請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93887完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉建豪 | zh_TW |
| dc.contributor.advisor | Chien-Hao Liu | en |
| dc.contributor.author | 何沅泰 | zh_TW |
| dc.contributor.author | Yuan-Tai Ho | en |
| dc.date.accessioned | 2024-08-09T16:11:51Z | - |
| dc.date.available | 2024-08-10 | - |
| dc.date.copyright | 2024-08-09 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-01 | - |
| dc.identifier.citation | 參考文獻
[1] A. Rahmatulloh, G. Ramadhan, I. Darmawan, N. Widiyasono, and D. Pramesti, “Journal of semiconductors,” JOIV, vol. 6, pp. 623-628, Sep. 2022. [2] R. Maes, “Chapter 5: PUF-Based Entity Identification and Authentication,” in Physically Unclonable Functions: Constructions Properties and Applications. New York: Springer, 2013. [3] M. Yang, L. Zhu, Q. Zhong, R. El-Ganainy, and P.-Y. Chen, “Spectral sensitivity near exceptional points as a resource for hardware encryption,” Nat. Commun., vol. 14, no. 1, p. 1145, Feb. 2023. [4] Y. Gu, C. He, Y. Zhang, L. Lin, B. D. Thackray, and J. Ye, “Gap-enhanced Raman tags for physically unclonable anticounterfeiting labels,” Nat. Commun., vol. 11, no. 1, p. 516, Jan. 2020. [5] J. H. Kim et al., “Nanoscale physical unclonable function labels based on block copolymer self-assembly,” Nat. Electron., vol. 5, no. 7, pp. 433-442, Jul. 2022. [6] C. Wachsmann and A.-R. Sadeghi, “Physically unclonable functions (PUFs): applications, models, and future directions,” Synth. Lect. Inf. Secur. Privacy Trust, vol. 9, pp. 1-91, Dec. 2014. [7] S.-W. Lee et al., “designing secure PUF-based authentication protocols for constrained environments,” Sci. Rep., vol. 13, no. 1, p. 21702, Dec. 2023. [8] C. Herder, M. D. Yu, F. Koushanfar, and S. Devadas, “Physical unclonable functions and applications: A tutorial,” Proceedings of the IEEE, vol. 102, no. 8, pp. 1126-1141, 2014. [9] C. E. Shannon, “A mathematical theory of communication,” BSTJ, vol. 27, no. 3, pp. 379-423, 1948. [10] B. Lawrence et al., “A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications,” National Institute of Standards and Technology, 2010. [11] R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physical one-way functions,” AAAS, vol. 297, no. 5589, pp. 2026-2030, 2002. [12] L. Ding et al., “Near zero temperature coefficient of resistivity in antiperovskite Mn3Ni1−xCuxN,” Appl. Phys. Lett., vol. 99, no. 25, 2011. [13] J. Jiang, W. Shu, and J. S. Chang, “A 5.6 ppm/°C temperature coefficient, 87-dB PSRR, sub-1-V voltage reference in 65-nm CMOS exploiting the zero-temperature-coefficient point,” IEEE J. Solid-State Circuits, vol. 52, pp. 623-633, 2017. [14] S. Daqiqeh Rezaei et al., “Tri-functional metasurface enhanced with a physically unclonable function,” Mater. Today, vol. 62, pp. 51-61, Jan. 2023. [15] J. E. Villegas, B. Paredes, and M. Rasras, “Experimental studies of plasmonics-enhanced optical physically unclonable functions,” Opt. Express, vol. 29, no. 20, pp. 32020-32030, Sep. 2021. [16] R. A. John et al., “Halide perovskite memristors as flexible and reconfigurable physical unclonable functions,” Nat. Commun., vol. 12, no. 1, p. 3681, Jun. 2021. [17] F. B. Tarik, A. Famili, Y. Lao, and J. D. Ryckman, “Robust optical physical unclonable function using disordered photonic integrated circuits,” J. Nanophotonics, vol. 9, no. 9, pp. 2817-2828, 2020. [18] J. Kühne, J. Wang, T. Weber, L. Kühner, S. A. Maier, and A. Tittl, “Fabrication robustness in BIC metasurfaces,” J. Nanophotonics, vol. 10, no. 17, pp. 4305-4312, 2021. [19] L. Ferrier et al., “Unveiling the enhancement of spontaneous emission at exceptional points,” Phys. Rev. Lett., vol. 129, p. 083602, Aug. 2022. [20] L. Daihyun, J. W. Lee, B. Gassend, G. E. Suh, M. v. Dijk, and S. Devadas, “Extracting secret keys from integrated circuits,” IEEE Trans. Very Large Scale Integr. VLSI Syst., vol. 13, no. 10, pp. 1200-1205, 2005. [21] X. lu, L. Hong, and K. Sengupta, “CMOS optical PUFs using noise-immune process-sensitive photonic crystals incorporating passive variations for robustness,” IEEE J. Solid-State Circuits, vol. PP, pp. 1-13, Aug. 2018. [22] J. Schindler, A. Li, M. C. Zheng, F. M. Ellis, and T. Kottos, “Experimental study of active LRC circuits with PT symmetries,” Phys. Rev. A: At. Mol. Opt. Phys., vol. 84, no. 4, p. 040101, Oct. 2011. [23] Z. Lin, J. Schindler, F. M. Ellis, and T. Kottos, “Experimental observation of the dual behavior of PT-symmetric scattering,” Phys. Rev. A: At. Mol. Opt. Phys., vol. 85, no. 5, p. 050101, May 2012. [24] S. Assawaworrarit, X. Yu, and S. Fan, “Robust wireless power transfer using a nonlinear parity–time-symmetric circuit,” Nature, vol. 546, no. 7658, pp. 387-390, Jun. 2017. [25] R. El-Ganainy, K. G. Makris, M. Khajavikhan, Z. H. Musslimani, S. Rotter, and D. N. Christodoulides, “Non-Hermitian physics and PT symmetry,” Nat. Phys., vol. 14, no. 1, pp. 11-19, Jan. 2018. [26] L. Feng, R. El-Ganainy, and L. Ge, “Non-Hermitian photonics based on parity-time symmetry,” Nature Photonics, vol. 11, pp. 752-762, Dec. 2017. [27] Ş. K. Özdemir, S. Rotter, F. Nori, and L. Yang, “Parity–time symmetry and exceptional points in photonics,” Nat. Mater., vol. 18, no. 8, pp. 783-798, Aug. 2019. [28] J. von Neumann and E. P. Wigner, “Über merkwürdige diskrete Eigenwerte,” in The Collected Works of Eugene Paul Wigner, A. S. Wightman Ed. Berlin: Springer, 1993. [29] D. R. Herrick, “Construction of bound states in the continuum for epitaxial heterostructure superlattices,” Phys. B+C, vol. 85, no. 1, pp. 44-50, Nov. 1976. [30] F. H. Stillinger, “Potentials supporting positive-energy eigenstates and their application to semiconductor heterostructures,” Phys. B+C, vol. 85, no. 2, pp. 270-276, Dec 1976. [31] F. Capasso, C. Sirtori, J. Faist, D. L. Sivco, S.-N. G. Chu, and A. Y. Cho, “Observation of an electronic bound state above a potential well,” Nature, vol. 358, no. 6387, pp. 565-567, Aug. 1992. [32] C. W. Hsu, B. Zhen, A. D. Stone, J. D. Joannopoulos, and M. Soljačić, “Bound states in the continuum,” Nat. Rev. Mater., vol. 1, no. 9, p. 16048, Jul. 2016. [33] I. S. Chung and A. Taghizadeh, “Reciprocal-space engineering of quasi-bound states in the continuum in photonic crystal slabs for high-Q microcavities,” in International Conference on Transparent Optical Networks, Jul. 2017. [34] S. I. Azzam, V. M. Shalaev, A. Boltasseva, and A. V. Kildishev, “Formation of bound states in the continuum in hybrid plasmonic-photonic systems,” Phys. Rev. Lett., vol. 121, no. 25, p. 253901, Dec. 2018. [35] A. Cerjan et al., “Using symmetry bandgaps to create a line of bound states in the continuum in 3D photonic crystals,” in Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference, Jun. 2021. [36] Y. Feng et al., “On-chip high-sensitivity ultrasound detector based on the high-Q bound states in the continuum in chalcogenide glass photonic crystal slab,” in 2021 Opto-Electronics and Communications Conference, Jul. 2021. [37] J. M. Fitzgerald, S. K. Manjeshwar, W. Wieczorek, and P. Tassin, “Nanophotonic structures for cavity optomechanics,” in Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference, Jun. 2021. [38] Z. Han, C. Wang, Z. Gou, and H. Tian, “High figure of merit magnetic field sensor based on photonic crystal slab supporting quasi bound states in the continuum,” in Institute of Electrical and Electronics Engineers International Conference on Network Intelligence and Digital Content, Nov. 2021. [39] D. V. Yurasov et al., “Photonic BICs in Si structures with Ge self-assembled quantum dots,” in Institute of Electrical and Electronics Engineers Photonics Conference, Oct. 2021. [40] J. Zhang, W. Liu, B. Pan, D. Dai, and Y. Shi, “High Q nanobeam cavity based on etchless lithium niobate integrated platform,” in International Conference on Optical Communications and Networks, Aug. 2021. [41] Y. Gong et al., “Monolithically integrated microcavity lasers on silicon,” in Asia Communications and Photonics Conference, Nov. 2022. [42] L. Kang, Y. Wu, S. D. Campbell, D. H. Werner, X. Ma, and S. Lan, “Generating high-harmonic optical vortex beams from photonic bound states in the continuum,” in Institute of Electrical and Electronics Engineers International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Jul. 2022. [43] L. Pilozzi, M. Missori, and C. Conti, “Fano to BIC resonances transitions in 3D printed photonic crystals,” in Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference, Jun. 2023. [44] Z. Yu et al., “Fundamentals and applications of photonic waveguides with bound states in the continuum,” J. Semicond., vol. 44, no. 10, p. 101301, Mar. 2023. [45] W. Zhao, W. Wang, Z. x. Chen, X. Luan, J. l. Kou, and Y. q. Lu, “Evolution of degenerate pairs of bound states in the continuum with broken symmetry,” IEEE Photonics J., vol. 16, no. 2, pp. 1-7, 2024. [46] Y. V. Kartashov, C. Milian, V. V. Konotop, and L. Torner, “PT-symmetric bound states in the continuum,” in International Conference Laser Optics, Jun. 2018. [47] K. Han and V. Aksyuk, “Bound states in the continuum in heterogeneous lithium niobate and silicon nitride waveguide,” in Conference on Lasers and Electro-Optics, May 2023. [48] Z. Ma, Y. Fu, Y. Wan, H. Cao, J. Wang, and Y. Zhang, “Bound state in the continuum enabled ultralong silicon waveguide grating antennas for integrated LiDAR applications,” in Asia Communications and Photonics Conference/International Photonics and Optoelectronics Meetings, Nov. 2023. [49] Z. Yaoxian, “Two-Dimensional Photonic Crystals Applied in High-Performance Meta-Systems,” in Recent Advances and Trends in Photonic Crystal Technology, G. Amit Kumar and K. Ajay Eds. Rijeka: IntechOpen, 2023. [50] G. Cattapan and P. Lotti, “Bound states in the continuum in two-dimensional serial structures,” EPJ B, vol. 66, no. 4, pp. 517-523, Dec. 2008. [51] A. F. Sadreev, E. N. Bulgakov, and I. Rotter, “Trapping of an electron in the transmission through two quantum dots ocupled by a wire,” JETP Lett., vol. 82, no. 8, pp. 498-503, Oct. 2005. [52] S. Díaz-Tendero, A. G. Borisov, and J.-P. Gauyacq, “Extraordinary electron propagation length in a metallic double chain supported on a metal surface,” Phys. Rev. Lett., vol. 102, no. 16, p. 166807, Apr. 2009. [53] A. F. Sadreev, D. N. Maksimov, and A. S. Pilipchuk, “Gate controlled resonant widths in double-bend waveguides: bound states in the continuum,” J. Phys.: Condens. Matter, vol. 27, no. 29, p. 295303, Jul. 2015. [54] W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, “Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs,” Appl. Phys. Lett., vol. 82, no. 13, pp. 1999-2001, 2003. [55] A. M. Chernyak, M. G. Barsukova, A. S. Shorokhov, A. I. Musorin, and A. A. Fedyanin, “Bound states in the continuum in magnetophotonic metasurfaces,” JETP Lett., vol. 111, no. 1, pp. 46-49, Jan. 2020. [56] B. Zhen, C. W. Hsu, L. Lu, A. D. Stone, and M. Soljačić, “Topological nature of optical bound states in the continuum,” Phys. Rev. Lett., vol. 113, no. 25, p. 257401, Dec. 2014. [57] M. McIver, C. M. Linton, P. McIver, J. Zhang, and R. Porter, “Embedded trapped modes for obstacles in two‐dimensional waveguides,” QJMAM, vol. 54, no. 2, pp. 273-293, 2001. [58] C. M. Linton and K. Ratcliffe, “Bound states in coupled guides. I. two dimensions,” J. Math. Phys., vol. 45, no. 4, pp. 1359-1379, 2004. [59] Y. Chen, Z. Shen, X. Xiong, C.-H. Dong, C.-L. Zou, and G.-C. Guo, “Mechanical bound state in the continuum for optomechanical microresonators,” New J. Phys., vol. 18, no. 6, p. 063031, Jun. 2016. [60] M. Robnik, “A simple separable hamiltonian having bound states in the continuum,” J. Phys. A: Math. Gen., vol. 19, no. 18, p. 3845, Dec. 1986. [61] N. Prodanović, V. Milanović, Z. Ikonić, D. Indjin, and P. Harrison, “Bound states in continuum: quantum dots in a quantum well,” Phys. Lett. A, vol. 377, no. 34-36, pp. 2177 - 2181, 2013. [62] Z. Sadrieva, K. Frizyuk, M. Petrov, Y. Kivshar, and A. Bogdanov, “Multipolar origin of bound states in the continuum,” Phys. Rev. B: Condens. Matter, vol. 100, no. 11, p. 115303, Sep. 2019. [63] Y. Plotnik et al., “Experimental observation of optical bound states in the continuum,” Phys. Rev. Lett., vol. 107, no. 18, p. 183901, Oct. 2011. [64] J. Lee et al., “Observation and differentiation of unique high-Q optical resonances near zero wave vector in macroscopic photonic crystal slabs,” Phys. Rev. Lett., vol. 109, no. 6, p. 067401, Aug. 2012. [65] E. N. Bulgakov and D. N. Maksimov, “Avoided crossings and bound states in the continuum in low-contrast dielectric gratings,” Phys. Rev. A: At. Mol. Opt. Phys., vol. 98, no. 5, p. 053840, Nov. 2018. [66] S.-G. Lee, S.-H. Kim, and C.-S. Kee, “Bound states in the continuum (BIC) accompanied by avoided crossings in leaky-mode photonic lattices,” J. Nanophotonics, vol. 9, no. 14, pp. 4373-4380, 2020. [67] P. S. Pankin, B. R. Wu, J. H. Yang, K. P. Chen, I. V. Timofeev, and A. F. Sadreev, “One-dimensional photonic bound states in the continuum,” Commun. Phys., vol. 3, no. 1, p. 91, May 2020. [68] A. F. Sadreev, E. N. Bulgakov, and I. Rotter, “Bound states in the continuum in open quantum billiards with a variable shape,” Phys. Rev. B: Condens. Matter, vol. 73, no. 23, p. 235342, Jun. 2006. [69] V. A. Sablikov and A. A. Sukhanov, “Helical bound states in the continuum of the edge states in two dimensional topological insulators,” Phys. Lett. A, vol. 379, no. 30, pp. 1775-1779, Sep. 2015. [70] A. A. Lyapina, D. N. Maksimov, A. S. Pilipchuk, and A. F. Sadreev, “Bound states in the continuum in open acoustic resonators,” J. Fluid Mech., vol. 780, pp. 370-387, 2015. [71] H. Friedrich and D. Wintgen, “Physical realization of bound states in the continuum,” Phys. Rev. A: At. Mol. Opt. Phys., vol. 31, no. 6, pp. 3964-3966, Jun. 1985. [72] B. J. Lee, L. P. Wang, and Z. M. Zhang, “Coherent thermal emission by excitation of magnetic polaritons between periodic strips and a metallic film,” Opt. Express, vol. 16, no. 15, pp. 11328-11336, Jul. 2008. [73] C. Zhao, J. Zhang, and Y. Liu, “Light manipulation with encoded plasmonic nanostructures,” Eur. Phys. J. Appl. Metamater., vol. 1, p. 6, 2014. [74] Z. M. Zhang and L. P. Wang, “Measurements and modeling of the spectral and directional radiative properties of micro/nanostructured materials,” Int. J. Thermophys., vol. 34, no. 12, pp. 2209-2242, Dec. 2013. [75] T. Iqbal et al., “Optimization of 1D plasmonic grating of nanostructured devices for the investigation of plasmonic bandgap,” Plasmonics, vol. 14, no. 3, pp. 775-783, Jun. 2019. [76] B. Zhao, J. M. Zhao, and Z. M. Zhang, “Resonance enhanced absorption in a graphene monolayer using deep metal gratings,” J. Opt. Soc. Am. B, vol. 32, no. 6, pp. 1176-1185, Jun. 2015. [77] A. Sathukarn et al., “The simulation of a surface plasmon resonance metallic grating for maximizing THz sensitivity in refractive index sensor application,” Int. J. Opt., vol. 2020, p. 3138725, Jan. 2020. [78] A. Polemi and K. L. Shuford, “Transmission line equivalent circuit model applied to a plasmonic grating nanosurface for light trapping,” Opt. Express, vol. 20, no. S1, pp. A141-A156, Jan. 2012. [79] Y.-B. Chen and F.-C. Chiu, “Trapping mid-infrared rays in a lossy film with the Berreman mode, epsilon near zero mode, and magnetic polaritons,” Opt. Express, vol. 21, no. 18, pp. 20771-20785, Sep. 2013. [80] G. Stocker et al., “Ultra-narrow SPP generation from Ag grating,” Sensors, vol. 21, no. 21, p. 6993, 2021. [81] S. Signorini, M. Finazzer, M. Bernard, M. Ghulinyan, G. Pucker, and L. Pavesi, “Silicon photonics chip for inter-modal four wave mixing on a broad wavelength range,” Front. Phys., vol. 7, Sep. 2019. [82] P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express, vol. 15, no. 25, pp. 16986-17000, Dec. 2007. [83] Z. Yu, A. Raman, and S. Fan, “Fundamental limit of nanophotonic light trapping in solar cells,” PNAS, vol. 107, no. 41, pp. 17491-17496, 2010. [84] B. Zhen et al., “Spawning rings of exceptional points out of Dirac cones,” Nature, vol. 525, no. 7569, pp. 354-358, Sep. 2015. [85] L. Lu, Q. Le-Van, L. Ferrier, E. Drouard, C. Seassal, and H. S. Nguyen, “Engineering a light matter strong coupling regime in perovskite-based plasmonic metasurface: quasi-bound state in the continuum and exceptional points,” Photon. Res., vol. 8, no. 12, pp. A91-A100, Dec. 2020. [86] S.-G. Lee and R. Magnusson, “Band flips and bound-state transitions in leaky-mode photonic lattices,” Phys. Rev. B: Condens. Matter, vol. 99, no. 4, p. 045304, Jan. 2019. [87] H. A. Haus, “Chapter 1: Maxwell's Equations of Isotropic Media and Some Important Identity,” in Waves and fields in optoelectronics. Englewood Cliffs, New Jersey: Prentice-Hall, 1984. [88] E. C. Jordan and K. G. Balmain, “Chapter 9: Interaction of Fields and Matter,” in Electromagnetic waves and radiating systems, Second edition ed. Englewood Cliffs, New Jersey: Prentice-Hall, 1968. [89] F. F. Chen, “Chapter 1: Introduction,” in Introduction to plasma physics and controlled fusion, Second edition ed. New York: Plenum Press, 1984. [90] J. D. Jackson, “Chapter 10: Magnetohydrodynamics and Plasma Physics,” in Classical Electrodynamics, Third edition ed. New York: Wiley, 1999. [91] M. W. Chen, L. R. Carley, and D. S. Ricketts, “A Process-technology-scaling-tolerant pipelined ADC architecture achieving 6-bit and 4 GS/s ADC in 45nm CMOS,” IEEE Access, pp. 16-18, Jan. 2014. [92] M. Ferrera, M. Magnozzi, F. Bisio, and M. Canepa, “Temperature-dependent permittivity of silver and implications for thermoplasmonics,” Phys. Rev. Mater., vol. 3, no. 10, p. 105201, Oct. 2019. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93887 | - |
| dc.description.abstract | 近年來,隨著AI演算法與邊緣運算硬體設備快速成長,數據儲存與架構安全性的重要性也相應提高,數據的保密性與防篡改的要求亦隨之增長,除了透過軟體達成資訊保密外,物理不可仿製功能(PUF)作為一種基於硬體的安全防偽技術,利用製程中不可避免的隨機變數,如空氣、濕度、溫度等,於晶片的結構上產生微細差異。這些差異極難複製,從而降低了逆向解構風險。PUF的獨特隨機性和不可複製性賦予晶片猶如其獨特的「指紋」。
本研究探討連續體束縛態(BIC)在PUF技術中的應用。內容分為三個部分,首先透過數值分析與有限元素模擬,其BIC的品質因子(Q factor)在理論上趨近於無限大的特性,並透過改變光柵的填充因子(Fill factor)將亮模態與暗模態重疊形成奇異點(EP),當結構尺寸發生細微的變化,模態的特徵頻率便會發生顯著改變。接著將模擬得到的反射頻譜,透過反傅立葉轉換至時域訊號,與輸入高斯雷射進行卷積,以模擬現實中身分辨識的挑戰響應對(CRP)過程。最後將接收到的訊號數位化成比特串,也就是晶片指紋,並且檢驗其隨機性、唯一性、可靠性等參數,並透過美國國家標準暨技術研究院的隨機性測試(NIST randomness test)作二次驗證,證明其可以被視為一個真正的隨機數產生器。 經過巨量數據統計分析(10k數量),本研究所提出之BIC-PUF結構可被視為一個真正的隨機數產生器,其隨機性、唯一性、可靠性參數Ex、Ey、HDinter、HDintra,平均值分別為0.9595、0.9976、0.4969、0.0393;標準差分別為0.0986、0.0032、0.0351、0.0352,並且通過了NIST randomness test。本論文所提出之BIC模態PUF未來可以擴展至近紅外光與可見光應用。 | zh_TW |
| dc.description.abstract | In recent years, with the rapid growth of AI algorithms and edge computing hardware devices, the importance of data storage and architecture security has also increased, and the requirements for data confidentiality and anti-tampering have also increased. In addition to achieving information confidentiality through software, Physically Unclonable Function (PUF), as a hardware-based security technology, utilizes random variables that are unavoidable during the manufacturing process, such as air, humidity, temperature, etc., to produce minute differences in the structure of the chip. PUF, as a hardware-based security technology, utilizes unavoidable random variables in the manufacturing process, such as air, humidity, temperature, etc., to produce minute differences in the structure of the chip. These differences are extremely difficult to be replicated, thus reducing the risk of reverse deconstruction, and the unique randomness and non-replicability of PUFs give the chip a unique “fingerprint” as if it were a chip.
This study investigates the application of Bound states In the Continuum (BIC) in PUF technology. The content is divided into three parts, firstly, through numerical analysis and finite element simulation, the quality factor (Q factor) of the BIC theoretically tends to the infinite characteristic, and by changing the fill factor of the grating (Fill factor), the light mode and the dark mode overlap to form the Exceptional Point (EP), and when the structural dimensions change slightly, the characteristics of the modes are frequently changed. When there is a small change in the structure size, the characteristic frequency of the mode will change significantly. The simulated reflection spectrum is then converted to a time-domain signal by inverse Fourier transformation and convolved with the input Gaussian laser to simulate the Challenge-Response Pair (CRP) process of real-world body recognition. Finally, the received signals are digitized into bit strings, i.e., chip fingerprints, and examined for parameters such as randomness (Ex、Ey), uniqueness (HDinter), and reliability (HDintra), and are verified as a true random number generator through the NIST randomness test. After a huge amount of statistical analysis (10k), the BIC-PUF structure proposed in this study has Ex、Ey、HDinter、HDintra, with mean values of 0.9595, 0.9976, 0.4969, 0.0393, and standard deviations of 0.0986, 0.0032, 0.0351, 0.0352, and has passed the NIST randomness test. The standard deviation is 0.0986, 0.0032, 0.0351, 0.0352, respectively, and has passed the NIST randomness test. The BIC mode PUF proposed in this paper can be extended to near-infrared and visible light applications in the future. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-09T16:11:51Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-09T16:11:51Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目次
誌謝 i 中文摘要 ii 英文摘要 iii 目次 v 圖次 vii 表次 xi 符號表 xii 第一章 緒論 1 1.1 前言 1 1.1.1 隨機性(Randomness) 4 1.1.2 唯一性(Uniqueness) 5 1.1.3 可靠性(Reliability) 6 1.2 研究動機 6 1.3 文獻回顧 12 1.3.1 物理不可仿製功能 12 1.3.2 連續體束縛態 18 第二章 理論 25 2.1 電磁波理論 25 2.1.1 馬克士威方程組 25 2.1.2 折射率與介電係數 26 2.2 表面電漿子理論 27 2.2.1 電漿 27 2.2.2 表面電漿極化子 29 2.3 一維金屬光柵的光子模態 32 2.4 連續體束縛態理論 33 第三章 設計與模擬 35 3.1 模擬軟體簡介 35 3.2 有限元素模擬流程 35 3.3 表面電漿極化子模態波段位置 36 3.4 光子模態波段位置 40 3.5 確認BIC耦合結果 42 3.6 改變填充因子形成奇異點 45 第四章 分析與討論 50 4.1 獲取反射頻譜 50 4.2 將反射頻譜從頻域轉為時域 51 4.3 仿照現實電磁波發射接收 52 4.4 數位化分析 52 4.5 PUF性能指標 54 4.6 PUF性能指標比較 57 4.7 NIST randomness test測試 57 第五章 結論與未來展望 59 參考文獻 60 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 物理不可仿製功能 | zh_TW |
| dc.subject | 連續體束縛態 | zh_TW |
| dc.subject | 奇異點 | zh_TW |
| dc.subject | 無限大品質因子 | zh_TW |
| dc.subject | 美國國家標準技術研究所隨機性測試 | zh_TW |
| dc.subject | Exceptional point | en |
| dc.subject | PUF | en |
| dc.subject | NIST randomness test | en |
| dc.subject | Infinite Q factor | en |
| dc.subject | BIC | en |
| dc.title | 連續體束縛態之光柵結構應用於物理不可仿製功能 | zh_TW |
| dc.title | Bound states In the Continuum based optical grating structures for Physically Unclonable Function applications | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳玉彬;劉承揚 | zh_TW |
| dc.contributor.oralexamcommittee | Yu-Bin Chen;Cheng-Yang Liu | en |
| dc.subject.keyword | 物理不可仿製功能,連續體束縛態,奇異點,無限大品質因子,美國國家標準技術研究所隨機性測試, | zh_TW |
| dc.subject.keyword | PUF,BIC,Exceptional point,Infinite Q factor,NIST randomness test, | en |
| dc.relation.page | 66 | - |
| dc.identifier.doi | 10.6342/NTU202403027 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-05 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 5.23 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
