請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94134完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳日騰 | zh_TW |
| dc.contributor.advisor | Rih-Teng Wu | en |
| dc.contributor.author | 黃泓博 | zh_TW |
| dc.contributor.author | Hong-Bo Huang | en |
| dc.date.accessioned | 2024-08-14T16:53:05Z | - |
| dc.date.available | 2024-08-15 | - |
| dc.date.copyright | 2024-08-14 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-05 | - |
| dc.identifier.citation | [1] Runhe Zhu, Jing Lin, Burcin Becerik-Gerber, and Nan Li. Human-building-emergency interactions and their impact on emergency response performance: A review of the state of the art. Safety Science, 127:104691, 2020.
[2] Markus Obel, P. Mark, M. Neuhausen, and M. Knig. Settlement risk assessment by means of categorized surface infrastructure. In Structural Analysis of Historical Constructions, 2016. [3] Mari-Louise Persson, Arne Roos, and Maria Wall. Influence of window size on the energy balance of low energy houses. Energy and buildings, 38(3):181–188, 2006. [4] Arno Schlueter and Frank Thesseling. Building information model based energy/exergy performance assessment in early design stages. Automation in construction, 18(2):153–163, 2009. [5] Jindong Wang, Cuiling Lan, Chang Liu, Yidong Ouyang, Tao Qin, Wang Lu, Yiqiang Chen, Wenjun Zeng, and S Yu Philip. Generalizing to unseen domains: A survey on domain generalization. IEEE transactions on knowledge and data engineering, 35(8):8052–8072, 2022. [6] Han Zhao, Remi Tachet Des Combes, Kun Zhang, and Geoffrey Gordon. On learning invariant representations for domain adaptation. In International conference on machine learning, pages 7523–7532. PMLR, 2019. [7] Shuang Li, Shiji Song, Gao Huang, Zhengming Ding, and Cheng Wu. Domain invariant and class discriminative feature learning for visual domain adaptation. IEEE transactions on image processing, 27(9):4260–4273, 2018. [8] Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and Trevor Darrell. Deep domain confusion: Maximizing for domain invariance. arXiv preprint arXiv:1412.3474, 2014. [9] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, Mario March, and Victor Lempitsky. Domain-adversarial training of neural networks. Journal of machine learning research, 17(59):1–35, 2016. [10] Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. A survey of transfer learning. Journal of Big data, 3:1–40, 2016. [11] Lisa Torrey and Jude Shavlik. Transfer learning. In Handbook of research on machine learning applications and trends: algorithms, methods, and techniques, pages 242–264. IGI global, 2010. [12] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on knowledge and data engineering, 22(10):1345–1359, 2009. [13] Qingchao Chen, Yang Liu, Zhaowen Wang, Ian Wassell, and Kevin Chetty. Re-weighted adversarial adaptation network for unsupervised domain adaptation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 7976–7985, 2018. [14] Zhaoyang Niu, Guoqiang Zhong, and Hui Yu. A review on the attention mechanism of deep learning. Neurocomputing, 452:48–62, 2021. [15] Meng-Hao Guo, Tian-Xing Xu, Jiang-Jiang Liu, Zheng-Ning Liu, Peng-Tao Jiang, Tai-Jiang Mu, Song-Hai Zhang, Ralph R Martin, Ming-Ming Cheng, and Shi-Min Hu. Attention mechanisms in computer vision: A survey. Computational visual media, 8(3):331–368, 2022. [16] Jan K Chorowski, Dzmitry Bahdanau, Dmitriy Serdyuk, Kyunghyun Cho, and Yoshua Bengio. Attention-based models for speech recognition. Advances in neural information processing systems, 28, 2015. [17] Fei Wang, Mengqing Jiang, Chen Qian, Shuo Yang, Cheng Li, Honggang Zhang, Xiaogang Wang, and Xiaoou Tang. Residual attention network for image classification. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 3156–3164, 2017. [18] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 7132–7141, 2018. [19] Jun Fu, Jing Liu, Haijie Tian, Yong Li, Yongjun Bao, Zhiwei Fang, and Hanqing Lu. Dual attention network for scene segmentation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 3146–3154, 2019. [20] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 6848–6856, 2018. [21] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian Schroff, and Hartwig Adam. Encoder-decoder with atrous separable convolution for semantic image segmentation. In Proceedings of the European conference on computer vision (ECCV), pages 801–818, 2018. [22] Ozan Oktay, Jo Schlemper, Loic Le Folgoc, Matthew Lee, Mattias Heinrich, Kazunari Misawa, Kensaku Mori, Steven McDonagh, Nils Y Hammerla, Bernhard Kainz, et al. Attention u-net: Learning where to look for the pancreas. arXiv preprint arXiv:1804.03999, 2018. [23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016. [24] Ran Cheng, Ryan Razani, Ehsan Taghavi, Enxu Li, and Bingbing Liu. 2-s3net: Attentive feature fusion with adaptive feature selection for sparse semantic segmentation network. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 12547–12556, 2021. [25] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 4700–4708, 2017. [26] Gao Huang, Shichen Liu, Laurens Van der Maaten, and Kilian Q Weinberger. Condensenet: An efficient densenet using learned group convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2752–2761, 2018. [27] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie. Feature pyramid networks for object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2117–2125, 2017. [28] Chengyang Wang and Caiming Zhong. Adaptive feature pyramid networks for object detection. IEEE Access, 9:107024–107032, 2021. [29] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C Berg. Ssd: Single shot multibox detector. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14, pages 21–37. Springer, 2016. [30] Shuren Zhou and Jia Qiu. Enhanced ssd with interactive multi-scale attention features for object detection. Multimedia Tools and Applications, 80:11539–11556, 2021. [31] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE transactions on pattern analysis and machine intelligence, 40(4):834–848, 2017. [32] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, and Jiaya Jia. Pyramid scene parsing network. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 2881–2890, 2017. [33] Xi Wang, Yongcun Guo, Shuang Wang, Gang Cheng, Xinquan Wang, and Lei He. Rapid detection of incomplete coal and gangue based on improved pspnet. Measurement, 201:111646, 2022. [34] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017. [35] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 4510–4520, 2018. [36] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3. In Proceedings of the IEEE/CVF international conference on computer vision, pages 1314–1324, 2019. [37] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally, and Kurt Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb model size. arXiv preprint arXiv:1602.07360, 2016. [38] Kai Han, Yunhe Wang, Qi Tian, Jianyuan Guo, Chunjing Xu, and Chang Xu. Ghostnet: More features from cheap operations. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 1580–1589, 2020. [39] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in python. the Journal of machine Learning research, 12:2825–2830, 2011. [40] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016. [41] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 580–587, 2014. [42] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international conference on computer vision, pages 1440–1448, 2015. [43] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object detection with region proposal networks. Advances in neural information processing systems, 28, 2015. [44] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Proceedings of the IEEE international conference on computer vision, pages 2961–2969, 2017. [45] Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: Delving into high quality object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 6154–6162, 2018. [46] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 779–788, 2016. [47] Joseph Redmon and Ali Farhadi. Yolo9000: better, faster, stronger. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 7263–7271, 2017. [48] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767, 2018. [49] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4: Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934, 2020. [50] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object detection. In Proceedings of the IEEE international conference on computer vision, pages 2980–2988, 2017. [51] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image segmentation. In Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18, pages 234–241. Springer, 2015. [52] Zongwei Zhou, Md Mahfuzur Rahman Siddiquee, Nima Tajbakhsh, and Jianming Liang. Unet++: A nested u-net architecture for medical image segmentation. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support: 4th International Workshop, DLMIA 2018, and 8th International Workshop, ML-CDS 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 20, 2018, Proceedings 4, pages 3–11. Springer, 2018. [53] Huimin Huang, Lanfen Lin, Ruofeng Tong, Hongjie Hu, Qiaowei Zhang, Yutaro Iwamoto, Xianhua Han, Yen-Wei Chen, and Jian Wu. Unet 3+: A full-scale connected unet for medical image segmentation. In ICASSP 2020-2020 IEEE international conference on acoustics, speech and signal processing (ICASSP), pages 1055–1059. IEEE, 2020. [54] Chen Liang-Chieh, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan Yuille. Semantic image segmentation with deep convolutional nets and fully connected crfs. In International conference on learning representations, 2015. [55] Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethinking atrous convolution for semantic image segmentation. arxiv. arXiv preprint arXiv:1706.05587, 5, 2017. [56] Ayla Ocak, Sinan Melih Nigdeli, Gebrail Bekdaş, and Ümit Işıkdağ. Artificial intelligence and deep learning in civil engineering. In Hybrid Metaheuristics in Structural Engineering: Including Machine Learning Applications, pages 265–288. Springer, 2023. [57] Zhuo Zheng, Yanfei Zhong, Junjue Wang, Ailong Ma, and Liangpei Zhang. Building damage assessment for rapid disaster response with a deep object-based semantic change detection framework: From natural disasters to man-made disasters. Remote Sensing of Environment, 265:112636, 2021. [58] L Belcastro et al. Using social media for sub-event detection during disasters. j. big data 8 (1), 1–22 (2021). [59] Ahmad Kashif, Pogorelov Konstantin, Riegler Michael, Conci Nicola, and Halvorsen Pål. Social media and satellites: disaster event detection, linking and summarization. Multimedia tools and applications, 2018. [60] Haider Ali, Christin Seifert, Nitin Jindal, Lucas Paletta, and Gerhard Paar. Window detection in facades. In 14th International Conference on Image Analysis and Processing (ICIAP 2007), pages 837–842. IEEE, 2007. [61] Ruisheng Wang, Jeff Bach, and Frank P Ferrie. Window detection from mobile lidar data. In 2011 IEEE Workshop on Applications of Computer Vision (WACV), pages 58–65. IEEE, 2011. [62] Marcel Neuhausen and Markus König. Automatic window detection in facade images. Automation in Construction, 96:527–539, 2018. [63] Marcel Neuhausen, Markus Obel, Alexander Martin, Peter Mark, and Markus König. Window detection in facade images for risk assessment in tunneling. Visualization in Engineering, 6:1–16, 2018. [64] Branko Glisic, Jeremy Chen, and David Hubbell. Streicker bridge: A comparison between bragg-grating long-gauge strain and temperature sensors and brillouin scattering-based distributed strain and temperature sensors. In Sensors and smart structures technologies for civil, mechanical, and aerospace systems 2011, volume 7981, pages 674–683. SPIE, 2011. [65] Branko Glisic and Yao Yao. Fiber optic method for health assessment of pipelines subjected to earthquake-induced ground movement. Structural Health Monitoring, 11(6):696–711, 2012. [66] P Frank Pai, Leyland G Young, and Seung-Yoon Lee. A dynamics-based method for crack detection and estimation. Structural Health Monitoring, 2(1):5–25, 2003. [67] Shivprakash Iyer and Sunil K Sinha. A robust approach for automatic detection and segmentation of cracks in underground pipeline images. Image and Vision Computing, 23(10):921–933, 2005. [68] Xiangxiong Kong and Jian Li. Vision-based fatigue crack detection of steel structures using video feature tracking. Computer-Aided Civil and Infrastructure Engineering, 33(9):783–799, 2018. [69] Nils Nordmark and Mola Ayenew. Window detection in facade imagery: a deep learning approach using mask r-cnn. arXiv preprint arXiv:2107.10006, 2021. [70] Tong Zhang, Jiaqi Li, Yilei Jiang, Mengqi Zeng, and Minghui Pang. Position detection of doors and windows based on dspp-yolo. Applied Sciences, 12(21):10770, 2022. [71] Qin Zou, Zheng Zhang, Qingquan Li, Xianbiao Qi, Qian Wang, and Song Wang. Deepcrack: Learning hierarchical convolutional features for crack detection. IEEE transactions on image processing, 28(3):1498–1512, 2018. [72] Lei Zhang, Fan Yang, Yimin Daniel Zhang, and Ying Julie Zhu. Road crack detection using deep convolutional neural network. In 2016 IEEE international conference on image processing (ICIP), pages 3708–3712. IEEE, 2016. [73] Cao Vu Dung et al. Autonomous concrete crack detection using deep fully convolutional neural network. Automation in Construction, 99:52–58, 2019. [74] Wenguang Ma and Wei Ma. Deep window detection in street scenes. KSII Transactions on Internet and Information Systems, 14(2):855–870, February 2020. [75] Paul Yi. Doors and windows dataset. https://universe.roboflow.com/paul-yi-dyfev/doors-and-windows-ca836, sep 2023. visited on 2024-06-30. [76] Glenn Jocher. Ultralytics yolov5 [version 7.0]. https://github.com/ultralytics/yolov5, 2020. AGPL-3.0 License. [77] Glenn Jocher, Ayush Chaurasia, and Jing Qiu. Ultralytics yolo [version 8.0]. https://github.com/ultralytics/ultralytics, 2023. Computer software. [78] Xiang Li, Wenhai Wang, Lijun Wu, Shuo Chen, Xiaolin Hu, Jun Li, Jinhui Tang, and Jian Yang. Generalized focal loss: Learning qualified and distributed bounding boxes for dense object detection. Advances in Neural Information Processing Systems, 33:21002–21012, 2020. [79] Ningning Ma, Xiangyu Zhang, and Jian Sun. Activate or not: Learning customized activation. CoRR, abs/2009.04759, 2020. [80] Kai Han, Yunhe Wang, Qi Tian, Jianyuan Guo, Chunjing Xu, and Chang Xu. Ghostnet: More features from cheap operations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020. [81] Wenjie Luo, Yujia Li, Raquel Urtasun, and Richard S. Zemel. Understanding the effective receptive field in deep convolutional neural networks. CoRR, abs/1701.04128, 2017. [82] Qibin Hou, Daquan Zhou, and Jiashi Feng. Coordinate attention for efficient mobile network design. arxiv 2021. arXiv preprint arXiv:2103.02907, 2021. [83] Mingxing Tan, Ruoming Pang, and Quoc V. Le. Efficientdet: Scalable and efficient object detection. CoRR, abs/1911.09070, 2019. [84] Shu Liu, Lu Qi, Haifang Qin, Jianping Shi, and Jiaya Jia. Path aggregation network for instance segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 8759–8768, 2018. [85] Mingxing Tan, Ruoming Pang, and Quoc V Le. Efficientdet: Scalable and efficient object detection. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 10781–10790, 2020. [86] Yimian Dai, Fabian Gieseke, Stefan Oehmcke, Yiquan Wu, and Kobus Barnard. Attentional feature fusion. In Proceedings of the IEEE/CVF winter conference on applications of computer vision, pages 3560–3569, 2021. [87] F. Yang, Lei Zhang, Sijia Yu, Danil V. Prokhorov, Xue Mei, and Haibin Ling. Feature pyramid and hierarchical boosting network for pavement crack detection. IEEE Transactions on Intelligent Transportation Systems, 21:1525–1535, 2019. [88] Qin Zou, Yu Cao, Qingquan Li, Qingzhou Mao, and Song Wang. Cracktree: Automatic crack detection from pavement images. Pattern Recognition Letters, 33(3):227–238, 2012. [89] Yahui Liu, Jian Yao, Xiaohu Lu, Renping Xie, and Li Li. Deepcrack: A deep hierarchical feature learning architecture for crack segmentation. Neurocomputing, 338:139–153, 2019. [90] Markus Eisenbach, Ronny Stricker, Daniel Seichter, Karl Amende, Klaus Debes, Maximilian Sesselmann, Dirk Ebersbach, Ulrike Stoeckert, and Horst-Michael Gross. How to get pavement distress detection ready for deep learning? a systematic approach. In 2017 international joint conference on neural networks (IJCNN), pages 2039–2047. IEEE, 2017. [91] Myeongsuk Pak and Sanghoon Kim. Crack detection using fully convolutional network in wall-climbing robot. In Advances in Computer Science and Ubiquitous Computing: CSA-CUTE 2019, pages 267–272. Springer, 2021. [92] Yong Shi, Limeng Cui, Zhiquan Qi, Fan Meng, and Zhensong Chen. Automatic road crack detection using random structured forests. IEEE Transactions on Intelligent Transportation Systems, 17(12):3434–3445, 2016. [93] Limeng Cui, Zhiquan Qi, Zhensong Chen, Fan Meng, and Yong Shi. Pavement distress detection using random decision forests. In International Conference on Data Science, pages 95–102. Springer, 2015. [94] Zhili He, Wang Chen, Jian Zhang, and Yu-Hsing Wang. Infrastructure crack segmentation: Boundary guidance method and benchmark dataset. arXiv preprint arXiv:2306.09196, 2023. [95] Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So Kweon. Cbam: Convolutional block attention module. In Proceedings of the European conference on computer vision (ECCV), pages 3–19, 2018. [96] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image segmentation, 2015. [97] Nabil Ibtehaz and M Sohel Rahman. Multiresunet: Rethinking the u-net architecture for multimodal biomedical image segmentation. Neural networks, 121:74–87, 2020. [98] Zongwei Zhou, Md Mahfuzur Rahman Siddiquee, Nima Tajbakhsh, and Jianming Liang. Unet++: A nested u-net architecture for medical image segmentation, 2018. [99] Md Zahangir Alom, Mahmudul Hasan, Chris Yakopcic, Tarek M. Taha, and Vijayan K. Asari. Recurrent residual convolutional neural network based on u-net (r2u-net) for medical image segmentation, 2018. [100] Xu Ma, Jingda Guo, Sihai Tang, Zhinan Qiao, Qi Chen, Qing Yang, and Song Fu. Dcanet: Learning connected attentions for convolutional neural networks. arXiv preprint arXiv:2007.05099, 2020. [101] Jun Fu, Jing Liu, Haijie Tian, Yong Li, Yongjun Bao, Zhiwei Fang, and Hanqing Lu. Dual attention network for scene segmentation, 2019. [102] Bum Jun Kim, Hyeyeon Choi, Hyeonah Jang, Dong Gu Lee, Wonseok Jeong, and Sang Woo Kim. Dead pixel test using effective receptive field. Pattern Recognition Letters, 167:149–156, 2023. [103] Te-Lien Kung and Shih-Kai Hsu. Kitai dazhi’s monitoring data repeatedly reset to zero, exceeding the shutdown standard without stopping, leading to a subsidence disaster caused by uncontrollable quality control and cost pressures. https://www.twreporter.org/a/taipei-kee-tai-dazhi-building-collapse-problems, 2023. Accessed on August 1, 2024. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94134 | - |
| dc.description.abstract | 本研究基於現有State-of-art檢測模型更著重在檢測時運算效能之提升,而欠缺針對未知複雜場景通用性(Generalization Capability)之探討的背景之下,結合防救災領域針對災難現場細部場景的數據集嚴重不足的現狀,在防災救治願景下,實現高通用性物體偵測與分割模型建置。為此,本研究旨在開發一種高通用性的物體偵測與分割模型,以提升災後快速評估建築損傷和制定援救計畫的效率。首先,本研究開發了一種新型窗戶偵測模型用於災難救援,名為FOpen-YOLO。該模型在來自巴黎和臺灣的非災害街景圖像上進行訓練,並在包括無人機和災後圖像在內的各種未知複雜場景的數據集上評估其通用能力。結果表明,所提出的FOpen-YOLO在多個測試數據集上超過了基線模型,全球街景圖像的準確率提高了15.1%,無人機拍攝的圖像增強了26.6%,災後損壞建築的窗戶檢測提升了21.2%。其次,本研究開發了一種新型裂縫分割模型用於災損評估,GCUnet,利用時間域和頻率域對特徵圖進行處理,感知裂縫在圖像中的分佈,學習如何區分裂縫和干擾,實現通過像素級的裂縫分割數據進行訓練,完成在災害室內場景中高效的裂縫檢測。結果表明,所提出的GCUnet在災害室內場景上超過了基線模型Unet,MIoU提升了約17.6%,Dice的表現增強了13.1%。最後,本研究通過有效感受野分析解釋了高通用性模型的性能差異,發現高通用性模型在特徵提取層和目標輸出層的有效感受野具有規律特點。這些發現為未來提升防災救治系統的效能提供了重要依據。 | zh_TW |
| dc.description.abstract | This study addresses the limited exploration of the generalization capability of current state-of-the-art detection models in unknown complex scenarios. Due to the scarcity of detailed disaster site datasets, this study aims to create a highly generalizable object detection and segmentation model for disaster mitigation. The objective is to improve the efficiency of rapid post-disaster building damage assessment and rescue planning. The study introduced a new window detection model named FOpen-YOLO to achieve this. This model underwent training using non-disaster street view images from Paris and Taiwan and was subsequently tested in various complex scenarios, including UAV and post-disaster images. The results revealed that FOpen-YOLO outperformed the baseline model across multiple test datasets, demonstrating a 15.1% improvement in accuracy on global street view images, a 26.6% enhancement on UAV-captured images, and a 21.2% increase in window detection for damaged buildings post-disaster. Furthermore, the study also developed a novel crack segmentation model, GCUnet, which utilizes feature maps in both time and frequency domains to detect cracks in images and differentiate them from noise. Training the model using pixel-level crack segmentation data resulted in efficient crack detection in indoor disaster scenarios. In comparison to the baseline model Unet, results indicated that GCUnet surpassed it with a 17.6% improvement in MIoU and a 13.1% increase in the Dice coefficient. Finally, the study explains the performance variances of the highly generalizable models through practical receptive field analysis, unveiling distinctive characteristics in the feature extraction and target output layers. These findings establish an essential foundation for future enhancements in the effectiveness of disaster prevention and rescue systems. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-14T16:53:04Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-14T16:53:05Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝. . . . . . . . . . . . . . . . . . . . . . i
摘要. . . . . . . . . . . . . . . . . . . . . . iii Abstract . . . . . . . . . . . . . . . . . . . . . . v 目次. . . . . . . . . . . . . . . . . . . . . . vii 圖次. . . . . . . . . . . . . . . . . . . . . . xi 表次. . . . . . . . . . . . . . . . . . . . . . xv 第一章緒論. . . . . . . . . . . . . . . . . . . . . . 1 1.1 研究背景. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 研究動機與目的. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 論文架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 第二章文獻回顧. . . . . . . . . . . . . . . . . . . . . . 5 2.1 領域自適應框架(Domain Adaptation) . . . . . . . . . . . . . . . . . 5 2.2 注意力機制(Attention Mechanism) . . . . . . . . . . . . . . . . . . . 7 2.3 增強特徵融合(Enhanced Feature Fusion) . . . . . . . . . . . . . . . . 8 2.4 輕量級模型設計(Lightweight Model Design) . . . . . . . . . . . . . . 9 2.5 防災救治領域之相關應用. . . . . . . . . . . . . . . . . . . . . . . . 11 2.6 研究貢獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 第三章研究方法. . . . . . . . . . . . . . . . . . . . . . 17 3.1 物體偵測模型之建置. . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.1.1 圖像數據集. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.1.2 基線方法之模型架構——YOLOv5 . . . . . . . . . . . . . . . . . 19 3.1.3 YOLOv8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.1.4 所提出之改進模型架構——FOpen-YOLO . . . . . . . . . . . . . 21 3.1.5 幽靈輕量化卷積(Ghost Convolution, GhostConv) . . . . . . . . . 22 3.1.6 座標注意力機制(Coordinate Attention Mechanism, CA) . . . . . . 24 3.1.7 雙向加權金字塔網路(Weighted Bidirectional Feature Pyramid Networks, BiFPN) . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.1.8 自適應激活函數(Meta-Activate or Not, Meta-ACON) . . . . . . . 26 3.1.9 物體偵測模型之實驗設計. . . . . . . . . . . . . . . . . . . . . . 27 3.2 物體分割模型之建置. . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2.1 圖像數據集. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2.2 基線方法之模型架構——Unet . . . . . . . . . . . . . . . . . . . 31 3.2.3 所提出之改進模型——GCUnet . . . . . . . . . . . . . . . . . . . 33 3.2.4 全局資訊感知(Global Information Perception, GIP) . . . . . . . . 34 3.2.5 卷積塊注意力機制(Convolutional Block Attention Mechanism,CBAM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.2.6 物體語義分割模型之實驗設計. . . . . . . . . . . . . . . . . . . 37 3.3 模型評估方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 第四章結果與討論. . . . . . . . . . . . . . . . . . . . . . 41 4.1 物體偵測模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.1.1 模型訓練結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.1.2 消融實驗結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.1.3 模型預測結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.1.4 模型通用性實驗結果. . . . . . . . . . . . . . . . . . . . . . . . 45 4.2 物體分割模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.2.1 模型訓練結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 4.2.2 消融實驗結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.2.3 模型預測結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.2.4 模型通用性實驗結果. . . . . . . . . . . . . . . . . . . . . . . . 55 4.3 有效感受野分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.3.1 物體偵測模型有效感受野之比較. . . . . . . . . . . . . . . . . . 60 4.3.2 物體分割模型有效感受野之比較. . . . . . . . . . . . . . . . . . 63 第五章防救災之相關應用. . . . . . . . . . . . . . . . . . . . . . 67 5.1 物件偵測模型應用於防救災. . . . . . . . . . . . . . . . . . . . . . 67 5.2 物體分割模型應用於防救災. . . . . . . . . . . . . . . . . . . . . . 70 第六章結論與建議. . . . . . . . . . . . . . . . . . . . . . 73 6.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.2 未來展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 參考文獻. . . . . . . . . . . . . . . . . . . . . . 77 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 災後響應 | zh_TW |
| dc.subject | 通用性能力 | zh_TW |
| dc.subject | 網路架構 | zh_TW |
| dc.subject | 物體偵測 | zh_TW |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | 影像分割 | zh_TW |
| dc.subject | post-disaster responses | en |
| dc.subject | deep learning | en |
| dc.subject | object detection | en |
| dc.subject | object segmentation | en |
| dc.subject | Generalization capability | en |
| dc.subject | network architecture | en |
| dc.title | 以防災救治為導向之高通用性物體偵測與分割模型 | zh_TW |
| dc.title | Towards a Generalizable Object Detection and Segmentation Model for Post-disaster Response Systems | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林之謙;張國鎮;林其穎 | zh_TW |
| dc.contributor.oralexamcommittee | Jacob J. Lin;Kuo-Chun Chang;Chi-Ying Lin | en |
| dc.subject.keyword | 深度學習,物體偵測,影像分割,通用性能力,網路架構,災後響應, | zh_TW |
| dc.subject.keyword | deep learning,object detection,object segmentation,Generalization capability,network architecture,post-disaster responses, | en |
| dc.relation.page | 88 | - |
| dc.identifier.doi | 10.6342/NTU202402875 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-08 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2026-08-31 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 73.58 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
