Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94306
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳志軒zh_TW
dc.contributor.advisorChih-Hsuan Chenen
dc.contributor.author林錫昭zh_TW
dc.contributor.authorHsi-Chao Linen
dc.date.accessioned2024-08-15T16:43:37Z-
dc.date.available2024-08-16-
dc.date.copyright2024-08-15-
dc.date.issued2024-
dc.date.submitted2024-07-31-
dc.identifier.citation[1] K. Otsuka, C.M. Wayman, Shape memory materials, Cambridge university press1999.
[2] Z. Shuangshuang, Q. Liang, C. Liang, D. Wang, Y. ji, Y. Wang, Y. Zheng, X. Ding, M. Mills, X. Ren, Y. Wang, Quasi‐Linear Superelasticity with Ultralow Modulus in Tensile Cyclic Deformed TiNi Strain Glass, Advanced Engineering Materials 24 (2022).
[3] L. Petrini, F. Migliavacca, Biomedical Applications of Shape Memory Alloys, Journal of Metallurgy 2011 (2011) 501483.
[4] D. Stoeckel, Shape Memory Actuators for Automotive Applications, in: T.W. Duerig, K.N. Melton, D. Stöckel, C.M. Wayman (Eds.), Engineering Aspects of Shape Memory Alloys, Butterworth-Heinemann1990, pp. 283-294.
[5] R.A. Russell, R.B. Gorbet, Improving the response of SMA actuators, Proceedings of 1995 IEEE international conference on robotics and automation, IEEE, 1995, pp. 2299-2304.
[6] A. Rao, A.R. Srinivasa, J.N. Reddy, Design of shape memory alloy (SMA) actuators, Springer2015.
[7] M. Sreekumar, T. Nagarajan, M. Singaperumal, M. Zoppi, R. Molfino, Critical review of current trends in shape memory alloy actuators for intelligent robots, Industrial Robot: An International Journal (2007).
[8] M.S. Kim, J.K. Heo, H. Rodrigue, H.T. Lee, S. Pané, M.W. Han, S.H. Ahn, Shape memory alloy (SMA) actuators: The role of material, form, and scaling effects, Advanced Materials 35(33) (2023) 2208517.
[9] N. Choudhary, D. Kaur, Shape memory alloy thin films and heterostructures for MEMS applications: A review, Sensors and Actuators A: Physical 242 (2016) 162-181.
[10] K. Otsuka, X. Ren, Physical metallurgy of Ti–Ni-based shape memory alloys, Progress in materials science 50(5) (2005) 511-678.
[11] D. Cong, G. Saha, M. Barnett, Thermomechanical properties of Ni–Ti shape memory wires containing nanoscale precipitates induced by stress-assisted ageing, Acta biomaterialia 10(12) (2014) 5178-5192.
[12] D. Coulomb, J.-L. Dupont, A. Pichard, The role of refrigeration in the global economy-29. informatory note on refrigeration technologies, (2015).
[13] X. Hao, J. Zhai, L.B. Kong, Z. Xu, A comprehensive review on the progress of lead zirconate-based antiferroelectric materials, Progress in materials science 63 (2014) 1-57.
[14] S. Qian, D. Nasuta, A. Rhoads, Y. Wang, Y. Geng, Y. Hwang, R. Radermacher, I. Takeuchi, Not-in-kind cooling technologies: A quantitative comparison of refrigerants and system performance, International journal of refrigeration 62 (2016) 177-192.
[15] J. Chen, L. Lei, G. Fang, Elastocaloric cooling of shape memory alloys: A review, Materials Today Communications 28 (2021) 102706.
[16] F. Kordizadeh, S. Mohajerani, K. Safaei, N.T. Andani, M. Pourshams, M.J. Abdollahzadeh, M. Elahinia, Investigating the elastocaloric effect of the NiTi fabricated by laser powder bed fusion: Effect of the building orientation, Materialia 30 (2023) 101817.
[17] B. Lu, J. Liu, Mechanocaloric materials for solid-state cooling, Science bulletin 60(19) (2015) 1638-1643.
[18] C. Cazorla, Novel mechanocaloric materials for solid-state cooling applications, Applied Physics Reviews 6(4) (2019).
[19] S. Wang, Y. Shi, Y. Li, H. Lin, K. Fan, X. Teng, Solid-state refrigeration of shape memory alloy-based elastocaloric materials: A review focusing on preparation methods, properties and development, Renewable and Sustainable Energy Reviews 187 (2023) 113762.
[20] S. Leu, Y. Chen, R. Jean, Effect of rapid solidification on mechanical properties of Cu-Al-Ni shape memory alloys, Journal of materials science 27 (1992) 2792-2798.
[21] A. Ölander, AN ELECTROCHEMICAL INVESTIGATION OF SOLID CADMIUM-GOLD ALLOYS, Journal of the American Chemical Society 54(10) (1932) 3819-3833.
[22] G.B. Kauffman, I. Mayo, The story of nitinol: the serendipitous discovery of the memory metal and its applications, The chemical educator 2 (1997) 1-21.
[23] R. Hehemann, G. Sandrock, Relations between the premartensitic instability and the martensite structure in TiNi, Scripta Metallurgica 5(9) (1971) 801-805.
[24] L. Petrini, F. Migliavacca, Biomedical applications of shape memory alloys, Journal of Metallurgy 2011 (2011).
[25] D. Mantovani, Shape memory alloys: Properties and biomedical applications, Jom 52 (2000) 36-44.
[26] T. Yoneyama, S. Miyazaki, Shape memory alloys for biomedical applications, (2008).
[27] C. Bil, K. Massey, E.J. Abdullah, Wing morphing control with shape memory alloy actuators, Journal of Intelligent Material Systems and Structures 24(7) (2013) 879-898.
[28] D.J. Hartl, D.C. Lagoudas, Aerospace applications of shape memory alloys, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 221(4) (2007) 535-552.
[29] Y. Furuya, H. Shimada, Shape Memory Actuators for Robotic Applications, in: T.W. Duerig, K.N. Melton, D. Stöckel, C.M. Wayman (Eds.), Engineering Aspects of Shape Memory Alloys, Butterworth-Heinemann1990, pp. 338-355.
[30] M.M. Kheirikhah, S. Rabiee, M.E. Edalat, A review of shape memory alloy actuators in robotics, RoboCup 2010: Robot Soccer World Cup XIV 14 (2011) 206-217.
[31] J. Van Humbeeck, Non-medical applications of shape memory alloys, Materials Science and Engineering: A 273 (1999) 134-148.
[32] J.M. Jani, M. Leary, A. Subic, M.A. Gibson, A review of shape memory alloy research, applications and opportunities, Materials & Design (1980-2015) 56 (2014) 1078-1113.
[33] N. Morgan, Medical shape memory alloy applications—the market and its products, Materials Science and Engineering: A 378(1-2) (2004) 16-23.
[34] H. Fujita, H. Toshiyoshi, Micro actuators and their applications, Microelectronics Journal 29(9) (1998) 637-640.
[35] M. Mehrpouya, H. Cheraghi Bidsorkhi, MEMS applications of NiTi based shape memory alloys: a review, Micro and Nanosystems 8(2) (2016) 79-91.
[36] C.R. Knick, G.L. Smith, C.J. Morris, H.A. Bruck, Rapid and low power laser actuation of sputter-deposited NiTi shape memory alloy (SMA) MEMS thermal bimorph actuators, Sensors and Actuators A: Physical 291 (2019) 48-57.
[37] C.R. Knick, D.J. Sharar, A.A. Wilson, G.L. Smith, C.J. Morris, H.A. Bruck, High frequency, low power, electrically actuated shape memory alloy MEMS bimorph thermal actuators, Journal of Micromechanics and Microengineering 29(7) (2019) 075005.
[38] L. Sun, W.M. Huang, Z. Ding, Y. Zhao, C.C. Wang, H. Purnawali, C. Tang, Stimulus-responsive shape memory materials: a review, Materials & Design 33 (2012) 577-640.
[39] G.V. Webb, D.C. Lagoudas, A.J. Kurdila, Hysteresis modeling of SMA actuators for control applications, Journal of intelligent material systems and structures 9(6) (1998) 432-448.
[40] T. Maruyama, H. Kubo, Ferrous (Fe-based) shape memory alloys (SMAs): properties, processing and applications, Shape Memory and Superelastic Alloys, Elsevier2011, pp. 141-159.
[41] M. Izadi, E. Ghafoori, M. Shahverdi, M. Motavalli, S. Maalek, Development of an iron-based shape memory alloy (Fe-SMA) strengthening system for steel plates, Engineering Structures 174 (2018) 433-446.
[42] A. Sato, H. Kubo, T. Maruyama, Mechanical properties of Fe–Mn–Si based SMA and the application, Materials transactions 47(3) (2006) 571-579.
[43] W. Huang, On the selection of shape memory alloys for actuators, Materials & Design 23(1) (2002) 11-19.
[44] R. Dasgupta, A look into Cu-based shape memory alloys: Present scenario and future prospects, Journal of Materials Research 29(16) (2014) 1681-1698.
[45] T. Gustmann, J. Dos Santos, P. Gargarella, U. Kühn, J. Van Humbeeck, S. Pauly, Properties of Cu-based shape-memory alloys prepared by selective laser melting, Shape Memory and Superelasticity 3 (2017) 24-36.
[46] E. Mazzer, M. Da Silva, P. Gargarella, Revisiting Cu-based shape memory alloys: Recent developments and new perspectives, Journal of Materials Research 37(1) (2022) 162-182.
[47] K.K. Alaneme, E.A. Okotete, J.U. Anaele, Structural vibration mitigation–a concise review of the capabilities and applications of Cu and Fe based shape memory alloys in civil structures, Journal of Building Engineering 22 (2019) 22-32.
[48] C. Czaderski, B. Weber, M. Shahverdi, M. Motavalli, C. Leinenbach, W. Lee, R. Brönnimann, J. Michels, Iron-based shape memory alloys (Fe-SMA)-a new material for prestressing concrete structures, Proceedings of the SMAR (2015).
[49] Y. Sutou, T. Omori, J. Wang, R. Kainuma, K. Ishida, Characteristics of Cu–Al–Mn-based shape memory alloys and their applications, Materials Science and Engineering: A 378(1-2) (2004) 278-282.
[50] K.K. Alaneme, E.A. Okotete, Reconciling viability and cost-effective shape memory alloy options – A review of copper and iron based shape memory metallic systems, Engineering Science and Technology, an International Journal 19(3) (2016) 1582-1592.
[51] J. Ortin, A. Planes, Thermodynamics of thermoelastic martensitic transformations, Acta Metallurgica 37(5) (1989) 1433-1441.
[52] 李芝媛、吳錫侃, 淺談形狀記憶合金, 科儀新知第十六卷 (1995) 6.
[53] C. Wayman, Shape memory alloys, MRS bulletin 18(4) (1993) 49-56.
[54] A. Bekker, L. Brinson, Phase diagram based description of the hysteresis behavior of shape memory alloys, Acta materialia 46(10) (1998) 3649-3665.
[55] K. Bhattacharya, Self-accommodation in martensite, Archive for rational mechanics and analysis 120 (1992) 201-244.
[56] M. Nishida, T. Nishiura, H. Kawano, T. Inamura, Self-accommodation of B19′ martensite in Ti–Ni shape memory alloys–Part I. Morphological and crystallographic studies of the variant selection rule, Philosophical Magazine 92(17) (2012) 2215-2233.
[57] E. Gerstner, Shape-Memory Alloys, Nature Materials (October 2002) (2002).
[58] 蘇唯仁, Ti50Ni15Pd25Cu10 與 Ti48. 9Ni49. 1Fe2 形狀記憶合金箔帶之麻田散體相變態行為與機械性質之研究, 國立臺灣大學機械工程學系學位論文 2022 (2022) 1-126.
[59] Y. Liu, H. Yang, Strain dependence of the Clausius–Clapeyron relation for thermoelastic martensitic transformations in NiTi, Smart Materials and Structures 16(1) (2007) S22.
[60] E. Patoor, A. Eberhardt, M. Berveiller, Micromechanical modelling of superelasticity in shape memory alloys, Le Journal de Physique IV 6(C1) (1996) C1-277-C1-292.
[61] P. Šittner, L. Heller, P. Sedlák, Y. Chen, O. Tyc, O. Molnárová, L. Kadeřávek, H. Seiner, B2⇒ B19′⇒ B2 T Martensitic Transformation as a Mechanism of Plastic Deformation of NiTi, Shape Memory and Superelasticity 5 (2019) 383-396.
[62] T. Dong, T. Zhao, C. Liang, D. Wang, Composition modulation induced superelasticity over a wide temperature due to precipitate dissolution, Shape Memory and Superelasticity 9(2) (2023) 321-333.
[63] Z. Zhao, Y. Xiao, J. Lin, J. Min, The roles of residual martensite and plastic deformation in thermomechanically coupled functional degradation of nanocrystalline superelastic NiTi alloys, Journal of Materials Research and Technology 24 (2023) 6791-6807.
[64] S. Miyazaki, K. Otsuka, Y. Suzuki, Transformation pseudoelasticity and deformation behavior in a Ti-50.6 at% Ni alloy, Scripta Metallurgica 15(3) (1981) 287-292.
[65] Z. Yang, D. Cong, X. Sun, Z. Nie, Y. Wang, Enhanced cyclability of elastocaloric effect in boron-microalloyed Ni-Mn-In magnetic shape memory alloys, Acta Materialia 127 (2017) 33-42.
[66] J. Chen, L. Xing, G. Fang, L. Lei, W. Liu, Improved elastocaloric cooling performance in gradient-structured NiTi alloy processed by localized laser surface annealing, Acta Materialia 208 (2021).
[67] D. Batalu, H. Guoqiu, A. Aloman, G. Coşmeleaţă, L. Xiaoshan, Z. Zhihua, A review on TiNi shape memory alloys (SMA) used for medical applications. Recycling aspects, no. November (2000) 1-10.
[68] G.J. Pataky, E. Ertekin, H. Sehitoglu, Elastocaloric cooling potential of NiTi, Ni2FeGa, and CoNiAl, Acta Materialia 96 (2015) 420-427.
[69] Y. Wu, E. Ertekin, H. Sehitoglu, Elastocaloric cooling capacity of shape memory alloys – Role of deformation temperatures, mechanical cycling, stress hysteresis and inhomogeneity of transformation, Acta Materialia 135 (2017) 158-176.
[70] H. Ossmer, F. Lambrecht, M. Gültig, C. Chluba, E. Quandt, M. Kohl, Evolution of temperature profiles in TiNi films for elastocaloric cooling, Acta Materialia 81 (2014) 9-20.
[71] H. Kato, Latent heat storage capacity of NiTi shape memory alloy, Journal of materials science 56 (2021) 8243-8250.
[72] J. Cui, Y. Wu, J. Muehlbauer, Y. Hwang, R. Radermacher, S. Fackler, M. Wuttig, I. Takeuchi, Demonstration of high efficiency elastocaloric cooling with large ΔT using NiTi wires, Applied Physics Letters 101(7) (2012) 073904.
[73] K. Otsuka, X. Ren, Recent developments in the research of shape memory alloys, Intermetallics 7(5) (1999) 511-528.
[74] P.R.S. H.O. T.B. Massalski, L. Kacprzak, Binary Alloys Phase Diagrams, 1990.
[75] T.-H. Nam, J.-H. Lee, J.-M. Nam, K.-W. Kim, G.-B. Cho, Y.-W. Kim, Microstructures and mechanical properties of Ti–45at.%Ni–5at.%Cu alloy ribbons containing Ti2Ni particles, Materials Science and Engineering: A 483-484 (2008) 460-463.
[76] J. Frenzel, E.P. George, A. Dlouhy, C. Somsen, M.-X. Wagner, G. Eggeler, Influence of Ni on martensitic phase transformations in NiTi shape memory alloys, Acta Materialia 58(9) (2010) 3444-3458.
[77] S. Miyazaki, K. Otsuka, Mechanical behaviour associated with the premartensitic rhombohedral-phase transition in a Ti50Ni47Fe3 alloy, Philosophical Magazine A 50(3) (1985) 393-408.
[78] H.C. Ling, R. Kaplow, Phase transitions and shape memory in NiTi, Metallurgical and Materials Transactions A 11 (1980) 77-83.
[79] O. Mercier, K. Melton, Y. De Préville, Low-frequency internal friction peaks associated with the martensitic phase transformation of NiTi, Acta Metallurgica 27(9) (1979) 1467-1475.
[80] H.C. Ling, K. Roy, Stress-induced shape changes and shape memory in the R and martensite transformations in equiatomic NiTi, Metallurgical Transactions A 12 (1981) 2101-2111.
[81] G. Sandrock, A. Perkins, R. Hehemann, The premartensitic instability in near-equiatomic TiNi, Metallurgical Transactions 2 (1971) 2769-2781.
[82] S. Miyazaki, A. Ishida, Martensitic transformation and shape memory behavior in sputter-deposited TiNi-base thin films, Materials Science and Engineering: A 273 (1999) 106-133.
[83] X. Li, Q. Liang, T. Dong, C. Liang, D. Wang, Y. Wang, X. Ding, Fatigue-resistant elastocaloric effect in hypoeutectic TiNi58 alloy with heterogeneous microstructure, Acta Materialia 262 (2024) 119464.
[84] H. Lin, S.-K. Wu, J. Lin, A study of the martensitic transformation in Ti-rich TiNi alloys, Proc. Int. Conf. on Martensitic Transformations, 1992, p. 875.
[85] T. Duerig, A. Pelton, C. Trepanier, Nitinol: The Book, Part 1, Mechanisms and Behavior.
[86] L.A. Jacobson, J. McKittrick, Rapid solidification processing, Materials Science and Engineering: R: Reports 11(8) (1994) 355-408.
[87] E.J. Lavernia, T.S. Srivatsan, The rapid solidification processing of materials: science, principles, technology, advances, and applications, Journal of Materials Science 45 (2010) 287-325.
[88] C. Suryanarayana, F.H. Froes, The current status of titanium rapid solidification, JOM 42(3) (1990) 22-25.
[89] C. Suryanarayana, F. Froes, R. Rowe, Rapid solidification processing of titanium alloys, International materials reviews 36(1) (1991) 85-123.
[90] S. Sastry, T. Peng, P.J. Meschter, J.E. O’Neal, Rapid solidification processing of titanium alloys, JOM 35(9) (1983) 21-28.
[91] H. Jones, RAPID SOLIDIFICATION OF MAGNESIUM ALLOYS-A BIBLIOGRAPHY 1950-1988, AB ACADEMIC PUBL PO BOX 42 BICESTER, OXFORD, ENGLAND OX6 7NW, 1989.
[92] F. Hehmann, F. Sommer, B. Predel, Extension of solid solubility in magnesium by rapid solidification, Materials science and engineering: A 125(2) (1990) 249-265.
[93] E.J. Lavernia, J.D. Ayers, T.S. Srivatsan, Rapid solidification processing with specific application to aluminium alloys, International Materials Reviews 37(1) (1992) 1-44.
[94] E. Lavernia, G. Rai, N. Grant, Rapid solidification processing of 7xxx aluminium alloys: a review, Materials Science and Engineering 79(2) (1986) 211-221.
[95] M.C. Brockway, R.R. Wills, Metals, C.I. Center, Rapid Solidification of Ceramics: A Technology Assessment, Metals and Ceramics Information Center1984.
[96] R. Budhani, T. Goel, K. Chopra, Melt-spinning technique for preparation of metallic glasses, Bulletin of Materials Science 4 (1982) 549-561.
[97] S. Hirosawa, Processing and Properties of Nanocomposite Nd 2 Fe 14 B-Based Permanent Magnets, Handbook of Advanced Magnetic Materials (2006) 1064-1090.
[98] C. Rong, B. Shen, Nanocrystalline and nanocomposite permanent magnets by melt spinning technique*, Chinese Physics B 27(11) (2018) 117502.
[99] T. Saburi, S. Nenno, Reversible shape memory in Cu-Zn-Ga, Scripta Metallurgica 8(12) (1974) 1363-1367.
[100] K. Dehghani, M. Salehi, M. Salehi, H. Aboutalebi, Comparing the melt-spun nanostructured aluminum 6061 foils with conventional direct chill ingot, Materials Science and Engineering: A 489(1-2) (2008) 245-252.
[101] J. Busch, A. Johnson, C. Lee, D. Stevenson, Shape‐memory properties in Ni‐Ti sputter‐deposited film, Journal of applied physics 68(12) (1990) 6224-6228.
[102] A. Ishida, V. Martynov, Sputter-deposited shape-memory alloy thin films: properties and applications, Mrs Bulletin 27(2) (2002) 111-114.
[103] J. Morgiel, E. Cesari, J. Pons, A. Pasko, J. Dutkiewicz, Microstructure and martensite transformation in aged Ti-25Ni-25Cu shape memory melt spun ribbons, Journal of materials science 37 (2002) 5319-5325.
[104] S.-H. Chang, S.-K. Wu, H. Kimura, Crystallization kinetics of Ti50Ni25Cu25 melt-spun amorphous ribbons, Materials transactions 47(10) (2006) 2489-2492.
[105] P. Donner, S. Eucken, The shape memory effect in meltspun ribbons, Materials Science Forum, Trans Tech Publ, 1990, pp. 723-728.
[106] S. Miyazaki, T. Imai, Y. Igo, K. Otsuka, Effect of cyclic deformation on the pseudoelasticity characteristics of Ti-Ni alloys, Metallurgical transactions A 17 (1986) 115-120.
[107] H.Y. Xing, H.Y. Kim, S. Miyazaki, Effect of rotation speed on transformation behavior in Ti-48at% Ni shape memory alloy melt-spun ribbon, Materials Science Forum, Trans Tech Publ, 2007, pp. 1481-1484.
[108] M. Fremond, S. Miyazaki, S. Miyazaki, Development and characterization of shape memory alloys, Springer1996.
[109] T. Duerig, K. Bhattacharya, The influence of the R-phase on the superelastic behavior of NiTi, Shape Memory and Superelasticity 1 (2015) 153-161.
[110] S. Miyazaki, K. Otsuka, Deformation and transition behavior associated with the R-phase in Ti-Ni alloys, Metallurgical Transactions A 17 (1986) 53-63.
[111] H. Sitepu, Use of synchrotron diffraction data for describing crystal structure and crystallographic phase analysis of R-phase NiTi shape memory alloy, Textures and Microstructures 35(3-4) (2003) 185-195.
[112] J. Khalil-Allafi, W.W. Schmahl, D. Toebbens, Space group and crystal structure of the R-phase in binary NiTi shape memory alloys, Acta materialia 54(12) (2006) 3171-3175.
[113] A. Ishida, M. Sato, A. Takei, S. Miyazaki, Effect of heat treatment on shape memory behavior of Ti-rich Ti–Ni thin films, Materials Transactions, JIM 36(11) (1995) 1349-1355.
[114] R. Nagarajan, K. Chattopadhyay, Intermetallic Ti2Ni/TiNi nanocomposite by rapid solidification, Acta Metallurgica et Materialia 42(3) (1994) 947-958.
[115] C.-H. Chen, S.-Y. Cheng, S.-K. Wu, Nanoindentation studies on precipitation hardening of Ti-rich Ti50.4Ni49.5Si0.1 shape memory ribbons, Intermetallics 36 (2013) 109-117.
[116] C.-H. Chen, S.-K. Wu, Martensitic transformation and pseudoelasticity of aged Ti50.1Ni49.7Si0.2 shape memory ribbon, Materials Science and Engineering: A 593 (2014) 85-91.
[117] 邱博暘, Ti50Ni44Cu5Al1 形狀記憶合金箔帶之製備與性能研究, (2023).
[118] J. Chu, Y. Lai, T. Lin, S. Wang, Deposition and characterization of TiNi-base thin films by sputtering, Materials Science and Engineering: A 277(1-2) (2000) 11-17.
[119] A. Khantachawana, H. Mizubayashi, S. Miyazaki, Texture and microstructure of Ti-Ni melt-spun shape memory alloy ribbons, Materials Transactions 45(2) (2004) 214-218.
[120] H. Xing, A. Khantachawana, H.Y. Kim, S. Miyazaki, Effect of Ni-content on shape memory behavior of Ti-rich Ti-Ni melt-spun ribbons, Materials Science Forum, Trans Tech Publ, 2005, pp. 1925-1928.
[121] R. Wasilewski, S. Butler, J. Hanlon, On the martensitic transformation in TiNi, Metal Science Journal 1(1) (1967) 104-110.
[122] W. Tang, B. Sundman, R. Sandström, C. Qiu, New modelling of the B2 phase and its associated martensitic transformation in the Ti–Ni system, Acta materialia 47(12) (1999) 3457-3468.
[123] C.-H. Chen, 富鈦鈦鎳形狀記憶合金箔帶麻田散體變態及其性能之研究, 2012.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94306-
dc.description.abstract傳統研究TiNi二元合金認為富Ti的TiNi合金之相變溫度不會隨Ti元素的增加而有所變化,然而透過快速冷凝製程之一的熔旋噴鑄手段製成TiNi箔帶,研究其相變溫度與成分富Ti程度的關係卻與傳統的結論相互矛盾。這是因為以傳統鑄造方法的TiNi合金塊材為研究對象,其基地能容納的Ti有限、更多Ti的添加會使合金產生更多的Ti2Ni析出於晶界,進而使Ti元素的添加影響不了材料基地內的成分組成,相變溫度因而不會有劇烈的改變;透過熔旋噴鑄製程,可以有效抑制TiNi合金中Ti2Ni的析出,使Ti過飽和固溶進基地,明確地對基地成分產生影響,因此透過觀測不同成分的二元TiNi箔帶之相變行為,便可以得出實際上富Ti的TiNi合金之相變溫度會隨Ti元素的增加而減少的結論。除此之外,由熔旋噴鑄製程製成的TiNi箔帶具有非凡的形狀記憶能力,不須經過任何處理,其形狀記憶曲線可承受達300MPa以上的應力,最大可回復應變由Ti51.5Ni箔帶所貢獻,可以達到5.7%。將形狀記憶曲線進一步代入Maxwell relation計算最大理論彈熱溫降,可以發現TiNi箔帶具有優異的彈熱溫降能力,加之箔帶的幾何形貌厚度極薄、熱轉換效率高,說明TiNi二元箔帶作為固態冷媒的應用具有十分不錯的發展潛力。zh_TW
dc.description.abstractConventional studies on TiNi binary alloys assert that the phase transformation temperature of Ti-rich TiNi alloys remains unchanged with the increasing Ti content. However, investigations into TiNi ribbons produced through the melt-spinning process, a type of rapid solidification process, reveal contradictory findings regarding the relationship between phase transformation temperature and Ti content. This inconsistency arises because the solubility of Ti is limited in the matrix of TiNi alloys produced by conventional casting methods. With increased Ti content, additional Ti2Ni precipitates form at the grain boundaries, preventing significant alterations in the matrix composition and thereby stabilizing the phase transformation temperature. Conversely, the melt-spinning process effectively suppresses the precipitation of Ti2Ni, allowing Ti to become supersaturated within the matrix, thus significantly impacting the matrix composition. Consequently, observations of the phase transformation behavior of binary TiNi ribbons with varying compositions demonstrate that the phase transformation temperature of Ti-rich TiNi alloys decreases with increasing Ti content. Additionally, TiNi ribbons produced via the melt-spinning process exhibit exceptional shape memory properties without further treatment. These ribbons can withstand stresses exceeding 300 MPa in shape memory tensile tests, with the maximum recoverable strain achieved by the Ti51.5Ni ribbon reaching up to 5.7%. By applying the shape memory curves to the Maxwell relation, the maximum theoretical elastocaloric temperature change can be calculated, revealing the superior elastocaloric capabilities of TiNi ribbons. Coupled with their extremely thin geometries, which enhance thermal conversion efficiency, these findings suggest that TiNi binary ribbons possess significant potential for development as solid-state refrigerants.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T16:43:36Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-15T16:43:37Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 I
誌謝 II
摘要 III
ABSTRACT IV
目次 VI
圖次 VIII
表次 XI
第一章 前言 1
第二章 文獻探討 3
2-1 形狀記憶合金 3
2-2 麻田散體相變態 6
2-3 形狀記憶效應 7
2-3-1 遲滯曲線 7
2-3-2 麻田散體的自我調適行為 9
2-4 應力施加與麻田散體相變態 13
2-4-1 應力誘發麻田散體相變態 13
2-4-2 超彈性 17
2-5 彈熱效應 21
2-6 TI-NI基形狀記憶合金 23
2-7 快速冷凝製程 28
2-7-1 RSP簡介 28
2-7-2 薄膜濺鍍 31
2-7-3 熔旋噴鑄 32
2-8 快速冷凝製程與R相相變行為 35
2-9 SI雜質對TINI基箔帶之影響 39
第三章 實驗方法 40
3-1 合金準備:酸洗與配重 41
3-2 真空電弧融煉 42
3-3快速冷凝製程(RSP) 44
3-3-1 預合金製作 44
3-3-2 石英管準備 44
3-3-3 熔旋噴鑄(Melt-spinning) 46
3-4 熱誘發相變溫度量測 48
3-5 微結構觀察 50
3-6 形狀記憶效應拉伸實驗 51
3-7 材料熱處理 53
第四章 實驗結果與討論 54
4-1 微結構觀察 54
4-1-1 TiNi塊材之微結構觀察 54
4-1-2 TiNi箔帶之微結構觀察 58
4-1-3 不同銅輪轉速之箔帶觀察 61
4-2 熱誘發相變觀察(DSC) 64
4-2-1 成分富鈦程度與塊材相變行為 65
4-2-2 成分富鈦程度與箔帶相變行為 68
4-2-3 銅輪轉速與箔帶相變行為 78
4-3 形狀記憶效應拉伸實驗 85
4-3-1 形狀記憶曲線 85
4-3-2 彈熱效應 92
4-4 箔帶時效處理 98
第五章 結論 106
參考文獻 109
-
dc.language.isozh_TW-
dc.subject形狀記憶合金箔帶zh_TW
dc.subject熔旋噴鑄製程zh_TW
dc.subjectTiNi 二元合金zh_TW
dc.subject富Tizh_TW
dc.subject形狀記憶效應zh_TW
dc.subject彈熱效應zh_TW
dc.subjectBinary TiNi alloysen
dc.subjectShape memory alloy ribbonsen
dc.subjectElastocaloric effecten
dc.subjectShape memory effecten
dc.subjectTi-richen
dc.subjectMelt-spinning processen
dc.title快速凝固製程對富鈦TiNi二元 形狀記憶合金之相變行為與機械性能研究zh_TW
dc.titleEffect of Rapid Solidfidication on Phase Transformation Behavior and Mechanical Propeties of Ti-rich TiNi Shape Memory Alloyen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林新智;陳建彰zh_TW
dc.contributor.oralexamcommitteeHsin-Chih Lin;Jian-Zhang Chenen
dc.subject.keyword形狀記憶合金箔帶,熔旋噴鑄製程,TiNi 二元合金,富Ti,形狀記憶效應,彈熱效應,zh_TW
dc.subject.keywordShape memory alloy ribbons,Melt-spinning process,Binary TiNi alloys,Ti-rich,Shape memory effect,Elastocaloric effect,en
dc.relation.page117-
dc.identifier.doi10.6342/NTU202402795-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-02-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf9.9 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved