請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94058完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 盧信嘉 | zh_TW |
| dc.contributor.advisor | Hsin-Chia Lu | en |
| dc.contributor.author | 劉秉宸 | zh_TW |
| dc.contributor.author | Bing-Chen Liu | en |
| dc.date.accessioned | 2024-08-14T16:28:47Z | - |
| dc.date.available | 2024-08-15 | - |
| dc.date.copyright | 2024-08-13 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-08 | - |
| dc.identifier.citation | [1] TECH NEWS科技新報 一次搞懂 5G!三大特性:高速度、低延遲、多連結 [Online]. Avalable: https://technews.tw/2020/09/27/5g-figure-out/
[2] 新通訊多元測試推進全球標準5G生態系「安全」不缺席: [Online]. Avalable: https://www.2cm.com.tw/2cm/zh-tw/market/2EBE1A0F9C2540F88E573F5B9C2ECDFA [3] 紀鈞翔. 5G行動通訊之毫米波相位陣列天線系統. [Online]. Avalable: https://ictjournal.itri.org.tw/Content/Messagess/contents.aspx?&MmmID=654304432061644411&CatID=654313611231473607&MSID=654516526542211241 [4] Chunyuan Zhou, He Qian, and Zhiping Yu, “A lumped elements varactor-loaded transmission-line phase shifter at 60GHz,” in 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), November 2010, pp. 656-658. [5] Hyo-Sung Lee and Byun-Wook Min, “W-band CMOS 4-bit phase shifter for high power and phase compression points,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 62, no.1, pp. 1-5, January 2015. [6] W. Li, Y. Chiang, J. Tsai, H. Yang, J. Cheng and T. Huang, "60-GHz 5-bit phase shifter with integrated VGA phase-error compensation," IEEE Transactions on Microwave Theory and Techniques,vol. 61, no. 3, pp. 1224-1235, March 2013. [7] J. H. Tsai, C. K. Liu, and J. Y. Lin, "A 12 GHz 6-bit switch-type phase shifter MMIC," 2014 44th European Microwave Conference, October 2014, pp. 1916- 1919. [8] F. Ellinger, R. Vogt, and W. Bachtold, "Ultracompact reflective-type phase shifter MMIC at C-band with 360° phase-control range for smart antenna combining," IEEE J. Solid-State Circuits, vol. 37, no. 4, pp. 481-486, April 2002. [9] Y. Chang, Z. Ou, H. Alsuraisry, A. Sayed and H. Lu, "A 28-GHz low-power vector-sum phase shifter using biphase modulator and current reused Technique," IEEE Microwave and Wireless Components Letters, vol. 28, no. 11, pp. 1014-1016, November 2018. [10] I. S. Song, J. G. Lee, G. Yoon, and C. S. Park, "A low power LNA-phase shifter with vector sum method for 60 GHz beamforming receiver," IEEE Microwave and Wireless Components Letters, vol. 25, no. 9, pp. 612-614, July 2015. [11] T. Yu and G. M. Rebeiz, "A 22~24 GHz 4-element CMOS phased array with on- chip coupling characterization," IEEE J. Solid-State Circuits, vol. 43, no. 9, pp. 2134-2143, September 2008. [12] T. Yu and G. M. Rebeiz, "A 24 GHz 6-bit CMOS phased-array receiver," IEEE Microwave and Wireless Components Letters, vol. 18, no. 6, pp. 422-424, June 2008. [13] Pen-Jui Peng, “Design of phase shifter for microwave and millimeter-wave applications,” Graduate Institute of Communication Engineering, Master Thesis, National Taiwan University, June 2010. [14] Liang-Cheng Chen, “A Ka band bi-directional active vector-sum phase shifter using bi-directional variable gain amplifier ,” Graduate Institute of Electronics Engineering, Master Thesis, National Taiwan University, October 2021. [15] B. Razavi, RF Microelectronics, 2nd ed. Paul Boger, 2011. [16] Y.-T. Chang, Y.-N. Chen, and H.-C. Lu, "A 38 GHz low power variable gain LNA using PMOS current-steering device and Gm-boost technique," 2018 Asia-Pacific Microwave Conference (APMC), November 2018, pp. 654-656. [17] Yongran Yi, Dixian Zhao, and Xiaohu You, "A Ka-band CMOS digital-controlled phase-invariant variable gain amplifier with 4-bit tuning range and 0.5-dB resolution," in IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 10-12, June, 2018, pp. 152-155, doi: 10.1109/RFIC.2018.8428833 [18] Cheng-Han Yu, “A Ka band active vector-sum phase shifter using 0-π variable gain amplifier,” Graduate Institute of Electronics Engineering, Master Thesis, National Taiwan University, December 2021. [19] Zhe-Wei Ou, “A Ka band low gain variation vector-sum phase shifter using phase-invertible variable gain attenuator,” Graduate Institute of Electronics Engineering, Master Thesis, National Taiwan University, July 2017. [20] C. W. Wang, H. S. Wu, and C. K. C. Tzuang, "CMOS passive phase shifter with group-delay deviation of 6.3 ps at K-band," IEEE Trans. Micro. Theory Tech., vol. 59, no. 7, pp. 1778-1786, July 2011. [21] L. M. Devlin and B. J. Minnis, "A versatile vector modulator design for MMIC," IEEE International Digest on Microwave Symposium, May 1990, pp. 519-521. [22] M. Chongcheawchamnan, S. Bunnjaweht, D. Kpogla, D. Lee, and I. D. Robertson, "Microwave I-Q vector modulator using a simple technique for compensation of FET parasitics," IEEE Trans. Micro. Theory Tech. , vol. 50, no. 6, pp. 1642-1646, June 2002. [23] H. S. Wu, C. W. Wang, J. G. Ma, and C. K. Tzuang, "A K-band CMOS monopulse comparator incorporating the phase-invertible variable attenuator," 2013 IEEE 13th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, Jan. 2013, pp.249-251. [24] A. E. Ashtiani, N. Sueng-Il, A. d'Espona, S. Lucyszyn, and I. D. Robertson, "Direct multilevel carrier modulation using millimeter-wave balanced vector modulators," IEEE Trans. Micro. Theory Tech. , vol. 46, no. 12, pp. 2611-2619, Dec. 1998. [25] Yun-Hsuan Yeh, “Phase shifters and power detectors for 5G communication,” Graduate Institute of Electronics Engineering, Master Thesis, National Taiwan University, July 2016. [26] J. Pang, Zheng Li, Ryo Kubozoe, Xueting Luo, Rui Wu, Yun Wang, Dongwon You, Ashbir Aviat Fadila, Rattanan Saengchan, Takeshi Nakamura, Joshua Alvin, Daiki Matsumoto, Bangan Liu, Aravind Tharayil Narayanan, Junjun Qiu, Hanli Liu, Zheng Sun, Hongye Huang, Korkut Kaan Tokgoz, Keiichi Motoi, Naoki Oshima, Shinichi Hori, Kazuaki Kunihiro, Tomoya Kaneko, Atsushi Shirane, and Kenichi Okada, "A 28-GHz CMOS phased-array beamformer utilizing neutralized bi-directional technique supporting dual-polarized MIMO for 5G NR," IEEE J.Solid-State Circuits, vol. 55, no. 9, pp. 2371-2386, Sep. 2020. [27] Xingyu Qi, Shuyu Liu, Zongyuan Zheng, Bo Wang, and Xing Zhang, “A 28GHz 6-bit two-stage vector-sum phase shifter with low RMS error for 5G mobile communication,” IEEE 2018 Asia-Pacific Microwave Conference (APMC), November, 2020, doi: 10.23919/APMC.2018.8617563. [28] J. Zhou, Huizhen Jenny Qian, and Xun Luo, "High-resolution wideband vector-sum digital phase shifter with on-chip phase linearity enhancement technology", IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 68, no. 6, pp. 2457-2469, June 2021. [29] H. Yang, Y. Yu, C. Zhao, H. Liu, Y. Wu, and K. Kang, "A dual-band vector-sum phase shifter for 28-GHz and 60-GHz phased arrays in 65-nm CMOS", 2022 IEEE International Symposium on Circuits and Systems (ISCAS), May 2022, pp. 3082-3086. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94058 | - |
| dc.description.abstract | 本論文提出一使用於Ka頻段之數位控制可變放大器的向量合成式相移器,此架構可應用於5G毫米波段的通訊系統中。
此相移器主要由90˚耦合器形成相差90˚的I/Q訊號,接著透過0-π相位切換器轉換成±I/±Q訊號來實現四象限切換。並將±I/±Q訊號由可變增益放大器改變其大小,達到相位移的效果。本架構中的可變增益放大器為數位開關式可變增益放大器,由4組開關控制電流的原理改變增益放大器的大小。但因可變增益放大器在不同的大小時,相位的誤差太大,因此只能選擇前面相位誤差較小的點,導致增益範圍不夠,無法在任一象限達成0˚~90˚切換,所以最後再加上45˚切換器補償,藉此實現360˚全相位切換。 本文採用台積電 0.18 μm CMOS 製程實現,可達到等效6位元解析度,而量測結果均方根增益誤差為0.139dB,RMS 相位誤差為0.609˚,平均增益為-18.737dB,直流功耗最大為25.2mW。 | zh_TW |
| dc.description.abstract | This thesis presents a phase shifter digital control variable gain amplifiers in the Ka band. This architecture can be applied to communication systems in the 5G millimeter wave band.
This phase shifter uses a 90˚ coupler to form an I/Q signal with a phase difference of 90˚, and then converts it into a ±I/±Q signal through a phase-invertible variable attenuator (PIVA) to realize four-quadrant switching. And the ±I / ±Q signal is changed by the variable gain amplifier to achieve the effect of phase shift. The variable gain amplifier in this architecture uses a digital controlled switch-type variable gain amplifier, and the magnitude of the gain amplifier is changed by the principle of four sets of switches controlling the current. However, because the phase error of the variable gain amplifier is too large when the gain range is large, thus only gainwith small phase error can be selected, resulting in insufficient gain range. A 45° phase shifter compensation is added at the end to achieve 360° all-phase shifting. This circuit is implemented in TSMC 0.18μm CMOS process. It has 6-bit resolution in phase shift. The measured RMS gain error is 0.139dB, and RMS phase error is 0.609˚. The average gain is -18.737dB with maximum DC power consumption at 25.2mW. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-14T16:28:47Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-14T16:28:47Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 中文摘要 i
ABSTRACT ii 目錄 iii 圖目錄 v 表目錄 ix Chapter 1 緒論 1 1.1 研究動機與背景 1 1.2 文獻回顧 3 1.3 論文貢獻 6 1.4 章節介紹 6 Chapter 2 相移器與可變增益放大器電路介紹 7 2.1 簡介 7 2.2 相移器設計重要參數 7 2.2.1 均方根相位誤差(RMS phase error) 7 2.2.2 均方根增益誤差(RMS amplitude error) 7 2.3 相移器電路介紹 8 2.3.1 傳輸線式相移器 8 2.3.2 開關式相移器 9 2.3.3 反射式相移器 16 2.3.4 向量和式相移器 17 2.4 可變增益放大器簡介 18 2.4.1 偏壓調控增益放大器 18 2.4.2 N型電流導向可變增益放大器 19 2.4.3 P型電流導向可變增益放大器 21 2.4.4 數位式可變增益放大器 23 Chapter 3 數位控制可變增益放大器 26 3.1 電路介紹 26 3.2 設計流程 27 3.2.1 電晶體尺寸挑選 27 3.2.2 增益範圍的計算 29 3.2.3 數位控制可變增益放大器 30 3.2.4 阻抗匹配 34 3.3 電路佈局 35 3.4 整體電路模擬 36 Chapter 4 主動式向量和式相移器電路設計 43 4.1 電路介紹 43 4.2 被動部分電路 45 4.2.1 正交耦合器模擬 45 4.2.2 PIVA設計和模擬 47 4.2.3 功率分配器設計和模擬 57 4.2.4 45˚相移器設計和模擬 60 4.3 相移器整體模擬 64 4.4 電路佈局 76 Chapter 5 量測結果 77 5.1 打線及量測環境 77 5.2 數位式可變增益放大器量測結果 78 5.3 主動式向量和式相移器量測結果 85 5.3.1 第一顆相移器量測結果 85 5.3.2 第二顆相移器量測結果 90 Chapter 6 結論與未來展望 100 6.1 結論 100 6.2 未來展望 100 參考文獻 102 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | Ka 頻段 | zh_TW |
| dc.subject | 開關式可變增益放大器 | zh_TW |
| dc.subject | 360˚ | zh_TW |
| dc.subject | 6位元 | zh_TW |
| dc.subject | 向量合成式相移器 | zh_TW |
| dc.subject | vector sum phase shifter | en |
| dc.subject | 6 bits | en |
| dc.subject | 360° | en |
| dc.subject | Ka band | en |
| dc.subject | digital current steering variable gain amplifier | en |
| dc.title | 使用數位控制電流導向可變增益放大器之 Ka頻段相移器 | zh_TW |
| dc.title | Ka-band Phase Shifters using Digital-Controlled Current Steering VGA | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蔡政翰;張譽騰 | zh_TW |
| dc.contributor.oralexamcommittee | Jeng-Han Tsai;Yu-Teng Chang | en |
| dc.subject.keyword | 開關式可變增益放大器,Ka 頻段,向量合成式相移器,6位元,360˚, | zh_TW |
| dc.subject.keyword | digital current steering variable gain amplifier,Ka band,vector sum phase shifter,6 bits,360°, | en |
| dc.relation.page | 105 | - |
| dc.identifier.doi | 10.6342/NTU202403350 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-10 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電子工程學研究所 | - |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 8.88 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
