEEE Microwave and Wireless Components Letters, vol. 32, no. 1, pp. 68-71, 2021. [68] Y.-T. Chou, C.-C. Chiong, and H. Wang, "A Q-band LNA with 55.7% bandwidth for radio astronomy applications in 0.15-μm GaAs pHEMT process," in 2016 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 2016: IEEE, pp. 1-3. [69] N. Deferm, "CMOS Front Ends for Millimeter Wave Wireless Communication Systems (RF-CMOS geïntegreerde schakelingen voor millimetergolf draadloze communicatie)," 2014. [70] M. K. Hedayati, A. Abdipour, R. S. Shirazi, C. Cetintepe, and R. B. Staszewski, "A 33-GHz LNA for 5G wireless systems in 28-nm bulk CMOS," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 65, no. 10, pp. 1460-1464, 2018. [71] K.-C. Chang, B.-Z. Lu, Y. Wang, C.-C. Chiong, and H. Wang, "A 17.7-42.9-GHz low power low noise amplifier with 83% fractional bandwidth for radio astronomical receivers in 65-nm CMOS," in 2020 IEEE Asia-Pacific Microwave Conference (APMC), 2020: IEEE, pp. 507-509. [72] R.-C. Liu, T.-P. Wang, L.-H. Lu, H. Wang, S.-H. Wang, and C.-P. Chao, "An 80GHz travelling-wave amplifier in a 90nm CMOS technology," in ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005., 2005: IEEE, pp. 154-590. [73] N. D. Makwana, S. Sinha, J. Dhar, and C. V. Rao, "1–18 GHz Ultra-broadband High Gain Distributed MMIC Amplifier," in 2022 IEEE Microwaves, Antennas, and Propagation Conference (MAPCON), 2022: IEEE, pp. 254-258. [74] "Transmission Line Model." https://www.microwaves101.com/encyclopedias/transmission-line-model (accessed. [75] M.-D. Tsai, K.-L. Deng, H. Wang, C.-H. Chen, C.-S. Chang, and J. G. Chern, "A miniature 25-GHz 9-dB CMOS cascaded single-stage distributed amplifier," IEEE Microwave and Wireless Components Letters, vol. 14, no. 12, pp. 554-556, 2004. [76] T.-Y. Huang, Y.-H. Lin, J.-H. Cheng, J.-C. Kao, T.-W. Huang, and H. Wang, "A high-gain low-noise distributed amplifier with low DC power in 0.18-µm CMOS for vital sign detection radar," in 2015 IEEE MTT-S International Microwave Symposium, 2015: IEEE, pp. 1-3. [77] M.-D. Tsai, H. Wang, J.-F. Kuan, and C.-S. Chang, "A 70GHz cascaded multi-stage distributed amplifier in 90nm CMOS technology," in ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005., 2005: IEEE, pp. 402-606. [78] A. Arbabian and A. M. Niknejad, "A tapered cascaded multi-stage distributed amplifier with 370GHz GBW in 90nm CMOS," in 2008 IEEE Radio Frequency Integrated Circuits Symposium, 2008: IEEE, pp. 57-60. [79] A. Worapishet, I. Roopkom, and W. Surakampontorn, "Theory and bandwidth enhancement of cascaded double-stage distributed amplifiers," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 57, no. 4, pp. 759-772, 2009. [80] G. Park, M. Kim, and S. Jeon, "Mm-wave CMOS Matrix Distributed Amplifier for Ultra-Wideband Applications," in 2022 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), 2022: IEEE, pp. 200-203. [81] M. Harifi-Mood, S. A. Avval, A. Bijari, and N. Kandalaft, "A low-power tapered matrix distributed amplifier for ultra-wide-band applications," in 2020 11th IEEE Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON), 2020: IEEE, pp. 0815-0820. [82] J.-C. Chien, T.-Y. Chen, and L.-H. Lu, "A 9.5-dB 50-GHz Matrix Distributed Amplifier in 0.18-/spl mu/m CMOS," in 2006 Symposium on VLSI Circuits, 2006. Digest of Technical Papers., 2006: IEEE, pp. 146-147. [83] C.-W. Wu, T.-Y. Huang, Y.-H. Hsiao, Y.-C. Wu, and H. Wang, "A compact and low DC power distributed amplifier with cascaded gain stages using signal-reused technique in 0.18-pm CMOS," in 2017 12th European Microwave Integrated Circuits Conference (EuMIC), 2017: IEEE, pp. 175-178. [84] C. Jun-Chau and L. Liang-Hung, "40-Gb/s high-gain distributed amplifiers with cascaded gain stages in 0.18$ mu $ m CMOS," in IEEE International Solid-State Circuits Conference Digest of Technical Papers, 2007. [85] S.-H. Chen et al., "A monolithic DC-70-GHz broadband distributed amplifier using 90-nm CMOS process," in 2013 European Microwave Conference, 2013: IEEE, pp. 1511-1514. [86] T.-Y. Chiu, Y. Wang, and H. Wang, "A 3.7–43.7-GHz low-power consumption variable gain distributed amplifier in 90-nm CMOS," IEEE Microwave and Wireless Components Letters, vol. 31, no. 2, pp. 169-172, 2020. [87] J. Kim, "A wideband triple-stacked CMOS distributed power amplifier using double inductive peaking," IEEE Microwave and Wireless Components Letters, vol. 29, no. 12, pp. 787-790, 2019. [88] A. Kopa and A. B. Apsel, "Alternative m-derived termination for distributed amplifiers," in 2009 IEEE MTT-S International Microwave Symposium Digest, 2009: IEEE, pp. 921-924. [89] Y.-C. Liu, S.-H. Weng, and H.-Y. Chang, "Bandwidth enhancement of cascode distributed amplifiers using inductive peaking technique and modified m-derived network," in Asia-Pacific Microwave Conference 2011, 2011: IEEE, pp. 13-16. [90] D. Stracke, D. Kissinger, and T. Zwick, "Variable Gain Distributed Amplifier with Capacitive Division," in 2018 48th European Microwave Conference (EuMC), 2018: IEEE, pp. 1249-1252. [91] B. Razavi, Design of analog CMOS integrated circuits. New York : McGraw-Hill, 2001. [92] L. Gao and G. M. Rebeiz, "A 22–44-GHz phased-array receive beamformer in 45-nm CMOS SOI for 5G applications with 3–3.6-dB NF," IEEE Transactions on Microwave Theory and Techniques, vol. 68, no. 11, pp. 4765-4774, 2020. [93] T. Wu, C. Zhao, H. Liu, Y. Wu, Y. Yu, and K. Kang, "A 20~ 43 GHz VGA with 21.5 dB gain tuning range and low phase variation for 5G communications in 65-nm CMOS," in 2019 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 2019: IEEE, pp. 71-74. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94319 | - |
| dc.description.abstract | 本論文包含三個部分。第一部分是應用於相位陣列收發系統的E頻段四位元具有可調功能之開關式相移器設計與量測結果,使用65奈米金氧半場效電晶體製程。第二部分是應用於天文接收機之Ka頻段極低功耗低雜訊放大器設計與量測結果,使用90奈米金氧半場效電晶體製程。第三部分為應用於天文接收機的超寬頻及低功耗分散式放大器之設計與結果,使用90奈米金氧半場效電晶體製程。
首先是預計應用於300 GHz相位陣列收發系統之相移器,此相移器使用兩種開關式相移架構來實現22.5°、45°、90°與180°,並透過加上一反射式相移架構來達到28°之相位調整。量測結果顯示本論文提出的相移器在63-81 GHz展示了小於3°的方均根(RMS)相位誤差與小於2.5 dB的方均根(RMS)增益誤差。平均插入損耗在全頻段約為-21 dB。輸入反射損耗與輸出反射損耗分別小於-7 dB與-15 dB。此外晶片包含pad總面積為0.49平方毫米,不包含pad的總面積為0.28平方毫米。 第二部分提出應用在天文接收機之Ka頻段極低功耗低雜訊放大器,此電路在輸入端使用了閘源極變壓器回授技術來同時達到阻抗和雜訊匹配,自諧振變壓器匹配技術也被採用於此電路的級間匹配。量測結果顯示本論文提出的低雜訊放大器在35 GHz下有19.1 dB的小訊號增益與3.6 GHz的3 dB頻寬,且在有限的1.4 mW功耗下在37.7 GHz有4.2 dB的雜訊指數,而晶片總面積為0.48平方毫米。 最後一部分提出應用在天文接收機之超寬頻及低功耗分散式放大器,此分散式放大放大器(CDA)串接,並以疊接放大器(cascode amplifier)當作其增益元件,而使用主動終端可變電阻(AVTR)技術可以在不會增加直流功耗與占用晶片面積的情況下達到有效調整增益平坦度。量測結果顯示本論文提出的分散式放大器達到21.8 dB的小訊號增益與30 GHz的3-dB頻寬,並在3-dB頻寬內最低雜訊指數為2.9 dB,而晶片總面積為0.77平方毫米。 | zh_TW |
| dc.description.abstract | This thesis consist of three main parts. The first chpter presents the design and measurement results of an E-band 4-bits switched-type phase shifter with phase adjustment for phased-array transceiver systems, fabricated in a 65-nm CMOS process. The second chapter describes the design and measurement results of an ultra-low power Ka-band low noise amplifier (LNA) for astronomical receivers, fabricated in a 90-nm CMOS process. The last chapter discusses the design and measurement of a wideband and low-power distributed amplifier for astronomical receivers, fabricated in a 90-nm CMOS process.
The first part focuses on a phase shifter designed for potential network in a 300 GHz phased-array transceiver system. To generate phase shift of 22.5°, 45°, 90°,and 180°, the proposed phase shifter utilizes of two switched-type phase shifter architectures. Additionally, a reflection-type phase shifter topology is incorporated to achieve a phase adjustment of 28°. The measurement results show that the proposed phase shifter exhibits root mean square (RMS) phase error of less than 3° and RMS gain error of less than 2.5 dB at 63 to 81 GHz. The average insertion loss are measured to be around -21 dB at 63 to 81 GHz. The measured input return loss is better than -7 dB at 63 to 81 GHz, and the measured output return loss is better than -15 dB at 63 to 81 GHz. Furthermore, the total area with pads is 0.49 mm2 (0.735 mm 0.665mm), and the core area of the proposed phase shifter is 0.28 mm2 (0.605 mm 0.465mm). The second part presents an ultra-low power Ka-band low noise amplifier (LNA) designed for astronomical receivers. In order to accomplish noise and impedance matching simultaneously, the circuit uses the gate-source transformer feedback technique at the input matching. The self-resonant transformer matching technique is also utilized for inter-stage matching between second and third stage. The measurement results demonstrate that the proposed low noise amplifier achieves a small signal gain of 19.1 dB at 35 GHz with 3-dB bandwidth of 3.6 GHz. Moreover, the LNA presents a noise figure of 4.2 dB at 37.7 GHz with an ultra-low power consumption of 1.4 mW. The total chip area is 0.48 mm2. The last part presents introduces a wideband and low-power distributed amplifier designed for circuit in astronomical receiver. The distributed amplifier architecture combines cascaded single-stage distributed amplifier (CSSDA) with a conventional distributed amplifier (CDA) in cascaded, utilizing cascade amplifier as its gain unit. The gain flatness can be efficiently adjusted using the active variable termination resistor (AVTR) approach without affecting dc power consumption or chip area occupancy. The measurement results show that the proposed distributed amplifier achieves a small signal gain of 21.8 dB with 3-dB bandwidth of 30 GHz. Additionally, within the 3- dB bandwidth, the minimum noise figure is 2.9 dB. The total chip area is 0.77 mm2. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T16:47:50Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-15T16:47:50Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 中文摘要 iv ABSTRACT v CONTENTS vii LIST OF FIGURES xi LIST OF TABLES xx Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.1.1 300-GHz Phase-Array Transceiver System 1 1.1.2 Next-generation Radio Astronomical Receiving System 2 1.1.3 Astronomical Receiver 3 1.2 Literature Surveys 4 1.2.1 E-Band Phase Shifter in CMOS Process 4 1.2.2 Ultra-low Power Ka-band Low Noise Amplifier in CMOS Process 7 1.2.3 Wideband Distributed Amplifier in CMOS Process 9 1.3 Contributions 11 1.3.1 E-band Phase Shifter in CMOS process 11 1.3.2 Ka-band LNA in CMOS Process 12 1.3.3 Wideband Distributed Amplifier in CMOS Process 12 1.4 Thesis Organization 13 Chapter 2 Design of an E-Band 4-Bits Switched-Type Phase Shifter with 28⁰ Phase Adjustment in 65-nm CMOS Process 15 2.1 Introduction 15 2.2 Performance Parameters of Phase Shifter 19 2.2.1 Absolute and Relative Phase Shifter [49, 50] 19 2.2.2 RMS Phase Error [51] 20 2.2.3 Insertion Loss and RMS Amplitude Error [51] 21 2.2.4 P1dB of the phase shifter [52] 22 2.3 Classification of Phase Shifter [50, 53] 23 2.3.1 The Tunable Artificial Transmission Line Phase Shifter [54] 24 2.3.2 The Vector Sum Phase Shifter [16-18, 55, 56] 26 2.3.3 The Reflection-Type Phase Shifter [22, 23, 57, 58] 27 2.3.4 The Switched-Type Phase Shifter [20, 21, 59] 30 2.4 The Design of E-band Phase Shifter 31 2.4.1 Concept of the Switched-Type Phase Shifter [60] 31 2.4.2 The Ideal Value of Inductor and Capacitor 42 2.4.3 Device Size Selection 43 2.4.4 Design of Switched-Type Topology 52 2.4.5 Design of Reflection-Type Topology [63] 62 2.4.6 Circuit Architecture and Post-layout Simulation Results 68 2.5 Measurement Results 75 2.6 Summary 85 Chapter 3 Design of 1.4-mW Ka-Band Low Noise Amplifier in 90-nm CMOS Process 87 3.1 Introduction [9-11] 87 3.2 The Design of Ka-band LNA 91 3.2.1 Biasing Selection and Device Size Selection 91 3.2.2 Gate-Source Transformer Feedback Technique 101 3.2.3 Self-Resonant Transformer Matching (SRTM) [67] 107 3.2.4 Circuit Architecture 111 3.2.5 Post-layout Simulation Results 112 3.3 Measurement Results 118 3.4 Summary 122 Chapter 4 Design of a 4-34 GHz Distributed Amplifier with Low Power Consumption in 90-nm CMOS Process 124 4.1 Introduction 124 4.2 Different Architectures of Distributed Amplifiers 127 4.2.1 Conventional Distributed Amplifier (CDA) [39, 72, 73] 127 4.2.2 Cascaded Single-Stage Distributed Amplifier (CSSDA) [46, 75, 76] 129 4.2.3 Cascaded Multi-Stage Distributed Amplifier (CMSDA) [77-79] 131 4.2.4 Matrix Distributed Amplifier (MDA) [80, 81] 133 4.2.5 Conventional Distributed Amplifier with CSSDA Gain Stage [83, 84] 135 4.2.6 Compared Different Distributed Amplifier Architecture 136 4.3 Techniques to Improve Distributed Amplifier Performance 139 4.3.1 Architecture of Gain Unit 139 4.3.2 M-Derived Technique [85, 88, 89] 141 4.3.3 Capacitive Division Technique [72, 90] 143 4.3.4 Inter-stage Termination Removed Technique [42, 86] 144 4.4 The Design of Distributed Amplifier 146 4.4.1 Biasing Selection and Device Size Selection 146 4.4.2 Design of CDA Stage 149 4.4.3 Design of CSSDA Stage 152 4.4.4 Design of Active Variable Termination Resistor 154 4.4.5 Circuit Architecture 159 4.4.6 Post-layout Simulation Results 160 4.5 Measurement Results 163 4.6 Summary 167 Chapter 5 Conclusions 169 REFERENCES 171 | - |
| dc.language.iso | en | - |
| dc.subject | 分散式放大器 | zh_TW |
| dc.subject | 天文收發機 | zh_TW |
| dc.subject | 300 GHz相位陣列收發系統 | zh_TW |
| dc.subject | Ka頻段 | zh_TW |
| dc.subject | 變壓器匹配網路 | zh_TW |
| dc.subject | 互補式金氧半導體 | zh_TW |
| dc.subject | 反射式相移器 | zh_TW |
| dc.subject | 開關式相移器 | zh_TW |
| dc.subject | 低雜訊放大器 | zh_TW |
| dc.subject | 相移器 | zh_TW |
| dc.subject | E頻段 | zh_TW |
| dc.subject | distributed amplifier | en |
| dc.subject | switched-type phase shifter | en |
| dc.subject | low noise amplifier | en |
| dc.subject | 300 GHz phased-arrays transceiver system | en |
| dc.subject | astronomical receiver | en |
| dc.subject | E-band | en |
| dc.subject | phase shifter | en |
| dc.subject | Ka-band | en |
| dc.subject | transformer | en |
| dc.subject | reflection-type phase shifter | en |
| dc.subject | CMOS | en |
| dc.title | 應用於相位陣列收發系統之E頻段相移器、天文接收機之Ka頻段低雜訊放大器與分散式放大器之研究 | zh_TW |
| dc.title | Research of E-band Phase Shifter for Phased-Array Transceiver System, Ka-band Low-Noise Amplifier and Distributed Amplifier for Astronomical Receiver | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林坤佑;黃天偉;章朝盛;王雲杉 | zh_TW |
| dc.contributor.oralexamcommittee | Kun-You Lin;Tian-Wei Huang;Chau-Ching Chiong;Yun-Shan Wang | en |
| dc.subject.keyword | 互補式金氧半導體,分散式放大器,相移器,低雜訊放大器,開關式相移器,反射式相移器,變壓器匹配網路,Ka頻段,E頻段,天文收發機,300 GHz相位陣列收發系統, | zh_TW |
| dc.subject.keyword | CMOS,distributed amplifier,phase shifter,low noise amplifier,switched-type phase shifter,reflection-type phase shifter,transformer,Ka-band,E-band,astronomical receiver,300 GHz phased-arrays transceiver system, | en |
| dc.relation.page | 177 | - |
| dc.identifier.doi | 10.6342/NTU202403673 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-09 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電信工程學研究所 | - |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 8.33 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
