請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94269完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 曾惠斌 | zh_TW |
| dc.contributor.advisor | Hui-Ping TSERNG | en |
| dc.contributor.author | 陳弘毅 | zh_TW |
| dc.contributor.author | Hung-Yi Chen | en |
| dc.date.accessioned | 2024-08-15T16:32:19Z | - |
| dc.date.available | 2024-08-16 | - |
| dc.date.copyright | 2024-08-15 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-02 | - |
| dc.identifier.citation | [1]B. W. Melville and S. E. Coleman, Bridge scour. Water Resources Publication, 2000.
[2]A. Shirole and R. Holt, "Planning for a comprehensive bridge safety assurance program," Transportation Research Record, vol. 1290, no. 3950, pp. 290-005, 1991. [3]K. Wardhana and F. C. Hadipriono, "Analysis of recent bridge failures in the United States," Journal of performance of constructed facilities, vol. 17, no. 3, pp. 144-150, 2003, doi: 10.1061/(ASCE)0887-3828(2003)17:3(144). [4]P. Lagasse, P. Clopper, L. Zevenbergen, and L. Girard, "Countermeasures to Protect Bridge Piers from Scour," 0309099099, 2007. [5]B. W. Melville and A. J. Sutherland, "Design Method for Local Scour at Bridge Piers," Journal of Hydraulic Engineering, vol. 114, no. 10, pp. 1210-1226, 1988, doi: doi:10.1061/(ASCE)0733-9429(1988)114:10(1210). [6]M. Dixen, B. M. Sumer, and J. Fredsøe, "Numerical and experimental investigation of flow and scour around a half-buried sphere," Coastal Engineering, vol. 73, pp. 84-105, 2013/03/01/ 2013, doi: https://doi.org/10.1016/j.coastaleng.2012.10.006. [7]B. Ataie-Ashtiani, Z. Baratian-Ghorghi, and A. A. Beheshti, "Experimental Investigation of Clear-Water Local Scour of Compound Piers," Journal of Hydraulic Engineering, vol. 136, no. 6, pp. 343-351, 2010, doi: doi:10.1061/(ASCE)0733-9429(2010)136:6(343). [8]J. Guo, B. Weng, and J. Wu, "Investigation of the energy loss in cylindrical bridge piers scour depth prediction on sand-bed," Ocean Engineering, vol. 309, p. 118513, 2024/10/01/ 2024, doi: https://doi.org/10.1016/j.oceaneng.2024.118513. [9]J.-S. Chou and A. Molla, "Arctic tern-optimized weighted feature regression system for predicting bridge scour depth," Engineering Applications of Computational Fluid Mechanics, vol. 18, no. 1, p. 2364745, 2024/12/31 2024, doi: 10.1080/19942060.2024.2364745. [10]N. Eini, S. M. Bateni, C. Jun, E. Heggy, and S. S. Band, "Estimation and interpretation of equilibrium scour depth around circular bridge piers by using optimized XGBoost and SHAP," Engineering Applications of Computational Fluid Mechanics, vol. 17, no. 1, p. 2244558, 2023/12/31 2023, doi: 10.1080/19942060.2023.2244558. [11]C. Wang, X. Yu, and F. Liang, "A review of bridge scour: mechanism, estimation, monitoring and countermeasures," Natural hazards (Dordrecht), vol. 87, no. 3, pp. 1881-1906, 2017, doi: 10.1007/s11069-017-2842-2. [12]L. J. Prendergast, D. Hester, K. Gavin, and J. J. O’Sullivan, "An investigation of the changes in the natural frequency of a pile affected by scour," Journal of Sound and Vibration, vol. 332, no. 25, pp. 6685-6702, 2013/12/09/ 2013, doi: https://doi.org/10.1016/j.jsv.2013.08.020. [13]邱永芳、謝明志、柯正龍、林雅雯、王仲宇、連惠邦、楊明德, 李維峰、陳銘鴻、胡志昕、劉興昌、洪紹勛、張為光、柯永彥, and 鄭. 梅. 黃. 蔡. 羅冠顯, "跨河橋梁橋基沖刷檢測作業規範(草案)," 2011. 交通部運輸研究所. [14]R. Brincker, L. Zhang, and P. Andersen, "Modal identification from ambient responses using frequency domain decomposition," in Proc. of the 18*‘International Modal Analysis Conference (IMAC), San Antonio, Texas, 2000. [15]M. Gul and F. N. Catbas, "Ambient Vibration Data Analysis for Structural Identification and Global Condition Assessment," Journal of Engineering Mechanics, vol. 134, no. 8, pp. 650-662, 2008, doi: doi:10.1061/(ASCE)0733-9399(2008)134:8(650). [16]Y.-Y. Ko, W. F. Lee, W. Chang, H. Mei, and C. Chen, "Scour evaluation of bridge foundations using vibration measurement," in Scour and Erosion, 2010, pp. 884-893. [17]S. Kim et al., "Health monitoring of civil infrastructures using wireless sensor networks," in Proceedings of the 6th international conference on Information processing in sensor networks, 2007, pp. 254-263, doi: 10.1145/1236360.1236395. [18]M. Chae, H. Yoo, J. Kim, and M. Cho, "Development of a wireless sensor network system for suspension bridge health monitoring," Automation in Construction, vol. 21, pp. 237-252, 2012, doi: 10.1016/j.autcon.2011.06.008. [19]L. A. Arneson, L. W. Zevenbergen, P. F. Lagasse, and P. E. Clopper, "Evaluating Scour at Bridges: Fifth Edition," (in English), Tech Report 2012. [Online]. Available: https://rosap.ntl.bts.gov/view/dot/42053. [20]臺北市政府工務局新建工程處, 跨河橋防汛期檢測及檢查通報第一次成果報告. 2020. [21]A. J. Raudkivi, "Functional trends of scour at bridge piers," Journal of hydraulic engineering, vol. 112, no. 1, pp. 1-13, 1986. [22]林呈, 本省西部重要河川橋梁基礎災害分析與橋基保護工資料庫系統之建立. 1998, pp. 1-505. 交通部運輸研究所. [23]邱永芳、謝明志、賴瑞應、林雅雯、林三賢, 張嘉賢、廖振程、林炤圭、楊國城、黃進國, 羅冠顯、汪書瑜、袁瑜鎂、許師瑜、尤俊傑, and 唐韻淳、戴可茵, 跨河橋梁安全評估之研究. 交通部運輸研究所, 2011. [24]X. Yu, P. Asheesh, N. Zhang, B. Thapa, and S. Tjuatja, "Thermo-TDR probe for measurement of soil moisture, density, and thermal properties," in Geo-Congress 2014: Geo-characterization and Modeling for Sustainability, 2014, pp. 2804-2813. [25]X. Yu and L. J. Zabilansky, "Time Domain Reflectometry for Automatic Bridge Scour Monitoring," in Site and Geomaterial Characterization, 2006, pp. 152-159. [26]M. Samizo, S. Watanabe, A. Fuchiwaki, and T. Sugiyama, "Evaluation of the Structural Integrity of Bridge Pier Foundations Using Microtremors in Flood Conditions," Quarterly Report of RTRI, vol. 48, no. 3, pp. 153-157, 2007, doi: 10.2219/rtriqr.48.153. [27]S. H. Ju, "Determination of scoured bridge natural frequencies with soil–structure interaction," Soil Dynamics and Earthquake Engineering, vol. 55, pp. 247-254, 2013/12/01/ 2013, doi: https://doi.org/10.1016/j.soildyn.2013.09.015. [28]鍾立來. "國立臺灣大學土木工程學系結構耐震設計導論(一)." https://ocw.aca.ntu.edu.tw/ntu-ocw/ocw/cou/105S106 (accessed Feb.24, 2024). [29]吳政忠. "模態分析." 國家教育研究院. https://terms.naer.edu.tw/detail/79868b1d68d6a96a927e115c658870e9/ (accessed May 14, 2024). [30]O. S. Salawu and C. Williams, "Review of full-scale dynamic testing of bridge structures," Engineering structures, vol. 17, no. 2, pp. 113-121, 1995. [31]楊永斌, 高健章, and 呂良正, "模板支撐架縮小模型之自然頻率量測及理論分析 (Measurement and Analysis of the Natural Frequencies of Small Scale Models of Formwork Supporting Frames)," 勞工安全衛生研究季刊, vol. 3, 1995. [32]葉祥海、呂良正、楊永斌、黃仲偉、劉醇宇、周俊杰、李肇豪, "以微振量測探討鋼筋混凝土建築物之基本振動周期," 2000. 內政部建築研究所報告. [33]T. Bao and Z. Liu, "Bridge scour characteristic curve for natural frequency-based bridge scour monitoring using simulation-based optimization," Structural Control and Health Monitoring, vol. 28, no. 8, p. e2773, 2021, doi: https://doi.org/10.1002/stc.2773. [34]L. J. Prendergast, K. Gavin, and D. Hester, "Isolating the location of scour-induced stiffness loss in bridges using local modal behaviour," Journal of Civil Structural Health Monitoring, vol. 7, no. 4, pp. 483-503, 2017. [35]柯永彥、張為光、陳家漢, "結構基礎損傷評估技術發展(II)," 2011. 國家地震工程研究中心技術報告. [36]J. Asmussen, S. Ibrahim, and R. Brincker, "Random decrement: Identification of structures subjected to ambient excitation," 1997. [37]C.-S. Huang, "Structural identification from ambient vibration measurement using the multivariate AR model," Journal of sound and vibration, vol. 241, no. 3, pp. 337-359, 2001. [38]J. S. Bendat and A. G. Piersol, Random data: analysis and measurement procedures. John Wiley & Sons, 2011. [39]N. E. Huang et al., "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis," Proceedings of the Royal Society of London. Series A: mathematical, physical and engineering sciences, vol. 454, no. 1971, pp. 903-995, 1998. [40]盧家鋒, "醫學訊號分析原理與MATLAB程式應用實作," 2013. [Online]. Available: https://www.youtube.com/watch?v=JxYGcmxviz8&list=PLx_IWc-RN82uKOdafF4v4U5R_u4qmYaiu&index=1. [41]維基百科. "有限脈衝響應." https://zh.wikipedia.org/wiki/%E6%9C%89%E9%99%90%E5%86%B2%E6%BF%80%E5%93%8D%E5%BA%94 (accessed Feb. 27, 2024). [42]維基百科. "無線感測網路." https://zh.wikipedia.org/zh-tw/%E7%84%A1%E7%B7%9A%E6%84%9F%E6%B8%AC%E7%B6%B2%E8%B7%AF (accessed Feb. 24, 2024). [43]曾惠斌、韓仁毓、林致廷、朱聖浩、馮重偉, "極端氣候下複合性災害防治之研究--整合GPS 及通訊光電技術於橋梁防災監測平台研發計畫," 2013. [44]陳憲廷, "無線感測網路系統於卽時結構安全監測系統之研發 / The development of wireless sensor network system in structure health monitoring / Hsien-Ting Chen," 碩士論文--國立臺灣大學電子工程學研究所, 2010. [45]黃任篷, "無線感測器網路應用於結構健康監測之系統開發 / Development of wireless sensor network for structural health monitoring / Jen-Peng Huang," 碩士論文--國立臺灣大學土木工程學研究所, 2010. [46]I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, "Wireless sensor networks: a survey," Computer Networks, vol. 38, no. 4, pp. 393-422, 2002/03/15/ 2002, doi: https://doi.org/10.1016/S1389-1286(01)00302-4. [47]A. B. Noel, A. Abdaoui, T. Elfouly, M. H. Ahmed, A. Badawy, and M. S. Shehata, "Structural health monitoring using wireless sensor networks: A comprehensive survey," IEEE Communications Surveys & Tutorials, vol. 19, no. 3, pp. 1403-1423, 2017. [48]侯瑞瑜, "無線感測技術應用於橋梁淘刷檢測之開發與實測 /Development and implementation of wireless sensor network for detecting the exposure of a bridge pile foundation / Ruei-Yu Hou," 碩士論文--國立臺灣大學土木工程學研究所, 2017. [49]羅瑞邦, "利用無線感測系統建立橋梁淘刷監控之研究 /Research on establishing scouring monitoring system of bridge management by using wireless sensor network / Jui-Pang Lo," 國立臺灣大學土木工程學研究所, 2018. [50]李璧汝, "以無線感測儀器監測橋梁淘刷之研究 : 寶橋及萬壽橋為例 / Research on monitoring the scouring of bridges by using wireless sensors : Bao bridge and Wanshou bridge for example / Pi-Ru Lee," 國立臺灣大學土木工程學研究所, 2020. [51]林東儒, "無線監測橋梁淘刷系統之量測流程及數據分析初步研究 / Preliminary study on measurement quantification and data analysis of wireless monitoring in bridge scouring depth system / Dong-Ru Lin," 國立臺灣大學土木工程學研究所, 2021. [52]林宥任, "無線監測應用於橋梁管理之開發與實測 = Development and implementation of wireless sensor network for bridge management / You-Ren Lin," 碩士論文--國立臺灣大學土木工程學研究所, 2014. [53]維基百科. "MATLAB." https://zh.wikipedia.org/zh-tw/MATLAB#%E4%B8%BB%E8%A6%81%E5%8A%9F%E8%83%BD (accessed Mar. 1, 2024). [54]柯. 張. 陳正興, "結構基礎損傷評估技術發展(I)," 2010. 國家地震工程研究中心技術報告. [55]厲開紋, "運用現地監測與結構模擬評估橋梁基礎之沖刷程度與健康狀態 = Assessing the scouring depth and health condition of bridge foundation through the field monitoring and associated structural modelling / 厲開紋(Kai-Wen Li)撰," Assessing the scouring depth and health condition of bridge foundation through the field monitoring and associated structural modelling., 碩士論文--國立臺灣大學土木工程學研究所, 2012. [56]T. Bao, R. A. Swartz, S. Vitton, Y. Sun, C. Zhang, and Z. Liu, "Critical insights for advanced bridge scour detection using the natural frequency," Journal of Sound and Vibration, vol. 386, pp. 116-133, 2017, doi: https://doi.org/10.1016/j.jsv.2016.06.039. [57]曾惠斌, 陳弘毅, 李璧汝, and 陳靜韋, "以無線感測儀器監測自然頻率之研究-寶橋及萬壽橋為例," 中國土木水利工程學刊, vol. 33, no. 7, pp. 517-527, 2021. [58]邱耀正、劉玉文、黃錦旗、蕭輔沛、邱一哲、邱聰智、黃世建, "校舍建築構架式鋼板補強現地試驗分析," 2008. [59]交通部, 公路橋梁耐震設計規範. 中華民國政府出版品, 2018. [60]鄭明淵, 廖國偉, 吳育偉, 林雅雯, and 郭佑綱, "橋梁振動頻率量測方法與安全評估模式之研發," 港灣季刊, no. 106, pp. 42-62, 2017. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94269 | - |
| dc.description.abstract | 隨著氣候變遷的加劇,極端氣候對基礎設施的破壞亦愈行嚴重。其中,橋梁基礎的淘刷攸關橋梁安全甚鉅,但頻繁發生的特大暴雨對橋梁基礎造成沖刷,嚴重影響橋梁安全。與傳統的有線或水下測量儀器不同,透過量測橋梁上部結構的動力參數,可以反映橋墩基礎與土壤互制系統的特性,間接推估橋梁基礎淘刷的嚴重程度,同時也可避免儀器於颱風季節遭受損壞。惟測量所得之動力參數可能受到不明來源的外在環境干擾,而以快速傅立葉轉換(Fast Fourier Transformation,FFT)處理所得之加速度數據後,有錯誤識別橋梁自然頻率的風險。因此本研究嘗試以短時傅立葉轉換(short-time Fourier transform,STFT)延伸發展出的方法去除測量所得加速度數據中之干擾因素,以更正確且穩定地識別橋梁的自然頻率。
本研究採用無線感測儀器、MMF KB12VD加速度計進行微振量測試驗,後續則使用Arduino Uno介面控制版、Xbee無線傳輸模組等開源軟體(Open Source),進行資料蒐集與傳輸,再以MATLAB 作為資料處理及示波器,將測得之加速度值進行數位濾波並嘗試以「短時傅立葉轉換沿時間軸加總法」 (STFTCATS),取代快速傅立葉轉換(FFT )識別橋梁的自然頻率。本研究選取了臺北市基隆河上的成美長壽橋、南湖大橋及景美溪上的萬壽橋所量測到的微振訊號加以分析,確認「短時傅立葉轉換沿時間軸加總法」(STFTCATS)相對於快速傅立葉轉換(FFT )較能識別橋梁自然頻率,且較為穩定。 本研究另選取了基隆河上的南湖大橋以有限元素法SAP2000軟體建立模型,並以土壤彈簧模擬土壤與基礎間的互制行為,藉著逐層解除基礎土壤彈簧的束制,獲得橋梁自然頻率與基礎淘刷深度關係圖。結果顯示,橋梁之自然頻率確隨淘刷之深度而降低。經由適當地設定邊界條件,模擬與現場實測之自然頻率差異約為+0.19%,模擬與現場實測之淘刷深度差異約為+5.50%。顯示所獲得之自然頻率-淘刷深度關係圖應具實用性。 本研究所提供之基礎淘刷評估適用於災害發生之前後,用以與基礎不受淘刷時之自然頻率做一比較以作為預警或災後復舊之參考。另宜配合基樁耐洪能力分析和極限承載能力之評估,以訂定適當之頻率警戒值。 | zh_TW |
| dc.description.abstract | As climate change becomes more severe, so infrastructure is being damaged more by extreme weather. In particular, extreme rainstorms are occurring more often and are scouring the foundations of bridges, seriously affecting their safety. Unlike traditional wired or underwater measuring instruments, measuring the dynamic parameters of the bridge superstructure can reflect the characteristics of the soil-foundation interaction and indirectly estimate the scour of bridge foundation and so avoid the device being destroyed during typhoon season. However, the measured dynamic parameters may be affected by external environmental interference from unknown sources, and there is a risk of misidentifying the natural frequency of the bridge after processing the acceleration data obtained with Fast Fourier Transformation (FFT). Therefore, this study attempts to use a method developed by the short-time Fourier transform (STFT) to remove interference factors in the measured acceleration data to more accurately and stably identify the natural frequency of the bridge.
In the study, a wireless sensing instrument was used to measure bridge ambient vibration, it uses an accelerometer and an open-source Arduino Uno microcontroller board and XBee wireless transmission module for data collection and transmission, with MATLAB used for the subsequent data processing, including digital filtering and identifying the natural frequency of the bridge using the short-time Fourier transform cumulate along time sequence (STFTCATS) method to replace the Fast Fourier Transform (FFT). This study selected the ambient vibration tests by the Chengmei Changshou Bridge on the Keelung River and the Wanshou Bridge on the Jingmei River in Taipei City for analysis, and confirmed that STFTCATS is better than FFT in identifying the natural frequency of bridges and is more stable. This study also selected the Nanhu Bridge on the Keelung River to build a model using the finite element method SAP2000 software, and used soil springs to simulate the interaction between the soil and the foundation. By releasing the restraints of the foundation soil springs layer by layer, the simulated scour depth–natural frequency relationship was obtained. The results show that the natural frequency of the bridge does decrease with the scour depth. By appropriately setting the boundary conditions, the difference in natural frequency between simulation and field measurement is approximately +0.19%, and the difference in scour depth between simulation and field measurement is approximately +5.50%. Displaying the simulated scour depth–natural frequency relationship should be practical. The scour assessment provided by this study is applicable before and after a disaster, and can be compared with the natural frequency when the foundation is not scoured as a reference for early warning or post-disaster recovery. In addition, it should be combined with flood-resisting capacity analysis and the assessment of ultimate bearing capacity of foundation piles to determine appropriate frequency warning standard. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T16:32:19Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-15T16:32:19Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iv 目次 vi 圖次 x 表次 xiii 第1章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 3 1.3 研究的範圍及限制 4 1.4 論文架構 5 1.5 研究架構 6 第2章 文獻回顧 8 2.1 淘刷 8 2.1.1 淘刷種類 8 2.1.2 監測技術 10 2.2 橋梁振動量測方法 15 2.2.1 結構的自然頻率 15 2.2.2 橋梁結構的動力試驗 16 2.2.3 淘刷深度和橋梁自然頻率的關係 18 2.3 振動訊號分析方法 19 2.3.1 時域分析 19 2.3.2 頻譜分析 19 2.3.3 時頻分析 20 2.3.4 數位濾波器 22 2.4 無線感測網路 23 2.5 自製無線感測儀器之便利性及經濟性優勢 25 2.5.1 有線及無線網路之比較 26 2.5.2 現場人員測量所需費用 26 2.6 與先前研究之比較 27 第3章 研究方法 28 3.1 整體研究架構與概念 28 3.2 訊號處理方法 29 3.2.1 線性穩態及依時變異訊號之識別差異 29 3.2.2 微振量測依時變異訊號之處理概念 32 3.3 識別橋梁自然頻率的步驟 34 第4章 案例研究與驗證 36 4.1 本研究使用之無線感測儀器 36 4.1.1 感測器 37 4.1.2 介面控制版 38 4.1.3 無線傳輸模組 41 4.1.4 電源供應 42 4.2 儀器訊號傳輸 43 4.2.1 感測節點 43 4.2.2 網路協調器 44 4.2.3 電腦端處理 45 4.3 儀器性能介紹 46 4.4 測量方向及點位 48 4.5 STFTCATS法之現地量測驗證 48 4.5.1 與先前研究萬壽橋比較 49 4.5.2 成美長壽橋現地量測 54 4.5.3 南湖大橋現地量測 57 4.6 小結 60 第5章 數值模擬驗證 61 5.1 有限元素軟體 61 5.2 建模步驟 62 5.2.1 橋梁之竣工圖及相關資料之取得 62 5.2.2 建模單元之界定 63 5.2.3 橋梁各部尺寸、材料及淘刷基準高程設定 64 5.2.4 橋墩柱之建模 66 5.2.5 梁之建模 68 5.2.6 橋面版之建模 70 5.2.7 樁帽之建模 73 5.2.8 基樁之建模 74 5.2.9 土壤結構互制之建模 75 5.2.10 模型模擬結果 85 5.2.11 獲取橋梁自然頻率與淘刷深度之關係圖 88 5.3 模擬結果與現地量測資料之分析 89 5.3.1 河床現地高程之取得 90 5.3.2 現場頻率及淘刷深度實測值與模擬值之比較 92 5.4 小結 93 第6章 結論與建議 95 6.1 結論 95 6.2 建議 96 參考文獻 98 附錄 106 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 基礎淘刷 | zh_TW |
| dc.subject | 有限元素分析 | zh_TW |
| dc.subject | 短時傅立葉轉換 | zh_TW |
| dc.subject | 微振試驗 | zh_TW |
| dc.subject | 無線感測儀器 | zh_TW |
| dc.subject | finite element analysis | en |
| dc.subject | ambient vibration test | en |
| dc.subject | wireless sensing | en |
| dc.subject | bridge scouring | en |
| dc.subject | short-time Fourier transform | en |
| dc.title | 應用無線感測儀器與微振試驗評估橋梁基礎淘刷之研究 | zh_TW |
| dc.title | Research on Application of Wireless Sensing Instruments and Ambient Vibration Test to Evaluate Bridge Foundation Scour | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 鄭明淵;楊亦東;曾仁杰;張陸滿;荷世平;陳柏翰 | zh_TW |
| dc.contributor.oralexamcommittee | Min-Yuan Cheng;I-Tung Yang;Ren-Jye Dzeng;Luh-Maan CHANG;Shih-Ping Ho;Po-Han CHEN | en |
| dc.subject.keyword | 無線感測儀器,微振試驗,短時傅立葉轉換,基礎淘刷,有限元素分析, | zh_TW |
| dc.subject.keyword | wireless sensing,ambient vibration test,short-time Fourier transform,bridge scouring,finite element analysis, | en |
| dc.relation.page | 118 | - |
| dc.identifier.doi | 10.6342/NTU202403208 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-06 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 9.84 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
