請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94187
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李世光 | zh_TW |
dc.contributor.advisor | Chih-Kung Lee | en |
dc.contributor.author | 李玟儀 | zh_TW |
dc.contributor.author | Wen-Yi Li | en |
dc.date.accessioned | 2024-08-14T17:08:48Z | - |
dc.date.available | 2024-08-15 | - |
dc.date.copyright | 2024-08-14 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-02 | - |
dc.identifier.citation | [1] "Motion Control Market Revenue Outlook by Product Type (General Motion Control, Computer Numerical Control), Component (Actuators & Mechanical Systems, Drives, Motors, Motion Controllers, Sensors & Feedback Devices, Software & Services), System (Open-Loop Systems, Closed-Loop Systems), Industry (Automotive, Food & Beverage, Semiconductor & Electronics, Medical, Pharmaceuticals, & Cosmetics, Metal & Machinery Manufacturing, Aerospace & Defense– Forecast to 2030." P&S Intelligence. https://www.psmarketresearch.com/market-analysis/motion-control-market
[2] "Motion Control Market Outlook (2023 to 2033)." Fact.MR. https://www.factmr.com/report/335/motion-control-market [3] S. Devasia, E. Eleftheriou, and S. O. R. Moheimani, "A Survey of Control Issues in Nanopositioning," IEEE Transactions on Control Systems Technology, vol. 15, no. 5, pp. 802-823, 2007, doi: 10.1109/TCST.2007.903345. [4] "Piezoelectric Devices Market Size & Share Analysis - Trends, Drivers, Competitive Landscape, and Forecasts (2024-2030)." P&S Intelligence. https://www.psmarketresearch.com/market-analysis/piezoelectric-devices-market [5] "Piezoelectric Motor Market- Globao Market Insights 2020 to 2030." Fact.MR. https://www.factmr.com/report/2438/piezoelectric-motor-market [6] K. Uchino, "Introduction to Piezoelectric Actuators: Research Misconceptions and Rectifications," Japanese Journal of Applied Physics, vol. 58, no. SG, p. SG0803, 2019. [7] 朱宗佑, "雙頻雙模態壓電馬達之最佳化設計," 碩士論文, 應用力學所, 國立臺灣大學, 2018. [8] 蘇文群, "以希爾伯特轉換設計多頻多模態壓電線性馬達," 碩士論文, 應用力學所, 國立臺灣大學, 2020. [9] 高苑庭, "以希爾伯特轉換最佳化多方向傳遞波驅動的二維壓電平板致動器," 碩士論文, 工程科學及海洋工程學系, 國立臺灣大學, 2020. [10] 黃郁翔, "以希爾伯特轉換成本函數分析之最佳化高模態傳遞波及其在多方向二維壓電平板致動器之應用," 碩士論文, 工程科學及海洋工程學系, 國立臺灣大學, 2022. [11] 林育民, "以雙頻雙模態激發之二維傳遞波產生器開發及在二維壓電馬達之應用," 碩士論文, 工程科學及海洋工程學系, 國立臺灣大學, 2019. [12] 楊孟翰, "以模態疊加之空間及時間相位探討行進波於二維有限結構上產生之研究," 碩士論文, 工程科學及海洋工程學系, 國立臺灣大學, 2023. [13] 陳詳達, "以模態疊加驅動多自由度壓電馬達之設計與開發," 碩士論文, 工程科學及海洋工程學系, 國立臺灣大學, 2023. [14] T. Takano and Y. Tomikawa, "Linearly Moving Ultrasonic Motor using a Multi-Mode Vibrator," Japanese Journal of Applied Physics, vol. 28, no. S1, p. 164, 1989. [15] A. Shafik and R. Ben Mrad, "Piezoelectric Motor Technology: A Review," in Nanopositioning Technologies: Fundamentals and Applications, C. Ru, X. Liu, and Y. Sun Eds. Cham: Springer International Publishing, 2016, pp. 33-59. [16] Y. Liu, J. Deng, and Q. Su, "Review on Multi-Degree-of-Freedom Piezoelectric Motion Stage," IEEE Access, vol. 6, pp. 59986-60004, 2018, doi: 10.1109/ACCESS.2018.2875940. [17] M. Kuribayashi, S. Ueha, and E. Mori, "Excitation Conditions of Flexural Traveling Waves for a Reversible Ultrasonic Linear Motor," The Journal of the Acoustical Society of America, vol. 77, no. 4, pp. 1431-1435, 1985. [18] L. Byoung-Gook and P. I. Ro, "An Object Transport System using Flexural Ultrasonic Progressive Waves generated by Two-Mode Excitation," IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 47, no. 4, pp. 994-999, 2000, doi: 10.1109/58.852083. [19] H. Hariri, Y. Bernard, and A. Razek, "A Traveling Wave Piezoelectric Beam Robot," Smart Materials and Structures, vol. 23, no. 2, p. 025013, 2013/12/23 2014, doi: 10.1088/0964-1726/23/2/025013. [20] H. Hariri, Y. Bernard, and A. Razek, "2-DTraveling Wave driven Piezoelectric Plate Robot for Planar Motion," IEEE/ASME Transactions on Mechatronics, vol. 23, no. 1, pp. 242-251, 2018. [21] Y. Shan, J. E. Speich, and K. K. Leang, "Low-Cost IR Reflective Sensors for Submicrolevel Position Measurement and Control," IEEE/ASME Transactions on Mechatronics, vol. 13, no. 6, pp. 700-709, 2008, doi: 10.1109/TMECH.2008.2005407. [22] G. Benet, F. Blanes, J. E. Simó, and P. Pérez, "Using Infrared Sensors for Distance Measurement in MobileRobots," Robotics and Autonomous Systems, vol. 40, no. 4, pp. 255-266, Sep. 2002, doi: https://doi.org/10.1016/S0921-8890(02)00271-3. [23] P.-J. Ko, Y.-P. Wang, and S.-C. Tien, "Inverse-Feedforward and Robust-Feedback control for High-Speed Operation on Piezo-Stages," International Journal of Control, vol. 86, no. 2, pp. 197-209, 2013/02/01 2013, doi: 10.1080/00207179.2012.721568. [24] Y. Liu, J. Shan, and U. Gabbert, "Feedback/Feedforward Control of Hysteresis-Compensated Piezoelectric Actuators for High-Speed Scanning Applications," Smart Materials and Structures, vol. 24, no. 1, p. 015012, 2014/11/28 2015, doi: 10.1088/0964-1726/24/1/015012. [25] M. Shafiq, A. Saleem, and M. Mesbah, "Model-Free Data Driven Control for Trajectory Tracking of an Amplified Piezoelectric Actuator," Sensors and Actuators A: Physical, vol. 279, pp. 27-35, 2018/08/15/ 2018, doi: https://doi.org/10.1016/j.sna.2018.05.010. [26] Z. Hou and S. Jin, Model Free Adaptive Control. CRC press Boca Raton, FL, USA: , 2013. [27] K. K. Tan, L. Tong Heng, and H. X. Zhou, "Micro-Positioning of Linear-Piezoelectric Motors Based on a Learning Nonlinear PID Controller," IEEE/ASME Transactions on Mechatronics, vol. 6, no. 4, pp. 428-436, 2001, doi: 10.1109/3516.974856. [28] M. Fliess and C. Join, "Model-Free Control and Intelligent PID Controllers: Towards a Possible Trivialization of Nonlinear Control?," IFAC Proceedings Volumes, vol. 42, no. 10, pp. 1531-1550, 2009/01/01/ 2009, doi: https://doi.org/10.3182/20090706-3-FR-2004.00256. [29] M.-C. Tsai. "如何調整PID控制參數." NCKU Electric Motor Technology Research Center. [30] S. Mishra, L. Unnikrishnan, S. K. Nayak, and S. Mohanty, "Advances in Piezoelectric Polymer Composites for Energy Harvesting Applications: A Systematic Review," Macromolecular Materials and Engineering, vol. 304, no. 1, p. 1800463, 2019, doi: https://doi.org/10.1002/mame.201800463. [31] M. Vijaya, Piezoelectric Materials and Devices: Applications in Engineering and Medical Sciences. CRC press, 2012. [32] 賴似蓉, "以希爾伯特轉換最佳化之自走式壓電行進波旋轉致動器," 碩士論文, 國立臺灣大學應用力學所, 2023. [33] D. F. Nelson, "Theory of Nonlinear Electroacoustics of Dielectric, Piezoelectric, and Pyroelectric Crystals," The Journal of the Acoustical Society of America, vol. 63, no. 6, pp. 1738-1748, 1978, doi: 10.1121/1.381913. [34] J. Yang, An Introduction to the Theory of Piezoelectricity. Springer, 2005. [35] C.-K. Lee, "Theory of Laminated Piezoelectric Plates for the Design of Distributed Sensors/Actuators. Part I: Governing Equations and Reciprocal Relationships," The Journal of the Acoustical Society of America, vol. 87, no. 3, pp. 1144-1158, 1990. [36] A. Meitzler, H. Tiersten, A. Warner, D. Berlincourt, G. Couqin, and F. Welsh III, "IEEE Standard on Piezoelectricity," ed: Society, 1988. [37] K. F. Graff, Wave Motion in Elastic Solids. Courier Corporation, 2012. [38] M. Feldman, "Hilbert Transform in Vibration Analysis," Mechanical systems and signal processing, vol. 25, no. 3, pp. 735-802, 2011. [39] "Infrared Proximity Sensor Short Range - Sharp GP2Y0A41SK0F." https://www.sparkfun.com/products/12728 [40] "myRIO-1900." https://www.ni.com/zh-tw/shop/model/myrio-1900.html [41] "SHIMPO Manual Test Stand電動推拉力機, FGS-50E-H (High Speed)." https://www.ynghorng.com.tw/zh-tw/1-2869-163032/product/Manual-Test-Stand%E9%9B%BB%E5%8B%95%E6%8E%A8%E6%8B%89%E5%8A%9B%E6%A9%9F-50E-H-L-id652622.html [42] "KEYENCE 超高速/ 高精度 CMOS 雷射位移感測器, LK-H052." https://www.keyence.com.tw/products/measure/laser-1d/lk-g5000/models/lk-h052/ | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94187 | - |
dc.description.abstract | 本研究旨在開發一平面壓電馬達的路徑補償控制系統,以突破過去針對壓電馬達結構設計及驅動參數優化之瓶頸。利用市售平價之紅外線距離感測器,提升補償控制系統之經濟效益,傳統應用於壓電馬達的感測器通常價格高昂,難以符合實驗成本。本研究採用四個市售之平價紅外線距離感測器作為系統之感測部分,透過使用電動推拉力機及雷射位移計的多次反覆測量進行校準,使其能足夠準確判斷平面壓電馬達的即時移動狀況,並使用myRIO-1900 (National Instruments) 作為控制器,實現感測、控制及驅動平面壓電馬達之功能。基於團隊先前研發的二維壓電致動器設計,本研究將其套用至開發的路徑補償控制系統中進行驗證,透過希爾伯特轉換分析方法,最佳化壓電馬達的驅動參數,並使用數值模擬分析與有限元素模擬驗證希爾伯特轉換分析方法的可行性,再利用雷射測振儀觀察壓電馬達結構表面的振動波形,成功驗證最佳化之驅動參數,透過調整路徑補償控制系統中不同修正頻率及平面壓電馬達的總輸入電壓,觀察補償控制系統內之壓電馬達之行走準確度、行走速度及載重能力。相對於開迴路未控制的狀態,本研究所開發之路徑補償控制系統顯著的降低了平面壓電馬達在不同運動方向上的偏移誤差,於+x運動方向的誤差減少了85.9%;於-x運動方向的誤差減少了84.2%;於+y運動方向的誤差減少了41.54%,而於-y運動方向的誤差減少了70.81%,且其最大負載連同結構於-x運動方向能達到160 g荷重,該荷重下的平均速度為-4.69 mm/s,最大偏移誤差為-0.8 mm,驗證了本研究所提出的路徑補償控制系統之可行性。 | zh_TW |
dc.description.abstract | This study aims to develop a trajectory compensation control system for a planar two-dimensional piezoelectric motor, addressing the previous bottlenecks in piezoelectric motor structural design and driving parameter optimization. It investigates the feasibility of using commercially available, low-cost IR distance measuring sensors to enhance the economic efficiency of the control system, given that traditional sensors for piezoelectric motors are usually expensive and thus do not meet experimental cost constraints. Four IR sensors were calibrated through multiple iterative measurements by an electric push-pull force machine and a laser displacement meter. This enabled accurate real-time assessment of the planar two-dimensional piezoelectric motor's movement. myRIO-1900 (National Instruments) was employed as the controller for control and driving functions. Building on our team's previous two-dimensional piezoelectric actuator design, we integrated it into a trajectory compensation control system for validation. We optimized its driving parameters using Hilbert transform analysis, and its effectiveness was validated through numerical simulations, finite element analysis, and laser vibrometer observations. Compared to an open-loop system, the closed-loop system significantly reduced displacement errors. In the +x direction, the error was reduced by 85.9%, in the -x direction by 84.2%, in the +y direction by 41.54%, and in the -y direction by 70.81%. This reduction in errors is significant as it demonstrates the improved accuracy and precision of the compensation system. The system also achieved a maximum load capacity, including the structure, of 160 g in the -x direction, with an average speed of - 4.69 mm/s and a maximum displacement error of -0.8 mm. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-14T17:08:48Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-14T17:08:48Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iii Abstract iv 目次 v 圖次 x 表次 xxi 第1章 緒論 1 1.1 壓電產業及市場趨勢 1 1.2 本研究團隊開發之壓電馬達 2 1.3 研究背景與動機 5 1.4 文獻回顧 6 1.4.1 壓電馬達 6 1.4.2 紅外線距離感測器 11 1.4.3 控制系統 14 1.5 論文架構 17 第2章 平面壓電馬達系統之設計及驅動方法 19 2.1 系統架構 19 2.2 平面壓電馬達結構與材料介紹 22 2.2.1 材料之選擇與特性 22 2.2.2 複合材料致動器之結構 25 2.3 補償控制設計 26 2.3.1 補償控制策略及方法 26 第3章 理論推導及壓電馬達設計 29 3.1 理論推導 29 3.1.1 壓電物性組成律方程式 29 3.1.2 壓電薄板物性方程式 32 3.1.3 有效表面電極 38 3.2 二維壓電致動器理論 39 3.2.1 統御方程式推導 39 3.2.2 整數倍頻驅動理論 50 3.3 希爾伯特轉換 51 3.3.1 理論介紹 51 3.3.2 解析訊號於正方向實軸半徑差最佳化分析 53 3.3.3 解析訊號於複數平面投影之對稱性最佳化分析 60 3.3.4 利用成本函數J1及J3最佳化驅動參數 63 3.4 壓電位置設計方法及理論 64 第4章 平面壓電馬達結構設計及製程 66 4.1 不鏽鋼基板結構設計 66 4.2 致動器位置設計及製程 67 4.2.1 模態共振頻率 67 4.2.2 X方向壓電片位置 69 4.2.3 Y方向壓電片位置 70 4.2.4 雙方向最佳壓電片位置 72 4.3 邊界夾具開發 75 4.4 驅動支腳開發 76 4.4.1 驅動支腳結構設計 76 4.4.2 驅動支腳位置設計 77 4.5 平面壓電馬達之控制系統 78 4.5.1 系統設備及架設 78 4.5.2 軟體程式設計 80 第5章 理論數值模擬 85 5.1 數值模擬之建立與參數設定 85 5.2 結構模態分析 86 5.3 x方向行進波最佳驅動參數分析 88 5.3.1 不同電壓比的貢獻與影響 88 5.3.2 不同相位差的貢獻與影響 91 5.3.3 行進波方向控制與最佳化 95 5.4 y方向行進波最佳驅動參數分析 95 5.4.1 不同電壓比的貢獻與影響 96 5.4.2 不同相位差的貢獻與影響 99 5.4.3 行進波方向控制與最佳化 103 5.5 驅動支腳位置之擺動軌跡分析 103 第6章 有限元素模擬分析 105 6.1 有限元素模型之建立與參數設定 105 6.2 結構模態分析 106 6.3 等效材料參數 107 6.4 x方向行進波最佳驅動參數分析 109 6.4.1 驅動相位差的最佳化分析 109 6.4.2 行進波運動分析與方向控制 109 6.5 y方向行進波最佳驅動參數分析 112 6.5.1 驅動相位差的最佳化分析 112 6.5.2 行進波運動分析與方向控制 112 第7章 平面壓電馬達系統之實驗結果與討論 115 7.1 平面壓電馬達之實驗架設 115 7.2 平面壓電馬達之共振頻量測 116 7.3 紅外線距離感測器之分析與最佳化 118 7.3.1 紅外線距離感測器之解析度及性能驗證 119 7.3.2 紅外線距離感測器之校準 123 7.4 等效材料參數 126 7.5 x方向行進波驗證實驗 128 7.5.1 開迴路之不同相位差與電壓比的貢獻與影響實驗驗證 128 7.5.2 開迴路之不同驅動支腳位置推動效率驗證 131 7.5.3 開迴路之最佳化行進波之實驗驗證 133 7.6 平面壓電馬達系統驅動x方向位移實驗驗證 139 7.6.1 路徑補償控制之x方向位移控制方法 139 7.6.2 路徑補償控制之x方向比例控制器實驗驗證 140 7.6.3 路徑補償控制之x方向位移實驗驗證 145 7.6.4 路徑補償控制之x方向載重實驗驗證 159 7.7 y方向行進波驗證實驗 172 7.7.1 開迴路之不同相位差與電壓比的貢獻與影響實驗驗證 172 7.7.2 開迴路之最佳化行進波之實驗驗證 175 7.8 平面壓電馬達系統驅動y方向位移實驗驗證 180 7.8.1 路徑補償控制之y方向位移控制方法 180 7.8.2 路徑補償控制之y方向比例控制器實驗驗證 182 7.8.3 路徑補償控制之y方向位移實驗驗證 187 7.8.4 路徑補償控制之y方向載重實驗驗證 191 7.9 平面壓電馬達系統之往復驅動實驗 203 7.9.1 x方向往復驅動實驗 203 7.9.2 y方向往復驅動實驗 204 第8章 結果與未來展望 207 8.1 結論 207 8.2 未來展望 208 References 209 | - |
dc.language.iso | zh_TW | - |
dc.title | 以市售紅外線距離感測器進行平面壓電馬達的路徑補償控制 | zh_TW |
dc.title | Trajectory Compensation Control of a Planar Two-dimensional Piezoelectric Motor Using Four Low-Cost IR Distance Measuring Sensors | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.coadvisor | 許聿翔 | zh_TW |
dc.contributor.coadvisor | Yu-Hsiang Hsu | en |
dc.contributor.oralexamcommittee | 吳文中;謝志文;柯文清 | zh_TW |
dc.contributor.oralexamcommittee | Wen-Jong Wu;Chih-Wen Hsieh;Wen-Ching Ko | en |
dc.subject.keyword | 路徑補償控制系統,紅外線距離感測器,myRIO,壓電馬達,希爾伯特轉換, | zh_TW |
dc.subject.keyword | trajectory compensation control system,IR distance measuring sensor,myRIO,piezoelectric motor,Hilbert transform, | en |
dc.relation.page | 212 | - |
dc.identifier.doi | 10.6342/NTU202402771 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2024-08-06 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 工程科學及海洋工程學系 | - |
顯示於系所單位: | 工程科學及海洋工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 18.29 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。