Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94134
標題: 以防災救治為導向之高通用性物體偵測與分割模型
Towards a Generalizable Object Detection and Segmentation Model for Post-disaster Response Systems
作者: 黃泓博
Hong-Bo Huang
指導教授: 吳日騰
Rih-Teng Wu
關鍵字: 深度學習,物體偵測,影像分割,通用性能力,網路架構,災後響應,
deep learning,object detection,object segmentation,Generalization capability,network architecture,post-disaster responses,
出版年 : 2024
學位: 碩士
摘要: 本研究基於現有State-of-art檢測模型更著重在檢測時運算效能之提升,而欠缺針對未知複雜場景通用性(Generalization Capability)之探討的背景之下,結合防救災領域針對災難現場細部場景的數據集嚴重不足的現狀,在防災救治願景下,實現高通用性物體偵測與分割模型建置。為此,本研究旨在開發一種高通用性的物體偵測與分割模型,以提升災後快速評估建築損傷和制定援救計畫的效率。首先,本研究開發了一種新型窗戶偵測模型用於災難救援,名為FOpen-YOLO。該模型在來自巴黎和臺灣的非災害街景圖像上進行訓練,並在包括無人機和災後圖像在內的各種未知複雜場景的數據集上評估其通用能力。結果表明,所提出的FOpen-YOLO在多個測試數據集上超過了基線模型,全球街景圖像的準確率提高了15.1%,無人機拍攝的圖像增強了26.6%,災後損壞建築的窗戶檢測提升了21.2%。其次,本研究開發了一種新型裂縫分割模型用於災損評估,GCUnet,利用時間域和頻率域對特徵圖進行處理,感知裂縫在圖像中的分佈,學習如何區分裂縫和干擾,實現通過像素級的裂縫分割數據進行訓練,完成在災害室內場景中高效的裂縫檢測。結果表明,所提出的GCUnet在災害室內場景上超過了基線模型Unet,MIoU提升了約17.6%,Dice的表現增強了13.1%。最後,本研究通過有效感受野分析解釋了高通用性模型的性能差異,發現高通用性模型在特徵提取層和目標輸出層的有效感受野具有規律特點。這些發現為未來提升防災救治系統的效能提供了重要依據。
This study addresses the limited exploration of the generalization capability of current state-of-the-art detection models in unknown complex scenarios. Due to the scarcity of detailed disaster site datasets, this study aims to create a highly generalizable object detection and segmentation model for disaster mitigation. The objective is to improve the efficiency of rapid post-disaster building damage assessment and rescue planning. The study introduced a new window detection model named FOpen-YOLO to achieve this. This model underwent training using non-disaster street view images from Paris and Taiwan and was subsequently tested in various complex scenarios, including UAV and post-disaster images. The results revealed that FOpen-YOLO outperformed the baseline model across multiple test datasets, demonstrating a 15.1% improvement in accuracy on global street view images, a 26.6% enhancement on UAV-captured images, and a 21.2% increase in window detection for damaged buildings post-disaster. Furthermore, the study also developed a novel crack segmentation model, GCUnet, which utilizes feature maps in both time and frequency domains to detect cracks in images and differentiate them from noise. Training the model using pixel-level crack segmentation data resulted in efficient crack detection in indoor disaster scenarios. In comparison to the baseline model Unet, results indicated that GCUnet surpassed it with a 17.6% improvement in MIoU and a 13.1% increase in the Dice coefficient. Finally, the study explains the performance variances of the highly generalizable models through practical receptive field analysis, unveiling distinctive characteristics in the feature extraction and target output layers. These findings establish an essential foundation for future enhancements in the effectiveness of disaster prevention and rescue systems.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94134
DOI: 10.6342/NTU202402875
全文授權: 同意授權(限校園內公開)
電子全文公開日期: 2026-08-31
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
73.58 MBAdobe PDF檢視/開啟
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved