Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94072| Title: | 可訓練的核函數在量子變分線路中的效益 Benefits of Trainable Kernels in Variational Quantum Circuits |
| Authors: | 黃靜嚴 Jing-Yan Huang |
| Advisor: | 管希聖 Hsi-Sheng Goan |
| Keyword: | 量子機器學習,量子編碼,量子變分線路,核方法,離散資料, quantum machine learning,quantum encoding,variational quantum circuit,kernel method,discrete data, |
| Publication Year : | 2024 |
| Degree: | 碩士 |
| Abstract: | 量子運算在機器學習領域的應用越來越受到關注。在各種量子學習模型中,變分量子電路因其易於實作的特性而顯得尤其突出。透過了解這個模型的數學特性,可以發現具有可訓練的量子核函數的模型似乎有提升表現的潛力。我針對不同的問題測試了幾種具有此特性的方法,結果證實這些方法確實提高了模型的表達能力,也突破了使用固定核函數的模型的表現限制。 The application of quantum computing to machine learning problems has grown increasingly popular. Among the various quantum models, variational quantum circuits are particularly notable for their ease of implementation. Investigating the mathematical properties of such models reveals that those equipped with trainable quantum kernels may achieve enhanced performance. We tested several methods possessing this characteristic across different problems, and the results confirm that such methods not only improve model expressibility but also surpass the performance limits of models with fixed kernels. |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94072 |
| DOI: | 10.6342/NTU202402911 |
| Fulltext Rights: | 同意授權(全球公開) |
| Appears in Collections: | 物理學系 |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-112-2.pdf | 5 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
