Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94291
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor盧信嘉zh_TW
dc.contributor.advisorHsin-Chia Luen
dc.contributor.author黃永寬zh_TW
dc.contributor.authorYong-Kuan Huangen
dc.date.accessioned2024-08-15T16:39:04Z-
dc.date.available2024-08-16-
dc.date.copyright2024-08-15-
dc.date.issued2024-
dc.date.submitted2024-08-07-
dc.identifier.citation[1] National Instruments. Introduction of millimeter wave [Online]. Available: https://www.ni.com/zh-tw/innovations/white-papers/16/mmwave--the-battle-of-the-bands.html
[2] B. Razavi, RF Microelectronics, Second ed. Paul Boger, 2011.
[3] Introduction to MIMO – Multiple for both transmitters and receivers vastly improve communication performance. Available: https://silvustechnologies.com/why-silvus/technology/introduction-to-mimo/
[4] S. Kulhalli, S. Seth, and S.-T. Fu, "An integrated linear RF power detector," in IEEE International Symposium on Circuits and Systems, May 2004, vol. 1, pp. 625-628.
[5] J. N. Murdock, E. Ben-Dor, Y. Qiao, J. I. Tamir, and T. S. Rappaport, "A 38 GHz cellular outage study for an urban outdoor campus environment," in 2012 IEEE wireless communications and networking conference (WCNC), June 2012, pp. 3085-3090.
[6] S. Rubin, "A wide-band UHF logarithmic amplifier," IEEE Journal of Solid-State Circuits, vol. 1, no. 2, pp. 74-81, Dec. 1966
[7] N. Scheinberg and R. Michels, "A monolithic GaAs low power L-band successive detection logarithmic amplifier," IEEE Journal of Solid-State Circuits, vol. 29, no. 2, pp. 151-154, Feb. 1994.
[8] D. Yoon, K. Song, J. Kim, and J.-S. Rieh, "Si-based sub-THz heterodyne imaging circuits," in 2014 Asia-Pacific Microwave Conference, Nov. 2014, pp. 1136-1138.
[9] B. Moret, E. Kerherve, and V. Knopik, "Non-invasive highly integrated transformer power detector for self-healing PA in 130nm H9SOI-FEM CMOS technology," in 2016 11th European Microwave Integrated Circuits Conference (EuMIC), Oct. 2016, pp. 113-116.
[10] Power amplifier classes [Online] Available: https://en.wikipedia.org/wiki/Power_amplifier_classes
[11] D. M. Pozar, Microwave Engineering, 4th ed. John Wiley & Sons, 2011.
[12] F. Friederich, W. Von Spiegel, M. Bauer, F. Meng, M. D. Thomson, S. Boppel, A. Lisauskas, B. Hils, V. Krozer, and A. Keil, "THz active imaging systems with real-time capabilities," IEEE Transactions on Terahertz Science and Technology, vol. 1, no. 1, pp. 183-200, Aug. 2011.
[13] M. B. Dinc, "Design and fabrication of a detector logarithmic video amplifier.," Natural and Applied Sciences of Middle East Technical University, Turkey, 2011.
[14] Y.-T. Chang, Y.-N. Chen, and H.-C. Lu, "A 38 GHz low power variable gain LNA using PMOS current-steering device and Gm-boost technique," in 2018 Asia-Pacific Microwave Conference (APMC), Nov. 2018, pp. 654-656.
[15] K. Kim and Y. Kwon, "A broadband logarithmic power detector in 0.13-μm CMOS," IEEE Microwave and Wireless Components Letters, vol. 23, no. 9, pp. 498-500, Sep. 2013.
[16] E. Ozeren, I. Kalyoncu, B. Ustundag, B. Cetindogan, H. Kayahan, M. Kaynak, and Y. Gurbuz, "A high dynamic range power detector at X-band," IEEE Microwave and Wireless Components Letters, vol. 26, no. 9, pp. 708-710, Aug. 2016.
[17] L. Zheng, L. Gilreath, V. Jain, and P. Heydari, “Design and analysis of a W-band detector in 0.18-μm sige bicmos,” in Proc. Topical Meeting Silicon Monolith. Integr. Circuits RF Syst. (SiRF), Jan. 2010, pp. 196–199.
[18] A. Serhan, E. Lauga-Larroze, and J.-M. Fournier, "Common-base/common-gate millimeter-wave power detectors," IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 12, pp. 4483-4491, Nov. 2015.
[19] I. Filanovsky and H. Baltes, "CMOS Schmitt trigger design," IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 41, no. 1, pp. 46-49, Jan. 1994.
[20] J.-W. Wu, K.-C. Hsu, W.-J. Lai, C.-H. To, S.-W. Chen, C.-W. Tang, and Y.-Z. Juang, "A linear-in-dB radio-frequency power detector," in 2011 IEEE MTT-S International Microwave Symposium, June 2011, pp. 1-4.
[21] J. Choi, J. Lee, Y. Xi, S.-S. Myoung, S. Baek, D. H. Kwon, Q.-D. Bui, J. Lee, D. Oh, and T. B. Cho, "Wide dynamic-range CMOS RMS power detector," IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 3, pp. 868-880, Feb. 2016.
[22] C.-C. Chou, W.-C. Lai, Y.-K. Hsiao, and H.-R. Chuang, "60-GHz CMOS Doppler radar sensor with integrated V-band power detector for clutter monitoring and automatic clutter-cancellation in noncontact vital-signs sensing," IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 3, pp. 1635-1643, Mar. 2017.
[23] C. -S. Kuo, H. -C. Kuo, H. -R. Chuang, C. -Y. Chen and T. -H. Huang, "A high-isolation 60GHz CMOS transmit/receive switch," 2011 IEEE Radio Frequency Integrated Circuits Symposium, Baltimore, MD, USA, June 2011, pp. 1-4, doi:.
[24] A. E. Amer, A. Ashry, M. A. Y. Abdalla, and I. A. Eshrah, “Gilbert based power detector for 5G mm-wave transceivers built-in-self test,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), Sapporo, Japan, 2019, pp. 1–5.
[25] Y. -T. Chang, C. -J. Lin and H. -C. Lu, "A 28 GHz high slope automatic switching power detector system using PMOS current-steering variable gain amplifier and Schmitt trigger," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 7, pp. 3134-3138, July 2022, doi: 10.1109/ TCSII.2022.3157053.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94291-
dc.description.abstract本論文提出一應用於Ka-Band之毫米波頻段功率偵測電路,主要操作頻率在28GHz,主要應用於第五代通訊系統上。
本論文所提出之第一個電路為透過單刀雙切(SPDT)開關切換之Ka頻段雙路功率量測系統,使用台積電所提供的90奈米製程,晶片全面積為0.7mm*0.7mm,整體系統輸入為射頻訊號並且透過電路將其轉為直流電壓輸出。本電路為雙路平行架構,第一路架構為可變增益放大器串接共閘極功率偵測器,透過可變增益放大器之增益可使本路徑量測到較小的功率。第二路架構僅搭載單一共閘極功率偵測器,主要是為了較大的功率範圍而設計,利用開關控制進行路徑之選擇,提升全晶片之功率量測範圍。本論文所提出之偵測系統在輸入頻率為28GHz時,模擬結果之偵測範圍為-44.65 dBm至9.8 dBm,靜態直流功耗為34.6mW,量測結果失敗,發現平行式可切換輸入造成輸入阻抗的變化較大,導致輸入匹配的困難,因此將電路改良後進行新版本的下線。
本論文所提出的第二個電路為優化的版本,將第一個電路的單刀雙切(SPDT)開關移除,使用可變增益放大器來控制增益變化,達到控制訊號增益從0dB到24dB間皆可自由調整,全晶片面積為0.61mm*0.62mm,應用台積電90奈米製程。在輸入頻率為28GHz時,模擬結果之偵測範圍為-40.5dBm至1.5 dBm,靜態直流功耗為48.5mW,量測結果之偵測範圍為-35dBm至10dBm,靜態直流功耗為44.4mW。
zh_TW
dc.description.abstractThis thesis presents a power detector system in Ka-band for 5G communication and its operating frequency is 28GHz.
The first and second chip in this thesis use a parallel schematic which converts radio frequency input power to dc output. These chips are both fabricated in TSMC 90-nm CMOS process and the chip size is 0.7mm*0.7mm. The proposed power detector use a SPDT switch to switch between two different paths. One path is combined with variable gain amplifier and power detector to detect small input power. The other path has only one common gate power detector for large input power. With SPDT switch control, this chip can realize simulated dynamic range from -44.65dBm to 9.8dBm at 28GHz. The simulated dc power consumption is 34.6mW with supplied voltage at 1.2V. These two chips are both failed due to input impedence mismatch and immature layout.
The third chip is an optimized version of first and second chip. By remove SPDT switch and use only one path VGA and detector, we can match the input impedence to 50Ω more easilly. With variable gain amplifer, we can control voltage gain from 0dB to 24dB. The chip size is 0.61mm*0.62mm, also be fabricated in TSMC 90-nm CMOS process. The simulated dynamic range is from -40.5 dBm to 1.5 dBm at 28GHz. The simulated dc power consumption is 48.5mW with supplied voltage at 1.2V. The measured dynamic range is from -35 dBm to 10 dBm at 28GHz. The measured dc power consumption is 44.4mW with supplied voltage at 1.2V.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T16:39:04Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-15T16:39:04Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 iii
Abstract iv
目次 v
圖次 viii
表次 xii
Chapter 1 緒論 1
1.1 研究動機與背景 1
1.2 文獻回顧 5
1.2.1 傳統功率偵測器架構 6
1.2.2 射頻外差功率偵測系統 7
1.2.3 對數功率偵測系統 8
1.3 論文貢獻 9
1.4 各章節介紹 10
Chapter 2 功率偵測器基本電路介紹 12
2.1 簡介 12
2.2 功率偵測器特性參數介紹 12
2.2.1 線性度與線性誤差 13
2.2.2 最低可偵測功率 13
2.2.3 動態範圍 14
2.2.4 靈敏度 14
2.2.5 輸入增益壓縮點 14
2.3 各式功率偵測電路架構 15
2.3.1 傳統二極體功率偵測電路架構 15
2.3.2 射頻超外差功率偵測電路架構 17
2.3.3 對數式功率偵測電路架構 18
2.3.4 可切換之功率偵測電路架構 19
2.4 可變增益放大器 21
2.4.1 偏壓控制可變增益放大器 21
2.4.2 N型電流導向可變增益放大器 22
2.4.3 P型電流導向可變增益放大器 24
2.5 功率偵測器 26
2.5.1 共源極之回授源極退化對數功率偵測器 26
2.5.2 電晶體負載式疊接功率偵測器 27
2.5.3 毫米波共閘極功率偵測器 29
Chapter 3 功率偵測電路設計 31
3.1 簡介 31
3.2 28GHz平行式之可切換功率偵測系統 31
3.2.1 規格制訂 31
3.2.2 電路架構 32
3.2.3 單刀雙切開關模擬 33
3.2.4 共閘極功率偵測器 36
3.2.5 可變增益放大器 39
3.2.6 28GHz平行式之可切換功率偵測系統 – 晶片一 & 晶片二 44
3.2.7 電路佈局 – 晶片一 & 晶片二 49
3.2.8 特性比較 51
3.3 電路及佈局改善與修正 51
3.3.1 SPDT開關調整 51
3.3.2 VGA設計 52
3.3.3 佈局改善 52
3.4 28 GHz可切換功率偵測系統 52
3.4.1 規格制訂 52
3.4.2 電路架構 53
3.4.3 共源極功率偵測器 54
3.4.4 可變增益放大器 57
3.4.5 28GHZ可切換功率偵測系統 – 晶片三 62
3.4.6 電路佈局 – 晶片三 67
3.4.7 特性比較 68
Chapter 4 電路量測結果 69
4.1 印刷電路板設計 69
4.2 晶片一 & 晶片二量測 69
4.2.1 晶片與外焊電容 69
4.2.2 量測環境 71
4.2.3 S參數 71
4.2.4 輸入輸出轉換曲線 73
4.2.5 直流功耗 74
4.3 晶片三量測 74
4.3.1 晶片與外焊電容 74
4.3.2 量測環境 75
4.3.3 S參數 75
4.3.4 輸入輸出轉換曲線 78
4.3.5 直流功耗 83
4.3.6 電路特性比較 84
Chapter 5 結論與未來展望 85
5.1 結論 85
5.2 未來展望 85
參考文獻 86
-
dc.language.isozh_TW-
dc.subject毫米波zh_TW
dc.subject第五代通訊zh_TW
dc.subject功率偵測電路zh_TW
dc.subject共閘極功率偵測系統zh_TW
dc.subject整流器zh_TW
dc.subject可切換增益放大器zh_TW
dc.subject單刀雙切開關zh_TW
dc.subjectmillimeter waveen
dc.subjectSPDT switchen
dc.subjectvariable gain amplifieren
dc.subjectrectifieren
dc.subjectcommon gate rectifieren
dc.subjectpower detectoren
dc.subject5G communicationen
dc.title使用可變增益放大器在CMOS 90 nm製程下實現 Ka-band訊號功率偵測系統zh_TW
dc.titleA Ka-band Power Detector System using Variable Gain Amplifier in 90 nm CMOS processen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張譽騰;蔡政翰zh_TW
dc.contributor.oralexamcommitteeYu-Teng Chang;Jeng-Han Tsaien
dc.subject.keyword毫米波,第五代通訊,功率偵測電路,共閘極功率偵測系統,整流器,可切換增益放大器,單刀雙切開關,zh_TW
dc.subject.keywordmillimeter wave,5G communication,power detector,common gate rectifier,rectifier,variable gain amplifier,SPDT switch,en
dc.relation.page88-
dc.identifier.doi10.6342/NTU202403246-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-09-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電子工程學研究所-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf6.12 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved