請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9385完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 江金倉 | |
| dc.contributor.author | Hung Hung | en |
| dc.contributor.author | 洪弘 | zh_TW |
| dc.date.accessioned | 2021-05-20T20:20:10Z | - |
| dc.date.available | 2009-05-12 | |
| dc.date.available | 2021-05-20T20:20:10Z | - |
| dc.date.copyright | 2009-05-12 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-04-23 | |
| dc.identifier.citation | ibitem{}
Akritas, M. G. (1994). Nearest neighbor estimation of a bivariate distribution under random censoring. extit{Annals of Statistics}, 22, 1299-1327. ibitem{} Beran, R. (1981). Nonparametric regression with randomly censored survival data. Technical report, Univ. California, Berkeley. ibitem{} Burke, M. D. (1988). Estimation of a bivariate distribution function under random censorship. extit{Biometrika}, 75, 379-382. ibitem{} Cai, T. and Cheng, S. (2008). Robust combination of multiple diagnostic tests for classifying censored event times. extit{Biostatistics}, 9, 216-233. ibitem{} Cai, T. and Dodd, L. E. (2008). Regression analysis for the partial area under the ROC curve. extit{Statistica Sinica}, 18, 817-836. ibitem{} Cai T., Pepe M. S., Zheng Y, Lumley, T., and Henny, N. S. (2006). The sensitivity and specificity of markers for event times. extit{Biostatistics}, 7, 182-197. ibitem{} Campbell, G. (1981). Nonparametric bivariate estimation with randomly censored data. extit{Biometrika}, 68, 417-423. ibitem{} Chambless, L. E. and Diao, G. (2006). Estimation of time-dependent area under the ROC curve for long-term risk prediction. extit{Statistics in Medicine}, 25, 3474-3486. ibitem{} Chiang, C. T. and Huang, S. Y. (2009). Estimation for the optimal combination of markers without modeling the censoring distribution. extit{Biometrics}, 65, 152-158. ibitem{} Chiang, C. T., Wang, S. H., and Hung, H. (2008). Random weighting and Edgeworth expansion for the nonparametric time-dependent AUC estimator. extit{Statistica Sinica}. To appear. ibitem{} Dabrowska, D. M. (1987). Uniform consistency of nearest neighbor and kernel conditional Kaplan-Meier estimates. Technical Report No. 86, Univ. California, Berkeley. ibitem{} Dabrowska, D. M. (1989). Uniform Consistency of the Kernel Conditional Kaplan-Meier Estimate. extit{Annals of Statistics}, 17, 1157-1167. ibitem{} Daouia, A., Florens, J. P., and Simar, L. (2008). Functional convergence of quantile-type frontiers with application to parametric approximations. extit{Journal of Statistical Planning and Inference}, 138, 708-725. ibitem{} Dodd, L. E. and Pepe, M. S. (2003a). Semiparametric regression for the area under the receiver operating characteristic curve. extit{Journal of the American Statistical Association}, 98, 409-417. ibitem{} Dodd, L. E. and Pepe, M. S. (2003b). Partial AUC estimation and regression. extit{Biometrics}, 59, 614-623. ibitem{} Du, Y. and Akritas, M. G. (2002). Uniform strong representation of the conditional Kaplan-Meier process. extit{Mathematics Methods of Statistics}, 11, 152-182. ibitem{} Dwyer, A. J. (1996). In pursuit of a piece of the ROC. extit{Radiology}, 201, 621-625. ibitem{} Emir, B., Wieand, S., Jung, S. H., and Ying, Z. (2000). Comparison of diagnostic markers with repeated measurements: a non-parametric ROC curve approach. extit{Statistics in Medicine}, 19, 511-523. ibitem{} Fleming, T. R. and Harrington, D. P. (1991). Counting process and survival analysis. New York: Wiley. ibitem{} Hammer, S. M., Katzenstein, D. A., Hughes, M. D., Gundacker, H., Schooley, R. T., Haubrich, R. H., Henry, W. K., Lederman, M. M., Phair, J. P., Niu, M., Hirsch, M. S., and Merigan, T. C. (1996). A trial comparing nucleoside monotherapy with combination therapy in HIV-infected adults with CD4 cell counts from 200 to 500 per cubic millimeter. extit{The New England Journal of Medicine}, 335, 1081-1090. ibitem{} Heagerty, P. J., Lumley, T., and Pepe, M. (2000). Time-dependent ROC curves for censored survival data and a diagnostic marker. extit{Biometrics}, 56, 337-344. ibitem{} Horowitz, J. L. (1992). A smoothed maximum score estimator for the binary response model. extit{Econometrica}, 60, 505-531. ibitem{} Horvitz, D. and Thompson, D. J. (1952). A generalization of sampling without replacement from a finite universe. extit{Journal of the American Statistical Association}, 47, 663-685. ibitem{} Jiang, Y., Metz, C. E., and Nishikawa, R. M. (1996). A receiver operating characteristic partial area index for highly sensitive diagnostic tests. extit{Radiology}, 201, 745-750. ibitem{} Khan, S. and Tamer, E. (2007). Partial rank estimation of duration models with general forms of censoring. extit{Journal of Econometrics}, 136, 251-280. ibitem{} Koul, H., Susarla, V., and Van Ryzin, J. (1981). Regression analysis with randomly right censored data. extit{Annals of Statistics}, 9, 1276-1288. ibitem{} Lee, K. W. J., Hill, J. S., Walley, K. R., and Frohlich, J. J. (2006). Relative value of multiple plasma biomarkers as risk factors for coronary artery disease and death in an angiography cohort. extit{Canadian Medical Association Journal}, 174, 461-466. ibitem{} Lin, D. Y., Wei, L. J., Yang, I., and Ying, Z. L. (2000). Semiparametric regression for the mean and rate functions of recurrent events. extit{Journal of the Royal Statistical Society Series B}, 62, 711-730. ibitem{} McClish, D. K. (1989). Analyzing a portion of the ROC curve. extit{Medical Decision Making}, 9, 190-195. ibitem{} Metz, C. E., Herman, B.A., and Shen, J. (1998). Maximum likelihood estimation of receiver operating characteristic (ROC) curves from continuous distributed data. extit{Medical in Medicine}, 17, 1033-1053. ibitem{} Newey, W. K. and McFadden, D. (1994). Large sample estimation and hypothesis testing. In: McFadden, D. and Engler, R. (editors), extit{Handbook of Econometrics}, Volume IV. North Holland: Amsterdam, 2113-2245. ibitem{} Nolan, D. and Pollard, D. (1987). U-processes: Rates of convergence. extit{Annals of Statistics}, 15, 780-799. ibitem{} Pakes, A. and Pollard, D. (1989). Simulation and the asymptotics of optimization estimators. extit{Econometrica}, 57, 1027-1057. ibitem{} Pepe, M. S. (1997). A regression modelling framework for receiver operating characteristic curves in medical diagnostic testing. extit{Biometrika}, 84, 595-608. ibitem{} Pepe, M. S. (1998) Three approaches to regression analysis of receiver operating characteristic curves for continuous test results. extit{Biometrics}, 54, 124-135. ibitem{} Pepe, M. S. (2000) Receiver operating characteristic methodology. extit{Journal of the American Statistical Association}, 95, 307-311. ibitem{} Pepe, M. S. (2003) The statistical evaluation of medical tests for classification and prediction. Oxford, New York. ibitem{} Pollard, D. (1990). Empirical processes: Theory and applications. Hayward: Institute of Mathematical Statistics. ibitem{} Robins, J. M. and Rotnitzky, A. (1992). Recovery of information and adjustment for dependent censoring using surrogate markers. In: Jewell N, Dietz K, Farewell V (ed) AIDS Epidemiology-Methodological Issues, Birkh'{a}user, Boston, 297-331 ibitem{} Serfling, R. J. (1980). Approximation theorems of mathematical statistics. New York: Wiley. ibitem{} Sherman, R. P. (1993). The limiting distribution of the maximum rank correlation estimator. extit{Econometrica}, 61, 123-137. ibitem{} Sherman, R. P. (1994a). Maximal inequalities for degenerate U-processes with applications to optimization estimators. extit{Annals of Statistics}, 22, 439-459. ibitem{} Sherman, R. P. (1994b). U-process in the analysis of a generalized semiparametric regression estimator. extit{Econometric Theory}, 10, 372-395. ibitem{} Song, X., Ma, S., Huang, J., and Zhou, X. H. (2007). A semiparametric approach for the nonparametric transformation survival model with multiple covariates. extit{Biostatistics}, 8, 197-211. ibitem{} van der Vaart, A. W. (2000). Asymptotic Statistics. Cambridge: Cambridge University Press. ibitem{} Zhang, D. D., Zhou, X. H., Freeman, Daniel H. J., and Freeman, J. L. (2002). A non-parametric method for the comparison of partial areas under ROC curves and its application to large health care data set. extit{Statistics in Medicine}, 21, 701-715. ibitem{} Zheng, Y., Cai, T., and Feng, Z. (2006). Application of the time-dependent ROC curves for prognostic accuracy with multiple biomarkers. extit{Biometrics}, 62, 279-287. ibitem{} Zheng, Y., Cai, T., Pepe, M. S., and Levy W. C. (2008). Time-dependent predictive value of prognostic biomarkers with failure time outcome. extit{Journal of the American Statistical Association}, 103, 362-368. ibitem{} Zhou, X. H., McClish, D. K., and Obuchowski, N. A. (2002). Statistical methods in diagnostic medicine. New York: Wiley. ibitem{} Zou, K. H., Hall, W. J., and Shapiro, D. E. (1997). Smooth non-parametric receiver operating characteristic (ROC) curves for continuous diagnostic tests. extit{Statistics in Medicine}, 16, 2143-2156. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9385 | - |
| dc.description.abstract | ROC (receiver operating characteristic) 曲線分析已經被廣泛地應用於早期疾病診斷之評估。其中AUC (area under the ROC curve) 以及PAUC (partial area under the ROC curve) 是兩個最常使用的指標。近來在實務應用上,隨時間變化之疾病狀態 (disease status) 的資料已經越來越常見。不同於以往單純的二分類 (有病或沒病),時間相關之疾病狀態是由一個特定事件的發生時間所定義出來的。給定任一個時間點,資料被分為在此時間點之前有發生疾病以及沒有發生疾病的兩個群體。有鑒於此,傳統的ROC曲線分析也必須推廣到時間相關ROC曲線分析。由於事件發生的時間有可能被截切 (censored) 以至於無法知道確切的發生時間,在使用時間相關ROC曲線分析時,最大的挑戰來自於如何利用不完整的資料進行統計推論。另一個常遇到的問題是使用單一生物指標來分類疾病狀態往往無法達到預期的水準。在很多情況下,受試者會被同時觀測到多重生物指標。如何結合多重生物指標以增進分類的能力也是一個很重要的議題。
不同於現有的方法,我針對時間相關之AUC以及PAUC提出一系列的無母數估計方法。由於這些估計方法有明確的表達式,因此不論是對計算效率還是大樣本理論之推導都有很重要的貢獻。此外,我也提出了廣義線性模型以分析時間相關之AUC與其它變數之間的相關性。最後,在承認條件存活分布函數滿足EGLM (extended generalized linear model) 並且不需指定連結函數確切形式的情況下,我在這本論文裡對於最佳合成指標也提出了兩個無母數估計方法。所有建立的推論方法都應用在AIDS Clinical Trials Group (ACTG) 175以及Angiography Coronary Artery Disease (CAD) 這兩筆臨床資料以驗證其實用性。 | zh_TW |
| dc.description.abstract | To evaluate the performance of test results in early
detection of disease, the receiver operating characteristic (ROC) curves are widely used. The area under the ROC curve (AUC) and the partial area under the ROC curve (PAUC) are the most popular summary measures for its generality and ease of probability interpretation. In applications, data with the binary time-varying disease status are frequently encountered. The cases and controls in the ROC analysis are more suitable defined over time. A major challenge in dealing this issue is that the failure status of some individuals might not be available due to censoring. To further increase classification ability of multiple biomarkers, research interests usually focus on seeking combinations of these biomarkers with the highest ROC curve. In contrast to the existing methods, we propose nonparametric estimators for the time-dependent AUC and PAUC with explicit expressions and a rigorous theoretical development for these methods. Moreover, we use a generalized linear model with time-varying coefficients to characterize the time-dependent AUC as a function of covariate values. For the parameter functions and the related classification accuracies, the estimation and inference procedures are also proposed. Under the validity of an extended generalized linear model (EGLM) with time-varying coefficients and an unknown link function for the conditional survival distribution, two nonparametric procedures are proposed to estimate the optimal composite markers based on the estimation procedures of the time-dependent AUC. Two empirical examples from the AIDS Clinical Trials Group (ACTG) 175 study and the Angiography Coronary Artery Disease (CAD) study are used to illustrate the usefulness of our methods. Finally, some concluding remarks and further research topics of interests are devoted in this thesis. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T20:20:10Z (GMT). No. of bitstreams: 1 ntu-98-D94221002-1.pdf: 570163 bytes, checksum: c427b77f4176ecc9ea22cf21feb28951 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | Table of Contents iii
List of Tables v List of figures viii Acknowledgements ix 摘要 x Abstract xii 1 Introduction 1 1.1 The ROC Curve Analysis 1 1.2 Motivating Examples 3 1.2.1 Angiography Coronary Artery Disease (CAD) Study 3 1.2.2 AIDS Clinical Trial Group 175 Study 4 1.3 Time-Dependent Monitoring Rule 4 1.4 Existing Methods for Time-Dependent Vital Status 5 1.5 Main Contributions 7 2 Time-Dependent AUC and PAUC 10 2.1 Nonparametric Estimation 11 2.2 Asymptotic Properties 13 2.3Inference Procedures 18 3 Semiparametric Regression Model for the Time-Dependent AUC 21 3.1 Estimation 22 3.2 Asymptotic Properties 23 3.3 Inference Procedures 25 4 Optimal Composite Biomarkers 28 4.1 Estimation Procedures 29 4.2 Asymptotic Properties 31 5 Simulations and Applications 41 5.1 Monte Carlo Simulations 41 5.1.1 Scenario I – Time-Dependent AUC and PAUC 41 5.1.2 Scenario II – Time-Dependent AUC Regression Model 43 5.1.3 Scenario III – Optimal Composite Markers 45 5.2 Applications 46 5.2.1 ACTG 175 Study 46 5.2.2 Angiography CAD Study 49 6 Discussion 74 6.1 Concluding Remarks 74 6.2 Future Works 76 6.2.1 Multiple Biomarker Comparison 76 6.2.2 Optimality in Classification and Prediction 78 6.2.3 Partly Conditional Time-Dependent AUC 79 Bibliography 80 | |
| dc.language.iso | en | |
| dc.title | 時間相關AUC之方法論及其應用 | zh_TW |
| dc.title | Methodology for the Time-Dependent AUC and Its Applications | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 陳 宏,劉仁沛,陳正剛,李克昭,陳珍信,何淮中,張源俊 | |
| dc.subject.keyword | AUC,分類,疾病狀態,最佳合成指標,預測,ROC,存活時間, | zh_TW |
| dc.subject.keyword | AUC,classification,disease-status,optimal composite biomarker,prediction,ROC,survival time, | en |
| dc.relation.page | 85 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2009-04-24 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 數學研究所 | zh_TW |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf | 556.8 kB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
