Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93920
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊鈞澔zh_TW
dc.contributor.advisorChun-Hao Yangen
dc.contributor.author王柏崴zh_TW
dc.contributor.authorPo-Wei Wangen
dc.date.accessioned2024-08-09T16:26:00Z-
dc.date.available2024-08-10-
dc.date.copyright2024-08-09-
dc.date.issued2024-
dc.date.submitted2024-08-01-
dc.identifier.citationAmari, S. i. (2016), Information geometry and its applications, Vol. 194, Springer.
Bańbura, M., Giannone, D. and Reichlin, L. (2010), ‘Large bayesian vector auto regres sions’, Journal of applied Econometrics 25(1), 71–92.
Bollerslev, T. (1986), ‘Generalized autoregressive conditional heteroskedasticity’, Journal of econometrics 31(3), 307–327.
Carriero, A., Clark, T. E. and Marcellino, M. (2019), ‘Large bayesian vector autore gressions with stochastic volatility and non-conjugate priors’, Journal of Econometrics 212(1), 137–154.
Carriero, A., Kapetanios, G. and Marcellino, M. (2012), ‘Forecasting government bond yields with large bayesian vector autoregressions’, Journal of Banking & Finance 36(7), 2026–2047.
Carvalho, C. M., Polson, N. G. and Scott, J. G. (2009), Handling sparsity via the horseshoe, in ‘Artificial intelligence and statistics’, PMLR, pp. 73–80.
Carvalho, C. M., Polson, N. G. and Scott, J. G. (2010), ‘The horseshoe estimator for sparse signals’, Biometrika 97(2), 465–480.
Chan, J. C. and Yu, X. (2022), ‘Fast and accurate variational inference for large bayesian vars with stochastic volatility’, Journal of Economic Dynamics and Control 143, 104505.
Choi, K., Yi, J., Park, C. and Yoon, S. (2021), ‘Deep learning for anomaly detection in time-series data: Review, analysis, and guidelines’, IEEE access 9, 120043–120065.
Cuaresma, J. C., Feldkircher, M. and Huber, F. (2016), ‘Forecasting with global vec tor autoregressive models: A bayesian approach’, Journal of Applied Econometrics 31(7), 1371–1391.
Gefang, D. (2014), ‘Bayesian doubly adaptive elastic-net lasso for var shrinkage’, Inter national Journal of Forecasting 30(1), 1–11.
Gefang, D., Koop, G. and Poon, A. (2023), ‘Forecasting using variational bayesian infer ence in large vector autoregressions with hierarchical shrinkage’, International Journal of Forecasting 39(1), 346–363.
Kalli, M. and Griffin, J. E. (2018), ‘Bayesian nonparametric vector autoregressive mod els’, Journal of econometrics 203(2), 267–282.
Kullback, S. and Leibler, R. A. (1951), ‘On information and sufficiency’, The annals of mathematical statistics 22(1), 79–86.
Makalic, E. and Schmidt, D. F. (2015), ‘A simple sampler for the horseshoe estimator’, IEEE Signal Processing Letters 23(1), 179–182.
Miranda-Agrippino, S. and Ricco, G. (2021), ‘The transmission of monetary policy shocks’, American Economic Journal: Macroeconomics 13(3), 74–107.
Ormerod, J. T. and Wand, M. P. (2010), ‘Explaining variational approximations’, The American Statistician 64(2), 140–153.
Prüser, J. (2021), ‘The horseshoe prior for time-varying parameter vars and monetary pol icy’, Journal of Economic Dynamics and Control 129, 104188.
Sharma, D. (2016), ‘Nexus between financial inclusion and economic growth: Evidence from the emerging indian economy’, Journal of financial economic policy 8(1), 13–36.
Sims, C. A. (1980), ‘Macroeconomics and reality’, Econometrica: journal of the Econo metric Society pp. 1–48.
Stock, J. H. and Watson, M. W. (2001), ‘Vector autoregressions’, Journal of Economic perspectives 15(4), 101–115.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93920-
dc.description.abstract在這篇研究中,我們會給出一個包含向量自迴歸模型、自迴歸隨機波動、馬蹄鐵先驗分佈的模型,再使用變分貝氏方法估計模型中的變數服從的分佈,像是常態分佈或是逆伽瑪分佈這些比較常見以及期望值容易計算的分佈,最後再使用迭代的方式找到每個變數的估計值。zh_TW
dc.description.abstractIn this thesis, we propose an approach to find an estimate of the variables in a model that combines vector autoregression (VAR), log-normal autoregressive stochastic volatility (ARSV) and the horseshoe prior. Using variational Bayes (VB) method, we can show an approximated distribution to each variable such as normal or inverse gamma distribution which are well-known and the expectation is easy to be obtained, which allows us to use iteration to estimate each variable.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-09T16:26:00Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-09T16:26:00Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
摘要 iii
Abstract v
Contents vii
Chapter 1 Introduction 1
1.1 Large Bayesian VAR Model 1
1.2 GARCH Versus SV 2
1.3 Goal 3
Chapter 2 Theoretical Preliminary 5
2.1 Horseshoe prior 5
2.2 VAR with Stochastic Volatility and Horseshoe prior 8
2.3 Variational Bayesian: KL and ELBO 12
Chapter 3 Main Results 15
3.1 The Optimal Density for Parameters in VAR and SV 18
3.2 The Optimal Density for Horseshoe Prior Parameters 24
3.3 Iterative Algorithm 26
Chapter 4 Conclusion and Outlooks 31
4.1 Conclusion 31
4.2 Outlooks 31
References 33
-
dc.language.isoen-
dc.subject向量自迴歸模型zh_TW
dc.subject牛頓-拉弗森方法zh_TW
dc.subject變分貝氏方法zh_TW
dc.subject馬蹄鐵先驗分佈zh_TW
dc.subject隨機波動zh_TW
dc.subjecthorseshoe prioren
dc.subjectvariational Bayesianen
dc.subjectNewton-Raphsonen
dc.subjectstochastic volatilityen
dc.subjectvector autoregressionen
dc.title自迴歸隨機波動的向量自迴歸模型之馬蹄鐵估計zh_TW
dc.titleHorseshoe Estimates for Vector Autoregression Model with Log Normal Stochastic Volatilityen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee崔茂培;陳裕庭;李志煌zh_TW
dc.contributor.oralexamcommitteeMao-Pei Tsui;Yu-Ting Chen;Jhih-Huang Lien
dc.subject.keyword向量自迴歸模型,隨機波動,馬蹄鐵先驗分佈,變分貝氏方法,牛頓-拉弗森方法,zh_TW
dc.subject.keywordvector autoregression,stochastic volatility,horseshoe prior,variational Bayesian,Newton-Raphson,en
dc.relation.page34-
dc.identifier.doi10.6342/NTU202402563-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-05-
dc.contributor.author-college理學院-
dc.contributor.author-dept數學系-
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf980.68 kBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved