Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93932
Title: 氫氧基磷灰石/肌腱胞外基質與蠶絲蛋白靜電紡絲支架於韌帶組織工程上之應用
Application of Hydroxyapatite/Tendon-Derived Extracellular Matrix/Silk Fibroin Electrospinning Scaffold for Ligament Tissue Engineering
Authors: 李泓儒
Hong-Ru Lee
Advisor: 黃義侑
Yi-You Huang
Keyword: 韌帶組織工程,靜電紡絲法,蠶絲蛋白,氫氧基磷灰石,細胞外基質,
Ligament tissue engineering,Electrospinning,Silk fibroin,Hydroxyapatite,Extracellular matrix,
Publication Year : 2024
Degree: 碩士
Abstract: 韌帶是連接骨骼與骨骼的緻密纖維結締組織,其損傷在骨科中相當常見,由於韌帶組織的內在癒合能力有限,因此帶來了重大挑戰。目前韌帶修復和再生的臨床方法受限於標準的自體移植和異體移植,這兩種技術都有其本身的缺點,限制了其在臨床上的成功,因此需要開發新的策略解決當前韌帶移植問題。
本研究旨在探索將氫氧基磷灰石(Hydroxyapatite, HA)、肌腱胞外基質(Tendon-derived extracellular matrix, T-ECM)和蠶絲蛋白(Silk fibroin, SF)靜電紡絲支架結合應用於韌帶組織工程的可行性及其潛在效應;靜電紡絲法製備的蠶絲蛋白支架於SEM觀察顯示出均勻的纖維排列高度多孔的結構,這種結構有助於支持細胞的附著和生長,支架的孔隙率和孔徑分佈適合韌帶細胞的穿透和新組織的形成。XRD數據顯示HA微粒在支架中的鈣(Ca)與磷(P)分佈均勻,並由拉伸試驗數據顯示能夠提升支架的機械強度和生物活性。細胞實驗(in vitro)顯示,複合支架材料能有效促進韌帶細胞的黏附、增殖和分化,並表現出良好的生物相容性,MTT細胞存活率分析未觀察到顯著的毒性反應或細胞壞死。動物實驗(in vivo)進行了大鼠前十字韌帶損傷模型的體內試驗,結果顯示植入複合支架後,能夠有效促進韌帶的組織修復和再生,H&E組織學觀察顯示,修復後的韌帶組織結構緊密,類似於正常韌帶組織,並且未觀察到明顯的發炎或排斥反應。
綜合以上結果,本研究表明氫氧基磷灰石(HA)、肌腱胞外基質(T-ECM)和蠶絲蛋白(SF)靜電紡絲支架的組合在韌帶組織工程中具有潛力。這些支架材料不僅能夠提供適當的物理支持和生物訊號促進韌帶的再生,還能夠保持良好的生物相容性和組織相容性;未來的研究將進一步探索支架在長期應用中的穩定性和效果,並評估其在臨床應用中的實際效益和安全性。
Injuries to ligaments, the dense fibrous connective tissue that connects bone to bone, are common in orthopedics and present significant challenges due to the limited inherent healing capacity of ligamentous tissue. Current clinical methods for ligament repair and regeneration are limited to autografts and allografts as standard. Both technologies have their own shortcomings that limit their clinical success. Therefore, new strategies need to be developed to solve current ligament transplantation problems.
This study aims to explore the feasibility and potential effects of combining hydroxyapatite (HA), tendon-derived extracellular matrix (T-ECM) and silk fibroin (SF) electrospun scaffolds for ligament tissue engineering; electrostatic SEM observation of the silk protein scaffold prepared by spinning method shows uniform fiber arrangement and highly porous structure. This structure helps to support the attachment and growth of cells. The porosity and pore size distribution of the scaffold are suitable for the penetration and penetration of ligament cells. Formation of new organizations. XRD data showed that the Ca and P of HA particles were evenly distributed in the scaffold, and tensile test data showed that HA particles could improve the mechanical strength and biological activity of the scaffold. In vitro cell experiments showed that the composite scaffold material could effectively promote the adhesion, proliferation and differentiation of ligament cells, and showed good biocompatibility. No significant toxic reaction or cell necrosis was observed in MTT assay. Animal experiments were conducted on Wistar rats’ ligament injury models, and the results showed that implantation of composite scaffolds can effectively promote tissue repair and regeneration of ligaments. H&E histological observation showed that the repaired ligament tissue structure was tight and similar to normal ligament tissue, and no obvious inflammatory reaction or rejection reaction was observed.
Taking the above results together, this study demonstrates that the combination of hydroxyapatite, tendon extracellular matrix, and fibroin electrospun scaffolds has potential in ligament tissue engineering. These scaffold materials can not only provide appropriate physical support and biological signals to promote ligament regeneration, but also maintain good biocompatibility and tissue compatibility. Future studies will further explore the stability and effectiveness of the stent in long-term application and evaluate its actual benefit and safety in clinical application.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93932
DOI: 10.6342/NTU202403136
Fulltext Rights: 同意授權(限校園內公開)
metadata.dc.date.embargo-lift: 2029-07-30
Appears in Collections:醫學工程學研究所

Files in This Item:
File SizeFormat 
ntu-112-2.pdf
  Restricted Access
22.04 MBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved