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摘要

ROC (receiver operating characteristic) 曲線分析已經被廣泛地應用於早

期疾病診斷之評估。 其中 AUC (area under the ROC curve) 以及 PAUC

(partial area under the ROC curve) 是兩個最常使用的指標。近來在實務應

用上, 隨時間變化之疾病狀態 (disease status) 的資料已經越來越常見。 不同

於以往單純的二分類 (有病或沒病), 時間相關之疾病狀態是由一個特定事件的

發生時間所定義出來的。給定任一個時間點, 資料被分為在此時間點之前有發生

疾病以及沒有發生疾病的兩個群體。有鑒於此, 傳統的 ROC 曲線分析也必須推

廣到時間相關 ROC 曲線分析。由於事件發生的時間有可能被截切 (censored)

以至於無法知道確切的發生時間, 在使用時間相關 ROC 曲線分析時, 最大的

挑戰來自於如何利用不完整的資料進行統計推論。 另一個常遇到的問題是使用

單一生物指標來分類疾病狀態往往無法達到預期的水準。 在很多情況下, 受試者

會被同時觀測到多重生物指標。 如何結合多重生物指標以增進分類的能力也是

一個很重要的議題。

不同於現有的方法, 我針對時間相關之 AUC 以及 PAUC 提出一系列的無

母數估計方法。由於這些估計方法有明確的表達式, 因此不論是對計算效率還是

大樣本理論之推導都有很重要的貢獻。此外, 我也提出了廣義線性模型以分析時

間相關之 AUC與其它變數之間的相關性。最後, 在承認條件存活分布函數滿足

x



EGLM (extended generalized linear model) 並且不需指定連結函數確切形

式的情況下, 我在這本論文裡對於最佳合成指標也提出了兩個無母數估計方法。

所有建立的推論方法都應用在 AIDS Clinical Trials Group (ACTG) 175以

及 Angiography Coronary Artery Disease (CAD) 這兩筆臨床資料以驗證

其實用性。

關鍵詞: AUC, 分類, 疾病狀態, 最佳合成指標, 預測, ROC, 存活時間
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Abstract

To evaluate the performance of test results in early detection of disease,

the receiver operating characteristic (ROC) curves are widely used.

The area under the ROC curve (AUC) and the partial area under the

ROC curve (PAUC) are the most popular summary measures for its

generality and ease of probability interpretation. In applications, data

with the binary time-varying disease status are frequently encountered.

The cases and controls in the ROC analysis are more suitable defined

over time. A major challenge in dealing this issue is that the failure

status of some individuals might not be available due to censoring. To

further increase classification ability of multiple biomarkers, research

interests usually focus on seeking combinations of these biomarkers with

the highest ROC curve.

In contrast to the existing methods, we propose nonparametric es-

timators for the time-dependent AUC and PAUC with explicit expres-

sions and a rigorous theoretical development for these methods. More-

over, we use a generalized linear model with time-varying coefficients to

characterize the time-dependent AUC as a function of covariate values.

xii



For the parameter functions and the related classification accuracies,

the estimation and inference procedures are also proposed. Under the

validity of an extended generalized linear model (EGLM) with time-

varying coefficients and an unknown link function for the conditional

survival distribution, two nonparametric procedures are proposed to

estimate the optimal composite markers based on the estimation pro-

cedures of the time-dependent AUC. Two empirical examples from the

AIDS Clinical Trials Group (ACTG) 175 study and the Angiography

Coronary Artery Disease (CAD) study are used to illustrate the use-

fulness of our methods. Finally, some concluding remarks and further

research topics of interests are devoted in this thesis.

Key words and phrases: AUC, classification, disease-status, opti-

mal composite biomarker, prediction, ROC, survival time
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Chapter 1

Introduction

1.1 The ROC Curve Analysis

Decision-making is an important issue in many fields such as psychology, radiology,

medicine, etc. For example, in clinical preventive medicine preoperative diagnos-

tic tests are medically necessary and implemented to determine those patients for

whom surgery is beneficial. For the sake of cost-saving or performance improve-

ment, new diagnostic tests are often introduced and the classification accuracies of

them are evaluated and compared with the existing ones. The decision is usually

to classify a subject to be diseased or underwent operation if the test result Y is

greater than a threshold value y. In practice, two conditional probabilities are ap-

plied to evaluate the performance of such classification criterion: the true positive

rate (sensitivity) TPR(y) = P (Y > y|D = 1) and the false positive rate (1-specificity)

FPR(y) = P (Y > y|D = 0) with D being the binary disease status where D = 1 in-

dicates diseased and D = 0 otherwise. Although a good classifier should possess high

TPR(y) and low FPR(y), it is observed that both measures are decreasing functions of

y. The trade-off between TPR(y) and FPR(y) then become crucial in the assessment.

The ROC curve, a graph of (FPR(y), TPR(y)) points, is widely used to display the

relationship between TPR(y) and FPR(y). A merit to favor the ROC curve is that

the choice of possible value y may depend on different research purposes and related

1
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cost. Without cosidering a specific threshold value, the ROC curve shows the inher-

ent classification capability of a biomarker. Interestingly, the test result Y and any

strictly increasing transformation g(Y ) have the same ROC curve. This invariance

characteristic of the ROC curve in measurement scale further provides a suitable base

to compare different biomarkers. Geomerically, the more the curve moves toward the

point (0, 1) the better a biomarker performs, while a straight line pass through (0, 0)

and (1, 1) indicates a useless one.

In applications, one of the most popular overall performance measures is the area

under the ROC curve (AUC). It has the probability explanation that the considered

marker of a randomly selected diseased case is greater than that of a non-diseased

one, i.e., P (Yi > Yj|Di = 1, Dj = 0). Obviously, a perfect marker will have the

AUC value 1 while a poor one takes a value close to 0.5. What is the value of the

AUC should a good or acceptable marker possess? The standard is quite different

and might depend on different research purposes. A biomarker with the AUC value

greater than 0.75 is regarded as being indicative of disease in medical practice. In

emergency medicine, however, a useful diagnostic test should have the AUC value at

least 0.9. Since the AUC is an overall evaluation, relevant information might not be

entirely captured in some cases. For example, two crossed ROC curves might have the

same AUC but totally different performances. It is more reasonable to evaluate the

performance of a biomarker over the practically acceptable portion of the ROC curve

only. The partial AUC (PAUC) for FPR over the relevant interval was adopted by

McClish (1989) as the summary measure. Jian, Metz, and Nishikawa (1996) argued

that women with false-negative findings at mammography cannot be benefited from

timely treatment of the cancer and, hence, suggested using the PAUC with restricted

true positive range in their applied data. As mentioned by Dwyer (1997), the PAUC

is a regional analysis of the ROC curve intermediate between the AUC and individual

points on the ROC curve. In view of these points, it is more useful to consider the

PAUC as alternative summary measure due to its sensitivity and flexibility. The

PAUC with FPR(y) < α, α ∈ (0, 1], of a perfect biomarker should be α while a
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useless one is 0.5α2. Similar to the probability explanation of AUC, the PAUC can

be explained as the probability that the test result of a case is higher than that of

a control with its value exceeding the corresponding (1 − α)th quantile value, i.e.,

P (Yi > Yj > q|Di = 1, Dj = 0), i �= j, where q satisfying P (Y > q|D = 0) = α.

Several estimation and inference procedures have been proposed by Emir, Wieand,

Jung, and Ying (2000), Zhang, Zhou, Freeman, and Freeman (2002), and Dodd and

Pepe (2003), among others. Since the AUC is a special case of the PAUC and all the

inference procedures developed for the PAUC can be reduced to that for the AUC.

A more thorough understanding of the ROC and the related measures can also be

found in Zhou, McClish, and Obuchowski (2002) and Pepe (2003).

1.2 Motivating Examples

Two empirical examples are illustrated in this section to provide some perspectives

that are not considered in the traditional ROC methodologies. As we will see in

these studies that the disease status is induced from the time of a specific event,

which is different from the traditional one. It motivates the development of novel

methodologies in this thesis.

1.2.1 Angiography Coronary Artery Disease (CAD) Study

The first considered data were obtained from the British Columbia Vital Statistics

database which has been analyzed by Lee, et al. (2006). A total of 1050 patients were

recruited between 1993 and 1995 from two Vancouver teaching hospitals for selective

coronary angiography. The blood of each recruited patient was taken and frozen to

store. In 2002, the blood samples were thawed and the plasma biomarkers of CRP,

SAA, IL-6, and tHcy were recorded. The disease time of patients were collected in

2004 and 95 patients were found to die by CAD during the study period. The aim

of this study is mainly to seek the best plasma biomarker in classifying patient’s

CAD-related death status. The analysis results of Lee, et al. (2006) indicated that
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the elevated levels of IL-6 and tHcy are superior than those of CRP and SAA. The

authors concluded that the AUC of IL-6 is significantly higher than the others.

1.2.2 AIDS Clinical Trials Group (ACTG) 175 Study

In the ACTG 175 study, a total of 2467 HIV-1-infected patients, whose CD4 cell

counts ranged from 200 to 500 cells cu/mm, were recruited between December 1991

and October 1992. Among these patients, 1395 patients received the prior antiretrovi-

ral therapy while the rest 1072 patients did not. During the study period, 308 patients

died of all causes or were diagnosed with AIDS. In contrast to the CAD study, the

biomarker CD4 cell counts were intermittently collected within the study period.

These longitudinal measured biomarkers will provide updated information about the

disease progress. Full details of the design, medical implication, and methods of this

study can be found in Hammer et al. (1996).

1.3 Time-Dependent Monitoring Rule

Recent research in ROC methodology has extended the binary disease status D to the

time-dependent setting where the time-dependent disease status is defined through

the failure time of a specific event. This generalization further provide the time-

evolution effect in classification. In the CAD study, the disease status is induced

from the CAD-related death time in which a patient is treated as a case if he/she

died by CAD before the time point of interest. In the same manner, the time to

AIDS in the ACTG 175 study is used to define the disease status. To simplify the

succeeding presentation, the failure time of a specific event is denoted by T . For

any fixed time point t, the time-dependent disease status is classified as a case if

{T ≤ t} and a control otherwise. Based on the time-dependent setting, Heagerty,

Lumley, and Pepe (2000) first generalized the traditional TPR(y) and FPR(y) to

TPRt(y) = P (Y > y|T ≤ t) and FPRt(y) = P (Y > y|T > t), respectively. The

time-dependent ROC, AUC, and PAUC are naturally derived and can be applied to
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evaluate the performance of Y in classifying {T ≤ t} and {T > t}.
Instead of using a single biomarker, an appropriate combination of multiple ones

will improve the accuracy in classifying subject’s vital status. As shown in the CAD

study the time-dependent AUCs of CRP, SAA, IL-6, and tHcy are not high enough.

It is desirable to seek an optimal composite biomarker of them that can improve

classification accuracy and possesses the highest time-dependent ROC curve at each

time point. As to the ACTG 175 study, it has been well known that CD4 cell counts

are highly correlated with AIDS. A further scientific question is to investigate the

effects of other risk factors Z such as the baseline therapy status on the performance

of the biomarker. For instance, does CD4 biomarker performs better for patients with

prior antiretroviral therapy. The covariate-specific time-dependent AUC denoted by

θt(Zi, Zj) = P (Yi > Yj|Ti ≤ t, Tj > t, Zi, Zj) provides useful information to assess

whether the prior therapy can enhance the classification ability of CD4 cell counts.

Full understanding of this quantity could help searching suitable subpopulation where

the biomarker performs well. A generalized linear regression model for θt(Zi, Zj) was

usually considered in the research to account for the heterogeneity arising from Z.

1.4 Existing Methods for Time-Dependent Vital

Status

By applying the Baye’s rule, Heagerty, Lumley, and Pepe (2000) proposed nonpara-

metric estimators for TPRt(y) and FPRt(y) under different censoring mechanisms.

These authors also suggested to estimate the time-dependent AUC and PAUC via

calculating the relevant trapezoidal area under the estimated time-dependent ROC

curve. In contrast to the numerical integration technique, Chambless and Diao (2006)

developed the recursive estimators for TPRt(y), FPRt(y), and the time-dependent

AUC. Their recursive estimators can, however, only provide estimates on the ob-

served failure times while practical research might be interested in the estimation of

the time-dependent AUC at a pre-specified time point t. For direct estimation of
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the time-dependent PAUC, there is no study in the literatures concerning this topic

currently. To investigate the effects of the covariates on the performance of a test

result, Cai et al. (2006) proposed a class of semiparametric regression models for the

time-dependent true and false positive rates. The covariate-specific time-dependent

AUC is then computed numerically while the effects of Z on θt(Zi, Zj) can not be

well explained. In view of this point, a model for the relationship between covariates

and the AUC becomes necessary. Under the time-invariant disease status, Dodd and

Pepe (2003) proposed a semiparametric regression model for the covariate-specific

AUC P (Yi > Yj |Di = 1, Dj = 0, Zi, Zj) and develop the corresponding estimation

procedure for the parameters of interest. So far, there is still no statistical method

for the covariate-specific time-dependent AUC.

As to the problem of seeking an optimal combination of multiple biomarkers Y =

(Y1, · · · , Yp), existing methods mainly rely on appropriately modeling the relationship

between T and Y . Provided P (T ≤ t|Y = y) is an increasing function of gt(y) for any

fixed t, the transformation gt(Y ) is derived to be the optimal composite biomarker in

the sense that no other function of Y can have a higher time-dependent ROC curve.

Research interest usually focuses on the estimation of such optimal transformation

gt(·). In applications, a Cox’s proportional hazards model λ(t|y) = λ0(t) exp(βT y),

where λ0(t) is the baseline hazard function and β = (β1, · · · , βp)
T is the effects of Y on

the hazard rate, is widely used to find an optimal classifier. It is straightforwardly to

see that gt(Y ) = βTY in such model and β can be estimated by the partial likelihood

estimation procedure. A more flexible model which also implies gt(Y ) = βT Y is

the generalized accelerated failure time (GAFT) model h(T ) = −βT Y + ε. Here

h(·) is an unknown and increasing link function and ε represents a random error

with unknown distribution. To estimate β, Khan and Tamer (2007) and Song, Ma,

Huang, and Zhou (2007) have proposed the partial rank (PR) estimator and the

smoothed PR estimator, respectively. One merit of the PR estimation method is to

handle marker-dependent censorship, which is more acceptable in practice. Without

involving the censoring distribution in the estimation, Cai and Cheng (2008) provided
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a more robust nonparametric estimator for β at the expense of assuming totally

independent censorship. To incorporate the time influence nature of Y in classifying

{T ≤ t} and {T > t}, Zheng, Cai, and Feng (2006) considered the logistic regression

model P (T ≤ t|y) = exp(αt +βT
t y)/{1+exp(αt +βT

t y)} with time-varying coefficient

βt = (βt1, · · · , βtp)
T . These authors showed that gt(Y ) = βT

t Y and applied the inverse

probability weighting (IPW) technique to estimate βt. Without further modeling

of the censoring distribution, Chiang and Huang (2008) considered an imputation

method to estimate the optimal composite biomarkers.

1.5 Main Contributions

With censored survival data, traditional methodologies for the ROC curve and the

related summary indices cannot be applied directly. The first aim of this thesis is to

propose some estimation procedures for the time-dependent AUC and PAUC under

different censoring mechanisms. In Chapter 2 we find that the time-dependent PAUC

can be expressed as a functional of S(t, y) = P (T > t, Y > y), i.e., the joint survival

function of T and Y . By substituting reasonable estimators for S(t, y), a class of non-

parametric estimators are derived. In contrast to the methods of Heagerty, Lumley,

and Pepe (2000) and Chambless and Diao (2006), our estimators are easily computed

without involving very complicated numerical calculation. As one can see that there

is no explicit expressions for their estimators which might be difficult to develop

the corresponding asymptotic properties. All of these authors suggested using the

time-consuming bootstrap method to make statistical inferences. By applying the

functional Delta method, our estimators are shown to converge weakly to Gaussian

processes with estimated variance-covariance functions. The developed properties

further facilitate us to construct the approximated pointwise and simultaneous con-

fidence bands for the time-dependent AUC and PAUC.

In Chapter 3, we consider the generalized linear regression model

θt(Zi, Zj) = h(γT
t Zij) (1.1)
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with time-varying coefficient γt = (γt1, · · · , γtp)
T to model the relationship between

the time-dependent AUC and covariates Z, where h(·) is a known smooth response

function and Zij is a p × 1 vector function of Zi and Zj . When data are completely

observed, the method of Dodd and Pepe (2003) can be applied by simply replacing the

binary disease status D by the time-dependent one I(T ≤ t). With the appearance of

censoring, their method might lead to biased estimates without handling unavailable

vital status. By generalizing the proposed nonparametric estimator for the time-

dependent AUC, we develop an estimating equation for the parameter γt in this

thesis. The large sample properties for the estimators of γt and θt(Zi, Zj) are also

derived to form the basis of statistical inferences.

The issue of combining biomarkers to achieve higher classification ability is studied

in Chapter 4. It can be seen that the usefulness of the existing methods mainly rely

on the appropriate specification for the working model. Under the validity of well

behaved model for failure time, the linear combination of biomarkers is optimal in

classifying the vital status over time. Robust estimation procedure is required in

practice with less restrictive model assumption. A more flexible extended generalized

linear model (EGLM)

P (T ≤ t|Y = y) = Gt(β
T
t y) (1.2)

is used to characterize the relationship between T and Y , where βt = (βt1, · · · , βtp)
T

is the p-variate time-varying parameter of interest and Gt(·) is an unknown strictly

increasing function which may also depended on t. It is ensured from the increasing

property of Gt(·) that βT
t Y is the optimal composite biomarker at time t. The flexibil-

ity of (1.2) can be seen that all the aforementioned models such as the GAFT model

and the time-varying coefficient logistic regression model are special cases. Based

on the EGLM, we propose estimating equations for βt via maximizing the estimated

time-dependent AUC quantities under different censoring mechanisms. Interestingly,

the root-n consistency for estimators of βt can be verified even if Gt(·) is treated as a

nuisance parameter. Moreover, estimators for the time-dependent ROC curve and re-

lated summary measures of the optimal composite biomarker βT
t Y are also proposed



9

by applying the estimation methods in Chapter 2 with little modifications.



Chapter 2

Time-Dependent AUC and PAUC

As mentioned in Chapter 1, there is still no rigorous inference procedure for the time-

dependent AUC and PAUC. Consider the censored survival data {Xi, δi, Yi}n
i=1 with

Xi being the minimum of failure time Ti and censoring time Ci, δi = I(Xi = Ti)

denoting the censoring status, and Yi being the biomarker of the ith subject. The

aim of my research in this chapter is to propose easily computed nonparametric

estimators for these classification accuracies and the related inference procedures.

Here, we focus on the time-dependent PAUC θt(qαt) with FPRt(y) ≤ α, where

qαt = FPR−1
t (α) = inf{y : FPRt(y) ≤ α} is the (1−α)th quantile of Y conditioning

on {T > t} at a fixed time point t. The reason for this is because the time-dependent

PAUC with restricted TPRt(y) can be derived in the same manner by reversing the

roles of cases and controls. In addition, the time-dependent AUC can be treated as

a special case of θt(qαt) by setting α = 1. We show that the estimation procedures

for θt(qαt) are mainly based on nonparametric estimators of S(t, y). The asymp-

totic Gaussian processes of the proposed estimators and the corresponding estimated

variance-covariance functions facilitate the construction of inference procedures.

10
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2.1 Nonparametric Estimation

From the geometric display of relevant {FPRt(y), TPRt(y)} points in the marker

space, θt(qαt) has the form − ∫
TPRt(y)I(FPRt(y) ≤ α)dyFPRt(y). Moreover, the

conditional probabilities FPRt(y) and TPRt(y) can be expressed as a functional of

S(t, y):

FPRt(y) =
S(t, y)

S(t,−∞)
and TPRt(y) =

S(0, y) − S(t, y)

1 − S(t,−∞)
. (2.1)

It is straightforward to derive that

θt(qαt) =
− ∫

(S(0, u)− S(t, u))I(u ≥ qαt)duS(t, u)

S(t,−∞)(1 − S(t,−∞))
. (2.2)

In view of (2.2), the estimation problem of θt(qαt) obviously becomes that of S(t, y).

Under totally independent censoring (C is independent of (T, Y )), which is an

appropriate assumption for the Type I censoring, two estimators

S̃(C)(t, y) =

∑n
i=1 I(Xi > t, Yi > y)

nS̃X(t)
and S̃(B)(t, y) =

∑n
i=1 δiI(Xi > t, Yi > y)

nS̃C(Xi)
(2.3)

for S(t, y) are proposed by Campbell (1981) and Burke (1988), respectively. The

S̃C(t) and S̃X(t) = n−1
∑n

i=1 I(Xi > t) are the Kaplan-Meier estimator of SC(t) =

P (C > t) and an estimator of SX(t) = P (X > t). Using the estimators S̃(B)(t, y)

and S̃(C)(t, y), we propose a more robust estimator against the violation of totally

independent censoring as below.

θ̃t(q̃αt) =
− ∫ {S̃(B)(0, u) − S̃(B)(t, u)}I(u ≥ q̃αt)duS̃

(C)(t, u)

{1 − S̃(B)(t,−∞)}S̃(C)(t,−∞)

=
1

n2

∑
i,j

δiI(Xi ≤ t, Xj > t)φij(q̃αt)

S̃C(Xi)S̃X(t)(1 − S̃T (t))
, (2.4)

where φij(y) = I(Yi > Yj ≥ y) and q̃αt = ˜FPR
−1

t (α) with ˜FPRt(y) = S̃(C)(t, y)/S̃(C)

(t,−∞). By substituting the time-dependent vital status {T ≤ t} for the binary

disease status D, θ̃t(q̃αt) will reduce to the the estimator of Dodd and Pepe (2003a)

when the complete failure time data are available.
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Since the censoring time might associate with the baseline biomarker, it can be

verified that θ̃t(q̃αt) is not a consistent estimator of θt(qαt). Under a more flexible

marker-dependent censoring assumption (Conditioning on Y , T and C are indepen-

dent), Akritas (1994) suggested using Ŝ(t, y) = − ∫ ∞
y

ŜT (t|Yi)dŜY (y) to estimate

S(t, y), where

ŜT (t|y) =
∏

{i:Xi≤t,δi=1}
{1 − Kλ(ŜY (Yi) − ŜY (y))

nŜX(Xi|y)
}, (2.5)

ŜY (y) = n−1
∑n

j=1 I(Yj > y), and ŜX(t|y) = n−1
∑n

j=1 I(Xj ≥ t)Kλ(ŜY (Yj) − ŜY (y))

are estimators for ST (t|y) = P (T > t|Y = y), SY (y) = P (Y > y), and SX(t|y) =

P (X > t|Y = y), respectively. As for the kernel function Kλ(u) = λ−1K(u/λ), a

uniform density function K(u) = 0.5I(|u| < 1) and a positive smoothing parameter

λ are specified. Replacing S(t, y) with Ŝ(t, y) in (2.2), an alternative estimator for

θt(qαt) is proposed by

θ̂t(q̂αt) =
− ∫

(Ŝ(0, u) − Ŝ(t, u))I(u ≥ q̂αt)duŜ(t, u)

Ŝ(t,−∞)(1 − Ŝ(t,−∞))

=
n−2

∑
i�=j(1 − ŜT (t|Yi))ŜT (t|Yj)φij(q̂αt)

ŜT (t)(1 − ŜT (t))
, (2.6)

where ŜT (t) = Ŝ(t,−∞) and q̂αt = ̂FPR
−1

t (α) with ̂FPRt(y) = Ŝ(t, y)/ŜT (t). Note

that the kernel function in (2.5) provides the nearest neighbor estimator (NNE) for

ST (t|y). Other kernel functions are also possible and will yield different estimators.

As mentioned in Akritas (1994), the asymptotic properties of Ŝ(t, y) is irrelevant to

the choice of kernel function under some regularity conditions and so is θ̂t(q̂αt). The

author further showed that any other estimator for S(t, y) is at least as dispersed as

Ŝ(t, y). One merit of the kernel function Kλ(u) is that the choice of λ is irrelevant to

the measurement scale of a biomarker.

When the research interest is focused on estimating the time-dependent PAUC

with α < FPRt(y) ≤ α′, 0 ≤ α < α′ ≤ 1, this classification accuracy can be expressed

as (θt(qα′t) − θt(qαt)) and is estimated by (θ̃t(q̃α′t) − θ̃t(q̃αt)) or (θ̂t(q̂α′t) − θ̂t(q̂αt))
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depending on the corresponding censoring structure. In the estimation of the time-

dependent AUC, both φij(q̃αt) and φij(q̂αt) will simplify to I(Yi > Yj) and, hence, the

estimators θ̃t(q̃1t) and θ̂t(q̂1t) are directly obtained. Let

˜TPRt(y) =
S̃(B)(0, y) − S̃(B)(t, y)

1 − S̃(B)(t,−∞)
and ̂TPRt(y) =

Ŝ(0, y) − Ŝ(t, y)

1 − ŜT (t)
. (2.7)

One can see that θ̃t(q̃1t) and θ̂t(q̂1t) can also be computed as the area under the

right-continuous step function with jumps based on ( ˜FPRt(y), ˜TPRt(y)) points and

( ̂FPRt(y), ̂TPRt(y)) points, respectively. Interestingly, if we replace I(Yi > Yj) by

I(Yi ≥ Yj), the modified estimators are equivalent to compute the area under the left-

continuous step function with jumps base on those estimates for (FPRt(y), TPRt(y)).

In many applications, a most widely used approach to estimate the time-dependent

AUC is to compute the area under the polygon formed by connecting the estimates

(FPRt(y), TPRt(y)) points. We further find the derived estimator is merely to re-

place I(Yi > Yj) by I(Yi > Yj) + 0.5I(Yi = Yj). Since the differences among these

estimators will converge to 0 with rate Op(1/n), we can conclude that the asymp-

totic properties of these modifications are the same. This fact provides a theoretical

basis for the existing estimation methods of θt(qαt) and facilitate the construction of

inferences.

2.2 Asymptotic Properties

In this section, the weak convergence of the proposed nonparametric estimators are

established. The asymptotic properties are derived via applying the functional central

limit theorem to the independent and identically distributed (i.i.d.) representations

of our estimators. These i.i.d. approximations can be further used to estimate the

asymptotic variance-covariance functions and thus facilitate the development of sta-

tistical inference procedures for the time-dependent AUC and PAUC.

Theorem 2.1. Suppose that marker-dependent censoring and the conditions made
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below and in Akritas (1994) are satisfied.

(A1) ft(y) = −∂FPRt(y)/∂y exists with inft ft(qαt) > 0.

(A2) supt |ε−1{FPRt(qαt + ε) − FPRt(qαt)} + ft(qαt)| → 0 as ε → 0.

Then,
√

n(θ̂t(q̂αt) − θt(qαt)) is uniformly approximated by n−1/2
∑n

i=1 Ψαi(t), where

Ψαi(t) is defined in the proof, and converges weakly to a Gaussian process in t ∈ (0, τ ]

with zero mean and variance-covariance function Σα(s, t) = E[Ψαi(s)Ψαi(t)], where τ

satisfies infy P (X > τ |Y = y) > 0.

Proof. From Theorem 3.1 of Akritas (1994), one has

sup
t,y

|√n(Ŝ(t, y) − S(t, y)) −
√

n

n

n∑
i=1

Vi(t, y)| = op(1), (2.8)

where Vi(t, y) = {ST (t|Yi) + ξi(t)}I(Yi > y) − S(t, y),

ξi(t) = −ST (t|Yi)

∫ t

0

duMi(u|Yi)

SX(u|Yi)
, Mi(t|y) = I(Xi ≤ t)δi + ln ST (t ∧ Xi|y),

and t∧Xi = min{t, Xi}. Let hij(t, y) = (1−ST (t|Yi))ST (t|Yj)φij(y) with expectation

h(t, y), ĥij(t, y) = (1 − ŜT (t|Yi))ŜT (t|Yj)φij(y), and ĥ(t, y) = n−2
∑

i�=j ĥij(t, y). The

uniform consistency of ŜT (t|y) (cf. Dabrowska (1987)) ensures that

ĥ(t, y) =
1

n2

∑
i�=j

hij(t, y) +
1

n2

∑
i�=j

(ST (t|Yi) − ŜT (t|Yi))ST (t|Yj)φij(y)

+
1

n2

∑
i�=j

(1 − ST (t|Yi))(ŜT (t|Yj) − ST (t|Yj))φij(y) + r1n(t, y) (2.9)

with supt,y |r1n(t, y)| = op(n
−1/2). By a direct calculation and (2.8), a simplified form

of the second term in the righthand side of (2.9) is obtained as below.

1

n

n∑
j=1

ST (t|Yj)I(Yj > y){ 1

n

n∑
i=1

ST (t|Yi)I(Yi > Yj) − Ŝ(t, Yj)}

=
−1

n2

∑
i,j

ST (t|Yj)ξi(t)φij(y) + r2n(t, y), (2.10)
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where supt,y |r2n(t, y)| = op(n
−1/2). Similarly, the third term can be derived to be

1

n2

∑
i,j

(1 − ST (t|Yi))ξj(t)φij(y) + r3n(t, y) (2.11)

with supt,y |r3n(t, y)| = op(n
−1/2). It follows from (2.9)-(2.11), the decomposition of a

U-statistic into a sum of degenerate U-statistics (Serfling (1980)), and Corollary 4 of

Sherman (1994) that

sup
t,y

|√n(ĥ(t, y) − h(t, y)) −
√

n

n

n∑
i=1

Ui(t, y)| = op(1) (2.12)

with

Ui(t, y) = E[hij(t, y) + hji(t, y)|Xi, Yi, δi]− 2h(t, y)+ {SY (Yi)−S(t, y)}ξi(t)I(Yi > y).

By the Taylor expansion of θ̂t(y) = ĥ(t, y){ŜT (t)(1 − ŜT (t))}−1 at (ĥ(t, y), ŜT (t)) =

(h(t, y), ST (t)), (2.8), and (2.12), one has

sup
t,y

|√n(θ̂t(y) − θt(y)) −
√

n

n

n∑
i=1

Ui(t, y) + η(t, y)Vi(t,−∞)

ST (t)(1 − ST (t))
| = op(1), (2.13)

where η(t, y) = h(t, y)(2ST (t)− 1){ST (t)−S2
T (t)}−1. Applying the functional central

limit theorem,
√

n(θ̂t(qαt) − θt(qαt)) is shown to converge to a mean zero Gaussian

process in t.

As for the asymptotic Gaussian process of θ̂t(q̂αt), it can established through the

equality
√

n(θ̂t(q̂αt) − θt(qαt)) =
√

n(θ̂t(q̂αt) − θt(q̂αt)) +
√

n(θt(q̂αt) − θt(qαt)). Let
√

n(q̂αt − qαt) =
√

n(Q(Ŝ)−Q(S)) with Q : S → qαt. By assumptions (A1)-(A2), the

Hadamard differentiability of Q is a direct result of Lemma A.1 in Daouia, Florens,

and Simar (2008). Together with the functional delta method (cf. Van der Vaart

(2000)), we have

sup
t

|√n(q̂αt − qαt) −
√

n

n

n∑
i=1

Vi(t, qαt) − αVi(t,−∞)

ft(qαt)ST (t)
| = op(1) (2.14)

and the weak convergence of
√

n(q̂αt − qαt). Moreover, it is ensured by (a version of)

Lemma 19.24 of van der Vaart (2000) and (2.13) that

sup
t

|√n(θ̂t(q̂αt) − θt(q̂αt) −
√

n(θ̂t(qαt) − θt(qαt))| = op(1). (2.15)
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By the first order Taylor expansion of θt(q̂αt) at q̂αt = qαt, the continuity of ∂θt(y)/∂y,

supt |q̂αt − qαt| = op(1), and the continuous mapping theorem, one derives that imply

sup
t

|√n(θt(q̂αt) − θt(qαt)) − αST (t) − SY (qαt)

1 − ST (t)
ft(qαt)

√
n(q̂αt − qαt)| = op(1). (2.16)

It follows from (2.13)-(2.16) that

sup
t

|√n(θ̂t(q̂αt) − θt(qαt)) −
√

n

n

n∑
i=1

Ψαi(t)| = op(1), where (2.17)

Ψαi(t) =
Ui(t, qαt) + η(t, qαt)Vi(t,−∞) + (αST (t) − SY (qαt))(Vi(t, qαt) − αVi(t,−∞))

ST (t)(1 − ST (t))
.

Finally, the proof is completed by applying the functional central limit theorem to

the approximated term n−1/2
∑n

i=1 Ψαi(t) in (2.17).

The weak convergence of
√

n(θ̃t(q̃αt)− θt(qαt)) can be derived in a similar manner

and is given in the following theorem.

Theorem 2.2. Suppose that S(t, y) and SC(t) are absolutely continuous. Under

totally independent censoring,
√

n(θ̃t(q̃αt) − θt(qαt)) is uniformly approximated by

n−1/2
∑n

i=1 Ψ∗
αi(t) and converges weakly to a Gaussian process in t ∈ (0, τ ] with mean

zero and variance-covariance function Σ∗
α(s, t) = E[Ψ∗

αi(s)Ψ
∗
αi(t)], where Ψ∗

αi(t) is

defined in the proof and τ satisfies P (X > τ) > 0.

Proof. Let

gij(t, y) =
δi

SC(Xi)
I(Xi ≤ t, Xj > t)φij(y), g(t, y) = E[gij(t, y)],

g̃ij(t, y) =
δi

S̃C(Xi)
I(Xi ≤ t, Xj > t)φij(y), g̃(t, y) =

1

n2

∑
i,j

g̃ij(t, y),

MT i(t) = δiI(Xi ≤ t)+ ln ST (t∧Xi), and MCi(t) = (1− δi)I(Xi ≤ t)+ ln SC(t∧Xi).

The martingale representation of survivor function (cf. Fleming and Harrington

(1991)) ensures that
√

n(S̃T (t) − ST (t)) and
√

n(S̃C(t) − SC(t)) can be uniformly
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approximated by

−ST (t)

√
n

n

n∑
i=1

∫ t

0

dMT i(u)

SX(u)
and − SC(t)

√
n

n

n∑
i=1

∫ t

0

dMCi(u)

SX(u)
. (2.18)

From (2.18), one can obtain that

sup
t∈[0,τ ]

|√n(g̃(t, y)−g(t, y))−{
√

n

(n)3

∑
i�=j �=k

gij(t, y)(1+

∫ Xi

0

dMCk(u)

SX(u)
)−g(t, y)}| = op(1).

(2.19)

By θ̃t(y) = g̃(t, y){S̃X(t)(1 − S̃T (t))}−1 and taking the Taylor expansion of θ̃t(y) at

(g̃(t, y), S̃X(t), S̃T (t)) = (g(t, y), SX(t), ST (t)), it is further established that

sup
t,y

|√n(θ̃t(y) − θt(y)) −
√

n

(n)3

∑
i�=j �=k

U∗
ijk(t, y)

SX(t)(1 − ST (t))
| = op(1),

U∗
ijk(t, y) = gij(t, y)(1 +

∫ Xi

0

dMCk(u)

SX(u)
)− g(t, y)(

I(Xi > t)

SX(t)
+

ST (t)

1 − ST (t)

∫ t

0

dMT i(u)

SX(u)
).

(2.20)

Similar to the derivation of (2.12),
√

n(θ̃t(y) − θt(y)) is uniformly approximated by
√

n

n

n∑
i=1

U∗
i (t, y)

SX(t)(1 − ST (t))

with U∗
i (t, y) = E[U∗

ijk(t, y) + U∗
jik(t, y) + U∗

jki(t, y)|Xi, Yi, δi]. It follows from the

functional central limit theorem that
√

n(θ̃t(qαt) − θt(qαt)) converges weakly to a

mean zero Gaussian process.

Similar to the arguments of (2.14) and (2.17), we have

sup
t,y

|√n(q̃αt − qαt) −
√

n

n

n∑
i=1

(I(Yi > qαt) − α)I(Xi > t)

ft(qαt)SX(t)
| = op(1). (2.21)

This, the weak convergence of
√

n(q̃αt − qαt) and

sup
t

|√n(θ̃t(q̃αt) − θt(qαt)) −
√

n

n

n∑
i=1

Ψ∗
αi(t)| = op(1) where (2.22)

with

Ψ∗
αi(t) =

U∗
i (t, qαt) + (αST (t) − SY (qαt))(I(Yi > qαt) − α)I(Xi > t)

SX(t)(1 − ST (t))
.

can be ensured and, the proof is completed.
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Paralleling the proofs of Theorems 2.1-2.2, we can also derive the asymptotic

Gaussian processes of
√

n{(θ̂t(q̂α′t)− θ̂t(q̂αt))− (θt(qα′t)−θt(qαt))} and
√

n{(θ̃t(q̃α′t)−
θ̃t(q̃αt)) − (θt(qα′t) − θt(qαt))} with the corresponding variance-covariance functions

E[(Ψα′i(s) − Ψαi(s))(Ψα′i(t) − Ψαi(t))] and E[(Ψ∗
α′i(s) − Ψ∗

αi(s))(Ψ
∗
α′i(t) − Ψ∗

αi(t))].

2.3 Inference Procedures

With the marker-dependent censorship, the variance-covariance function Σα(s, t) is

suggested to be estimated by

Σ̂α(s, t) =
1

n

n∑
i=1

Ψ̂αi(s)Ψ̂αi(t), (2.23)

where

Ψ̂αi(t) =
Ûi(t, q̂αt) + η̂(t, q̂αt)V̂i(t,−∞) + (αŜT (t) − ŜY (q̂αt))(V̂i(t, q̂αt) − αV̂i(t,−∞))

ŜT (t)(1 − ŜT (t))
,

Ûi(t, y) =
1

n

∑
{j:j �=i}

(ĥij(t, y) + ĥji(t, y)) − 2ĥ(t, y) + (ŜY (Yi) − Ŝ(t, y))ξ̂i(t)I(Yi > y),

V̂i(t, y) = {ŜT (t|Yi) + ξ̂i(t)}I(Yi > y) − Ŝ(t, y), η̂(t, y) =
ĥ(t, y)(2ŜT (t) − 1)

ŜT (t) − Ŝ2
T (t)

,

ξ̂i(t) = −ŜT (t|Yi)

∫ t

0

duM̂i(u|Yi)

ŜX(u|Yi)
, and M̂i(t|y) = I(Xi ≤ t)δi + ln ŜT (t ∧ Xi|y).

As to the setting of totally independent censoring, the variance-covariance function

Σ∗
α(s, t) is estimated by

Σ̃∗
α(s, t) =

1

n

n∑
i=1

Ψ̃∗
αi(s)Ψ̃

∗
αi(t), (2.24)

where

Ψ̃∗
αi(t) =

Ũ∗
i (t, q̃αt) + (αS̃T (t) − ŜY (q̃αt))(I(Yi > q̃αt) − α)I(Xi > t)

S̃X(t)(1 − S̃T (t))
,

Ũ∗
ijk(t, y) = g̃ij(t, y)(1 +

∫ Xi

0

dM̃Ck(u)

S̃X(u)
)− g̃(t, y)(

I(Xi > t)

S̃X(t)
+

S̃T (t)

1 − S̃T (t)

∫ t

0

dM̃T i(u)

S̃X(u)
),
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Ũ∗
i (t, y) =

1

n2

∑
{j,k:j �=i,k �=i}

(Ũ∗
ijk(t, y) + Ũ∗

jik(t, y) + Ũ∗
jki(t, y)),

M̃T i(t) = δiI(Xi ≤ t)+ ln S̃T (t∧Xi), and M̃Ci(t) = (1− δi)I(Xi ≤ t)+ ln S̃C(t∧Xi).

Under the assumed conditions, the weak convergence of
√

n(θ̂t(q̂αt)− θt(qαt)) and
√

n(θ̃t(q̃αt)− θt(qαt)) to Gaussian processes are derived in Section 2.2. Together with

the estimated variance-covariance matrices provided above, the inference procedure

for θt(qαt) can be established. A (1 − ς), 0 < ς < 1, pointwise confidence interval for

θt(qαt) can be constructed via

θ̂t(q̂αt) ± Zς/2√
n

Σ̂1/2
α (t, t) and θ̃t(q̃αt) ± Zς/2√

n
Σ̃∗1/2

α (t, t), (2.25)

where Zς/2 is the (1− ς/2) quantile value of the standard normal distribution. As for

the simultaneous confidence band of θt(qαt) within the subinterval [τ1, τ2] ∈ [0, τ ] of

interest, the re-sampling technique of Lin, Wei, Yang, and Ying (2000) and the i.i.d.

representations in (2.17) and (2.22) can be used to determine critical points Lς and

L∗
ς so that

P ( sup
t∈[τ1,τ2]

|
√

n(θ̂t(q̂αt) − θt(qαt))

Σ̂
1/2
α (t, t)

| < Lς)
.
= 1 − ς (2.26)

and

P ( sup
t∈[τ1,τ2]

|
√

n(θ̃t(q̃αt) − θt(qαt))

Σ̃
∗1/2
α (t, t)

| < L∗
ς )

.
= 1 − ς. (2.27)

Details of the re-sampling procedures are stated in the following steps:

1. Independently generate random samples {W (l)
i }n

i=1, l = 1, · · · , B, from a standard

normal distribution to calculate

Γl = sup
t∈[τ1,τ2]

|
∑n

i=1 W
(l)
i Ψ̂αi(t)

{nΣ̂α(t, t)}1/2
| and Γ∗

l = sup
t∈[τ1,τ2]

|
∑n

i=1 W
(l)
i Ψ̃αi(t)

{nΣ̃∗
α(t, t)}1/2

|.

2. Determine Lς and L∗
ς to be the (1−ς) quantile of {Γl}B

l=1 and {Γ∗
l }B

l=1, respectively.
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3. The approximated (1− ς) simultaneous confidence bands for {θt(qαt) : t ∈ [τ1, τ2]}
are constructed via

{θ̂t(q̂αt) ± Lς√
n

Σ̂1/2
α (t, t) : t ∈ [τ1, τ2]} and {θ̃t(q̃αt) ± L∗

ς√
n

Σ̃∗1/2
α (t, t) : t ∈ [τ1, τ2]}.

(2.28)

Remark 1. From the proof in Section 2.2, both pointwise and simultaneous confi-

dence bands for (θt(qα′t)−θt(qαt)) can also be constructed in a similar manner through

the i.i.d. representations n−1/2
∑n

i=1(Ψ̂α′i(t)− Ψ̂αi(t)) or n−1/2
∑n

i=1(Ψ̃α′i(t)− Ψ̃αi(t)).



Chapter 3

Semiparametric Regression Model

for the Time-Dependent AUC

Chapter 3 is devoted to explore the effects of covariates Z on the time-dependent

classification accuracy of a biomarker. We consider a generalized linear regression

model:

θt(Zi, Zj) = h(γT
t Zij), i �= j, (3.1)

where h(·) is a known smooth link function, Zij is designed a p× 1 vector function of

Zi and Zj, and γt = (γt1, · · · , γtp)
T is the vector time-varying coefficients of Zij. This

model is used mainly to account for the heterogeneity arising from Z. The linear, logit,

probit, complementary log, and complementary log-log models, for instance, are some

potential choices for h. The logistic regression model has been shown to be effective

in applications and is more natural when one wants to interpret the odds ratios for

the categorical covariates. Motivated by the nonparametric estimation method for

θt(qαt), we propose estimating equations for γt based on the censored survival data

{(Xi, δi, Yi, Zi)}n
i=1. Inference procedures for γt and h(γT

t Zij) are further provided

in the succeeding section by applying the asymptotic Gaussian process property of

estimator for γt.

21
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3.1 Estimation

As we can see in (2.3) with α = 1, θ̃t(q̃αt) can be obtained by solving the following

estimating equation∑
i�=j

δiI(Xi ≤ t, Xj > t)

SC(Xi)SC(t)
(I(Yi > Yj) − θt(q1t)) = 0, (3.2)

with SC(t) being substituted by the Kaplan-Meier estimator S̃C(t). When SC(t|z∗) =

P (C > t|Z∗ = z∗), Z∗ = (Y, Z), is known, we generalize the equation (3.2) to our

data setting. By using the property

E[
δiI(Xi ≤ t, Xj > t)

SC(Xi|Z∗
i )SC(t|Z∗

j )
(I(Yi > Yj) − h(γT

t Zij))|Zi, Zj] = 0, i �= j, (3.3)

the estimators of γt is proposed to be the solution of the estimating equations

Ut(γ, SC) =
1

(n)2

∑
i�=j

Zij
h

′
(γT Zij)

ν(γT Zij)

δiI(Xi ≤ t, Xj > t)

SC(Xi|Z∗
i )SC(t|Z∗

j )
(I(Yi > Yj) − h(γT Zij))

�
=

1

(n)2

∑
i�=j

Utij(γ, SC), (3.4)

where h′ is the derivative of h, ν = h(1 − h) represents the conditional variance of

I(Yi > Yj), and (n)m = n(n − 1) · · · (n − m + 1). We note that (3.3) holds under the

validity of (3.1) and conditional independent censoring (Conditioning on Z∗, T and

C are independent). Generally, the range of h should be restricted within the interval

(0, 1) to ascertains that ν is bounded away from zero.

Since SC(t|z∗) = P (C > t|Z∗ = z∗) is usually unknown, an appropriate consistent

estimator should provided. To avoid the complicated and mathematical intractable

modeling between C and Z∗, a widely used Cox’s proportional hazards model can

be applied. A practical estimation approach for SC(t|z∗) is based on the partial

likelihood estimation procedure and the Breslow estimator (Fleming and Harrington

(1991)). Another option is to use an accelerated failure time (AFT) model in the

current study. When C is further independent of Z∗, SC(t|z∗) can be reduced to

SC(t) and the Kaplan-Meier estimator is suggested. By substituting a consistent
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estimator ŜC(t|z∗) for SC(t|z∗), we propose to estimate γt by the solution γ̂t of the

equation Ut(γ̂t, ŜC) = 0. The covariate-specific time-dependent AUC at Zij = z0 is

naturally estimated by h(γ̂T
t z0).

3.2 Asymptotic Properties

In this section, the large sample properties of γ̂t are considered in the interval [ς0, ς1]

with ς0 = infu{u : supz∗ P (T > u|Z∗ = z∗) < 1} and ς1 = supu{u : infz∗ P (X >

u|Z∗ = z∗) > 0}. For the convenience of succeeding presentation, let ‖ · ‖ denote the

supremum norm of a vector or a square matrix and

H(t) = −E[ZijZ
T
ij

(h
′
(γT

t Zij))
2δiI(Xi ≤ t, Xj > t)

ν(γT
t Zij)SC(Xi|Z∗

i )SC(t|Z∗
j )

].

Some mild conditions are further assumed in the following:

(A1) h(u) is monotone, and h(u) and h
′
(u) are Lipschitz continuous and bounded.

(A2) Z is bounded.

(A3) H(t) is nonsingular for t ∈ [ς0, ς1].

(A4) γt is cadlag on [ς0, ς1].

(A5) supt,z∗ |ŜC(t|z∗)−SC(t|z∗)−n−1
∑n

i=1 Gi(t, z
∗)| = op(n

−1/2) with Gi(t, z
∗) being

a zero mean function of (Xi, δi, Yi, Zi) for any fixed (t, z∗).

Although the bounded assumption in (A2) is frequently occurring in many empirical

examples, this condition can be relaxed via making assumption on the moments of

Z. It is entailed from assumptions (A1)-(A4) that the classes of kernel functions of

Ut(γ, SC) and ∂Ut(γ, SC)/∂γ indexed by (γ, t) are Euclidean. This is a necessary con-

dition in the application of uniform consistency of U-process and the functional central

limit theorem. Note that assumption (A5) is automatically satisfied for the survivor

function estimated from the proportional hazards model and the Kaplan-Meier es-

timator under suitable conditions. For the Kaplan-Meier estimator, the martingale
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representation in (2.18) shows that Gi(t, z
∗) = −SC(t)

∫ t

0
dMCi(u)/SX(u).

Theorem 3.1. Suppose that assumptions (A1)-(A5) are satisfied. Under the validity

that T and C are independent conditioning on Z∗, supt∈[ς0,ς1] ‖ γ̂t − γt ‖= op(1) and
√

n(γ̂t − γt) is uniformly approximated by n−1/2
∑n

i=1 −{H(t)}−1Ui(t) and converges

weekly to a Gaussian process in t ∈ [ς0, ς1] with mean zero and variance-covariance

function Σ(s, t) = H−1(s)E[Ui(s)U
T
i (t)]H−1(t), where Ui(t) is defined in the proof.

Proof. We first show the uniform consistency of γ̂t. Using the property E[Ut(γt, SC)] =

0 and Corollary 7 of Sherman (1994), one has

sup
t∈[ς0,ς1]

‖ ∂

∂γ
Ut(γt, SC) − H(t) ‖= op(1). (3.5)

It follows from (3.5) and assumption (A3) that γt is the unique solution of E[Ut(γ, SC)] =

0. By assumption (A5), the uniform consistency of γ̂t can be derived by verifying

sup
γ,t

‖ Ut(γ, SC) − E[Ut(γ, SC)] ‖= op(1). (3.6)

Since the property in (3.6) is a direct consequence of the uniform convergence theorem

of a U-process, it is obviously to obtain that supt∈[ς0,ς1] ‖ γ̂t − γt ‖= op(1).

As to the weak convergence, the first order Taylor expansion of Ut(γ̂t, ŜC) with

respect to γt implies that

0 =
√

nUt(γ̂t, ŜC) =
√

nUt(γt, ŜC) + { ∂

∂γt

Ut(γ̂
∗
t , ŜC)}√n(γ̂t − γt), (3.7)

where γ̂∗
t lies on the line segment between γ̂t and γt. From (3.5), assumption (A5),

and the uniform consistency of γ̂t to γt, one can obtain that

sup
t∈[ς0,ς1]

‖ ∂

∂γ
Ut(γ̂

∗
t , ŜC) − H(t) ‖= op(1). (3.8)

It is further implied from assumption (A5) that

sup
t∈[ς0,ς1]

‖ √
nUt(γt, ŜC) −

√
n

(n)4

∑
i�=j �=k �=l

Uijkl(t) ‖= op(1), (3.9)
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where

Uijkl(t) = Utij(γt, SC){1 − Gk(Xi, Z
∗
i )

SC(Xi|Z∗
i )

}{1 − Gl(t, Z
∗
j )

SC(t|Z∗
j )
}.

Together with (3.7)-(3.8), the decomposition of the above U-statistic into the sum of

degenerate U-statistics, and Corollary 4 of Sherman (1994), the weak convergence of
√

n(γ̂t − γt) is ensured through the following random quantity:
√

n

n

n∑
i=1

−{H(t)}−1Ui(t), (3.10)

where Ui(t) = E[Uijkl(t) + Ujikl(t) + Ujkil(t) + Ujkli(t)|Xi, Yi, Zi, δi] for i �= j �= k �= l.

By a direct calculation and assumption (A5), Ui(t) can be further derived as

Ui(t) = E[Utij(γt, SC)+Utji(γt, SC)−Utjk(γt, SC){Gi(Xj , Z
∗
j )

SC(Xj |Z∗
j )

+
Gi(t, Z

∗
k)

SC(t|Z∗
k)
}|Xi, Yi, Zi, δi].

Applying the functional central limit theorem, Theorem 3.1 is obtained.

The weak convergence of the covariate-specific time-dependent AUC estimator can

be ensured from Theorem 3.1. From (3.10) and using the functional Delta method,
√

n(h(γ̂T
t z0) − h(γT

t z0)) is uniformly approximated by
√

n

n

n∑
i=1

−h′(γT
t z0)z

T
0 {H(t)}−1Ui(t). (3.11)

Similarly,
√

n(h(γ̂T
t z0) − h(γT

t z0)) can be shown to converge weakly to a Gaussian

process in t with mean zero and variance-covariance matrix

Γ(s, t) = h′(γT
s z0)h

′(γT
t z0)z

T
0 Σ(s, t)z0.

3.3 Inference Procedures

For the asymptotic variance-covariance matrix Σ(s, t), a sandwich-type estimator is

proposed. First, the quantity E[Ui(s)U
T
i (t)] is estimated by the sample analogue

n−1
∑n

i=1 Ûi(s)Û
T
i (t) with

Ûi(t) =
1

n2

∑
j,k

Utij(γ̂t, ŜC) + Utji(γ̂t, ŜC) − Utjk(γ̂t, ŜC){Ĝi(Xj , Z
∗
j )

ŜC(Xj |Z∗
j )

+
Ĝi(t, Z

∗
k)

ŜC(t|Z∗
k)
}
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and Ĝi(t, z
∗) being a consistent estimator of Gi(t, z

∗). By using Ĥ(t) = ∂Ut(γ̂t, ŜC)/∂γ

as an estimator of H(t), the estimator of Σ(s, t) is given by

Σ̂(s, t) = {Ĥ(s)}−1{ 1

n

n∑
i=1

Ûi(s)Û
T
i (t)}{Ĥ(t)}−1. (3.12)

Same with the foregoing argument, the Kaplan-Meier estimator is applied when

SC(t|z∗) = SC(t) and, hence, Ĝi(t, z
∗) = −S̃C(t)

∫ t

0
dM̃Ci(u)/S̃X(u).

By applying the asymptotic properties established in Section 3.2, the approxi-

mated (1 − ς) confidence region of γt are given by

{γt : n(γ̂t − γt)
T{Σ̂(t, t)}−1(γ̂t − γt) ≤ χ2

p,1−ς}, (3.13)

where χ2
p,1−ς is the 100(1−ς)th percentile of the Chi-square distribution with p degrees

of freedom. The simultaneous confidence band for γt over a pre-specified time period

Υ ⊂ [ς0, ς1] can also be constructed by the re-sampling technique. Details are stated

as below.

1. Independently generate random samples {W (b)
i }n

i=1, b = 1, · · · , B, from a standard

normal distribution to calculate

Γb = sup
t∈Υ

n∑
i=1

W
(b)2
i ÛT

i (t){Ĥ(t)}−1{nΣ̂(t, t)}−1/2{Ĥ(t)}−1Ûi(t).

2. Determine Lς to be the (1 − ς) quantile of {Γb}B
b=1.

3. The approximated (1 − ς) simultaneous confidence band for {γt : t ∈ Υ} is con-

structed via

{{γt : n(γ̂t − γt)
T{Σ̂(t, t)}−1(γ̂t − γt) ≤ Lς} : t ∈ Υ}. (3.14)

As to the covariate-specific time-dependent AUC h(γT
t z0) for any fixed z0, an

approximated (1 − ς) confidence interval is constructed to be

h(γ̂T
t z0) ± zς/2√

n
h′(γ̂T

t z0){zT
0 Σ̂(t, t)z0}1/2. (3.15)



27

Similarly, the simultaneous confidence band can be constructed through the above

Step 1-3 except the quantity we calculate in Step 1 is replace by

sup
t∈Υ

|
n∑

i=1

W
(b)
i zT

0 {Ĥ(t)}−1Ûi(t)

{nz0Σ̂(t, t)zT
0 }1/2

|,

and the simultaneous confidence band for {h(γT
t z0) : t ∈ Υ} is established as

{h(γ̂T
t z0) ± Lς√

n
h′(γ̂T

t z0){zT
0 Σ̂(t, t)z0}1/2 : t ∈ Υ}. (3.16)



Chapter 4

Optimal Composite Markers

As indicated in the analysis results of Chiang and Huang (2009) for the CAD study,

the time-dependent AUC of each marker, CRP, SAA, IL-6, and tHcy, is generally not

large enough to classify the CAD-related vital status over time. In order to enhance

the classification power, we aim to seek the optimal composite biomarkers based on

a flexible extended generalized linear model (EGLM)

P (T ≤ t|Y = y) = Gt(β
T
t y), (4.1)

where Y = (Y1, · · · , Yp)
T is a vector of continuous biomarkers measured at or before

the outset of study, βt = (βt1, · · · , βtp)
T is the vector of time-dependent coefficients,

and Gt(·) is an unknown link function and increasing in the linear predictor for each

time point t. Let ROCt(βt) be the time-dependent ROC curve of βT
t Y which displays

the pair values of FPRt(c, βt) = P (βT
t Y > c|T > t) and TPRt(c, βt) = P (βT

t Y > c|T ≤
t) for varying threshold value c. Using Neyman-Pearson lemma, we can show that

ROCt(βt) is higher than any ROC curve of the transformation of Y under the validity

of model (4.1). It means that the linear predictor βT
t Y is the optimal composite

biomarker in classifying patients who survive at t or not and thus the corresponding

time-dependent AUC θt(βt) is thus the greatest.

Under independent and marker-dependent censoring mechanisms, two types of

28
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objective functions ate proposed for the estimation of βt based on the censored sur-

vival data {(Xi, δi, Yi)}n
i=1. Moreover, the estimators for ROCt(βt) and classification

accuracy θt(βt) are provided. It is found that βt is not identifiable for the unspec-

ified link function but ROCt(βt) = ROCt(aβt) any positive constant a. The issue of

non-identifiability can be circumvented by imposing a reasonable constraint on the

parameters. Without loss of generality, βt1 is set to be one provided that the marker

Y1 is associated with T . Thus, the optimality will be reduced to search for the true

parameters (βt2, · · · , βtp)
T in the (p − 1)-dimensional compact parameter space Bt.

For the convenience of succeeding presentation, we let βt = (βt2, · · · , βtp)
T and define

βT
t Y = Y1 + βt2Y2 + · · · + βtpYp.

4.1 Estimation Procedures

Sine

βt = arg max
β

θt(β), (4.2)

the target function is designed as a sample analogue of θt(β) for the estimation of βt.

Under totally independent censoring, an estimator of θt(β) for given β is obtained,

by substituting I(βTYi > βT Yj) for I(Yi > Yj) in (2.4) with α = 1, as

θ̃t(β) =
1

(n)2

∑
i�=j

δiI(Xi ≤ t, Xj > t, βT Yi > βT Yj)

S̃C(Xi)S̃X(t)(1 − S̃T (t))
. (4.3)

Thus, βt is suggested to be estimated by β̃t, which is the maximizer of θ̃t(β). One

may further assess the performance of βT
t Y through ROCt(βt) and the classification

accuracy θt(βt). By generalizing the estimators T̃PRt(y) and F̃PRt(y) in Section 2.1

to our data setting, TPRt(c, βt), FPRt(c, βt), and θt(βt) are naturally estimated by

˜TPRt(c, β̃t) =
n∑

i=1

δiI(Xi ≤ t, β̃T
t Yi > c)

nS̃C(Xi)(1 − S̃T (t))
, ˜FPRt(c, β̃t) =

n∑
i=1

I(Xi > t, β̃T
t Yi > c)

nS̃X(t)
,

(4.4)

and θ̃t(β̃t), respectively.
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In the CAD study, the censoring times of patients might be affected by the baseline

plasma biomarkers. The assumption of marker-dependent censoring should be more

reasonable and β̃t might be biased. Let SX(t, y) = P (X > t|Y = y)fY (y) and

SδX(t, y) = P (X > t, δ = 1|Y = y)fY (y) with fY (y) being the probability density

function of Y . These bivariate functions are estimated by the smoothing estimators

ŜX(t, y) =

n∑
i=1

I(Xi ≥ t)Kλ(Yi − y)

n
and ŜδX(t, y) =

n∑
i=1

δiI(Xi ≥ t)Kλ(Yi − y)

n
,

where Kλ(u) =
∏p

j=1 λ−1
j K(ujλ

−1
j ), u = (u1, · · · , up)

T , λ = (λ1, · · · , λp)
T is a vector of

non-negative smoothing parameters, and K(v) is symmetric about zero with bounded

variation and satisfies
∫

K(v)dv = 1,
∫

vkK(v) = 0, k = 1, · · · , p, and
∫

vp+1K(v) <

∞. The reason of using a higher order kernel function K(u) is mainly to ensure
√

n-consistency of the proposed estimator. From (2.6) with α = 1, an alternative

objective function

θ̂t(β) =
1

(n)2

∑
i�=j

(1 − ŜT (t|Yi))ŜT (t|Yj)I(βTYi > βT Yj)

ŜT (t)(1 − ŜT (t))
(4.5)

is considered, where

ŜT (t|y) = P t
0{1 +

duŜδX(u, y)

ŜX(u, y)
} =

∏
{i:Xi≤t,δi=1}

{1 − Kλ(Yi − y)

nŜX(Xi, y)
}

is a smoothing estimator of ST (t|y), ŜT (t) = n−1
∑n

i=1 ŜT (t|Yi) is an estimator of

ST (t), and P t
0 denotes the infinite product integral over [0, t]. Together with (4.2), an

estimator β̂t of βt is defined as the maximizer of θ̂t(β). As for the quantities quantities

TPRt(c, βt), FPRt(c, βt) and θt(βt), we propose the corresponding estimators

̂TPRt(c, β̂t) =

n∑
i=1

(1 − ŜT (t|Yi))I(β̂T
t Yi > c)

n{1 − ŜT (t)} , ̂FPRt(c, β̂t) =

n∑
i=1

ŜT (t|Yi)I(β̂T
t Yi > c)

nŜT (t)
,

(4.6)

and θ̂t(β̂t).

We note that the optimality of βT
t Y is mainly based on the increasing property

of link function. The facts of (4.2) motivates the estimation of βt via maximizing
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θ̃t(β) and θ̂t(β). Provided that (4.2) is valid, the linear predictor βT
t Y is still optimal

in the sense that θt(βt) is the largest among the class of linear combinations of Y .

The asymptotic properties of β̃t and β̂t derived in Section 4.2 are applicable when

βt is the unique maximizer of θt(β). The monotonicity of ˜TPRt(c, β̃t), ˜FPRt(c, β̃t),

̂TPRt(c, β̂t), and ̂FPRt(c, β̂t) in c further imply the monotonicity of the estimators

for ROCt(βt). Similar to the discussion in Section 2.1, the values of θ̃t(β̃t) and θ̂t(β̂t)

are exactly the areas under the right-continuous step function with jumps based on

the estimated ( ˜FPRt(c, β̃t), ˜TPRt(c, β̃t)) points and ( ̂FPRt(c, β̂t), ̂TPRt(c, β̂t)) points,

respectively. Different modifications of I(βTYi > βTYj) will result in different geo-

metric meanings but the same large sample properties.

The implementation of the optimization procedures are time consuming due to the

non-differentiability an indicator function. To overcome this problem, the distribution-

like kernel functions of Horowitz (1992) can be applied to approximate I(βTYi >

βT Yj). By incorporating our theoretical results, the same large sample properties of

the smoothed nonparametric estimators can be derived similarly as in Song et al.

(2007). In our numerical studies, Ŝ∗
T (t|y) = ŜT (t|y)I(0 ≤ ŜT (t|y) ≤ 1) + I(ŜT (t|y) >

1) is used to substitute for ŜT (t|y) in estimation and modifies unreasonable condi-

tional survival estimates caused by a higher order kernel smoother.

4.2 Asymptotic Properties

It can be shown that the target function are

θ̃t(β) =
H̃

(1)
t (β)

S̃X(t)(1 − S̃T (t))
and θ̂t(β) =

Ĥ
(2)
t (β) − (n)−1

2

∑
i<j ŜT (t|Yi)ŜT (t|Yj)

ŜT (t)(1 − ŜT (t))
(4.7)

with

H̃
(1)
t (β) =

1

(n)2

∑
i�=j

δi

S̃C(Xi)
I(Xi ≤ t, Xj > t, βT Yi > βTYj) (4.8)

and

Ĥ
(2)
t (β) =

1

(n)2

∑
i�=j

ŜT (t|Yj)I(βTYi > βT Yj). (4.9)
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Thus, the asymptotic properties of β̃t and β̂t can be established based on the facts:

β̃t = arg max
β

H̃
(1)
t (β) and β̂t = arg max

β
Ĥ

(2)
t (β). (4.10)

In the proof of the results, we repeatedly apply the uniform convergence theorem

of U-process (Nolan and Pollard (1987)). The imposed assumptions together with

Lemmas 2.12-2.14 of Pakes and Pollard (1989) and Lemma 22 of Nolan and Pollard

(1987) ensure that the underlying classes of functions are Euclidean.

Theorem 4.1. Under the validity of (4.1) and totally independent censoring, β̃t
p→ βt

and
√

n(β̃t−βt)
d→ Np−1(0, Σ

(1)
0t ) for t ∈ (0, τ1] and τ1 satisfying P (X > τ1) > 0, where

Σ
(1)
t = {V (1)

t }−1Cov(W
(1)
t1 ){V (1)

t }−1,

V
(1)
t =

2∂2

∂β∂βT
h

(1)
t (βt), W

(1)
ti =

∂

∂β
E[h

(1)
ti1(βt) + h

(1)
t1i(βt) + Bt12i(βt)|Xi, Yi, δi]

Btijk(β) = h
(1)
tij (β)

∫ Xi

0

dMCk(v)

SX(v)
, and MCi(t) = I(Xi ≤ t)(1 − δi) + ln SC(t ∧ Xi).

Proof. Define H
(1)
t (β) = (n)−1

2

∑
i�=j h

(1)
tij (β), where

h
(1)
tij (β) =

δi

SC(Xi)
I(Xi ≤ t, Xj > t, βT Yi > βTYj).

It is straightforward to show that βt is the unique maximizer of h
(1)
t (β) = E[h

(1)
t12(β)]

and h
(1)
t (β) is proportional to θt(β)SC(t)ST (t)(1 − ST (t)). From the uniform conver-

gence of S̃C(t) and U-process H
(1)
t (β), one has

sup
β

|H̃(1)
t (β) − H

(1)
t (β)| = op(1) and sup

β
|H(1)

t (β) − h
(1)
t (β)| = op(1). (4.11)

Following the argument of Newey and McFadden (1994), the consistency of β̃t can be

derived from supβ |H̃(1)
t (β)−h

(1)
t (β)| = op(1), which is a direct consequence of (4.11).

For the asymptotic normality of β̃t, we first find an appropriate quadratic ap-

proximation of H̃
(1)
t (β) around op(1) neighborhoods of βt. The Taylor expansion of
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(H̃
(1)
t (β)−H̃

(1)
t (βt)) at S̃C(t) = SC(t) and the martingale representation of

√
n(S̃C(t)−

SC(t)) in (2.18) imply

(H̃
(1)
t (β) − H̃

(1)
t (βt)) =

1

(n)3

∑
i�=j �=k

{h(1)
tij (β) − h

(1)
tij (βt) + Btijk(β) − Btijk(βt)} + op(n

−1)

(4.12)

for β satisfying ||β − βt|| = op(1). Along the same lines as the proof of Theorem 4 in

Sherman (1993) and the property E[Btijk(β)|Xs, Ys, δs] = 0, s ∈ {i, j}, for β satisfying

||β − βt|| = op(1), (4.12) can be further approximated by

1

2
(β − βt)

T V
(1)
t (β − βt) + (

1

n

n∑
i=1

W
(1)
ti )T (β − βt) + op(||β − βt||2) + op(n

−1). (4.13)

Together with Theorems 1-2 of Sherman (1993),
√

n(β̃t−βt) = n−1
∑

i=1{V (1)
t }−1W

(1)
ti +

op(1) and converges to a (p − 1)-variate normal distribution with mean zero and

variance-covariance matrix Σ
(1)
t .

The large sample properties of (˜TPRt(c, β̃t), ˜FPRt(c, β̃t)) and θ̃t(β̃t) are given in

the following theorem.

Theorem 4.2. Suppose that the conditions in Theorem 4.1 are satisfied. For

t ∈ (0, τ1],
√

n(˜TPRt(c, β̃t)−TPRt(c, βt), ˜FPRt(c, β̃t)−FPRt(c, βt))
T converges to a bi-

variate Gaussian process in c with mean zero and variance-covariance matrix Σ
(1)
1t (c),

where Σ
(1)
1t (c) is

Cov

(
(A

(1)
ti (c, βt) +

∂TPRt(c, βt)

∂β
(V

(1)
t )−1W

(1)
ti , A

∗(1)
ti (c, βt) +

∂FPRt(c, βt)

∂β
(V

(1)
t )−1W

(1)
ti )T

)
with

A
(1)
ti (c, β) = φti(c, β) − TPRt(c, β) + E[φtj(c, β)(

∫ Xj

0

dMCi(u)

SX(u)
−

∫ t

0

dMT i(u)

SX(u)
)|Xi, δi, Yi],

A
∗(1)
ti (c, β) =

I(Xi > t, βTYi > c)

SX(t)
− FPRt(c, β) − FPRt(c, β)

SX(t)
(I(Xi > t) − SX(t)),
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φti(c, θt) =
δiI(βT

t Yi > c)

SC(Xi)(1 − ST (t))
and MT i(u) = I(Xi ≤ u)δi + ln ST (t ∧ Xi).

Moreover,
√

n(θ̃t(β̃t)− θt(βt)) converges to a normal distribution with mean zero and

variance V ar(v
(1)
it ), where

v
(1)
it =

E[h
(1)
tij (βt) + h

(1)
tji (βt) + Btjki(βt)|Xi, δi, Yi] − 2h

(1)
t (βt)

SC(t)ST (t)(1 − ST (t))

+
h

(1)
t (βt)

SC(t)ST (t)(1 − ST (t))
(

∫ t

0

dMCi(u)

SX(u)
+

1 − 2ST (t)

1 − ST (t)

∫ t

0

dMT i(u)

SX(u)
).

Proof. Let

Z
gTPRt

(c, β) =
√

n(˜TPRt(c, β) − TPRt(c, β)).

By the first order Taylor expansion of Z
gTPRt

(c, β) at (ŜC(Xi), ŜT (t)) = (SC(Xi), ST (t))

and the uniform convergence of ŜC(t) and ŜT (t), Z
gTPRt

(c, β) can be uniformly approx-

imated by

√
n

(n)2

∑
i�=j

φti(c, β)−TPRt(c, β)−φti(c, β)(
ŜC(Xi) − SC(Xi)

ŜC(Xi)
+

ŜT (t) − ST (t)

1 − ST (t)
). (4.14)

Together with the martingale representations of ŜC(t) and ŜT (t), the term in (4.14)

is asymptotically uniformly equivalent to

√
n

(n)2

∑
i�=j

φti(c, β) − TPRt(c, β) + φti(c, β)(

∫ Xi

0

dMCj(u)

SX(u)
−

∫ t

0

dMTj(u)

SX(u)
) (4.15)

over all (c, β). By the decomposition of a U-statistic into the sum of degenerate U-

statistics and Corollary 4 of Sherman (1994a), the term in (4.15) can be approximated

by n−1/2
∑n

i=1 A
(1)
ti (c, β). The functional central limit theorem further ensures that

Z
gTPRt

(c, β) converges weakly to Gaussian process in (c, β). From Theorem 4.1 and the

equicontinuity of Z
gTPRt

(c, β) in (c, β), it follows that
√

n(˜TPRt(c, β̃t)− TPRt(c, βt)) is

uniformly equivalent to

1√
n

n∑
i=1

(A
(1)
ti (c, βt) +

∂TPRt(c, βt)

∂β
(V

(1)
t )−1W

(1)
ti ). (4.16)
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Similar to the derivation for (4.16),
√

n(F̃PRt(c, β̃t)−FPRt(c, βt)) have the following

asymptotic representation

1√
n

n∑
i=1

(A
∗(1)
ti (c, βt) +

∂FPRt(c, βt)

∂β
(V

(1)
t )−1W

(1)
ti ). (4.17)

Thus, we conclude form (4.16)-(4.17) that
√

n(˜TPRt(c, β̃t)−TPRt(c, βt), ˜FPRt(c, β̃t)−
FPRt(c, βt))

T converges weakly to a bivariate Gaussian process in c.

From (4.13) and ||β̃t − βt|| = Op(n
−1/2), one has

√
n(H̃

(1)
t (β̃t) − h

(1)
t (βt)) =

√
n(H̃

(1)
t (βt) − h

(1)
t (βt)) + op(1) (4.18)

It follows from (4.18) that
√

n(θ̃t(β̃t) − θt(βt)) can be approximated by

√
n

(n)3

∑
i�=j �=k

h
(1)
tij (βt) + Btijk(βt) − h

(1)
t (βt)(1 − ∫ t

0
dMCi(u)
SX(u)

− 1−2ST (t)
1−ST (t)

∫ t

0
dMTi(u)
SX(u)

)

SC(t)ST (t)(1 − ST (t))
. (4.19)

Since (4.19) is a mean zero U-statistics and can be approximated by n−1/2
∑n

i=1 v
(1)
it ,

the proof is completed by applying the central limit theorem.

For the asymptotic properties of β̂t, (̂TPRt(c, β̂t), ̂FPRt(c, β̂t)), and θ̂t(β̂t), the fol-

lowing conditions are made for Theorems 4.3-4.4 and the technical lemma.

(A1) nλ2p+1
M (ln n)−1 < ∞ and nλ2p

m → ∞, where λm = min{λ1, · · · , λp} and λM =

max{λ1, · · · , λp}.

(A2) K(·) is a (p + 1)th order kernel function with bounded variation.

(A3) gβ(y) = P (βTY > βT y) has a uniformly bounded second derivative with respect

to β.

(A4) The (p + 1)th order derivatives of ξy(x, δ, t) in Lemma A and ∂
∂β

gβt(y) with

respect to y are uniformly bounded.

(A5) P (βT (Yi − Yj) > 0, βT
t (Yi − Yj) ≤ 0) ≤ M ||β − βt|| for some positive bounded

constant M .
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Theorem 4.3. Suppose that assumptions (A1)-(A5) in the Appendix are satisfied.

Under the validity of model in (4.1) and marker-dependent censoring, β̂t
p→ βt and

√
n(β̂t − βt)

d→ Np−1(0, Σ
(2)
t ) for t ∈ (0, τ2] and τ2 satisfying infy SX(τ2, y) > 0, where

Σ
(2)
t = {V (2)

t }−1Cov(W̄
(2)
ti ){V (2)

t }−1,

V
(2)
t =

2∂2

∂β∂βT
E[h

(2)
t12(βt)], W̄

(2)
ti = W

(2)
ti + W

∗(2)
ti ,

W
(2)
ti =

∂

∂β
E[h

(2)
tij (βt) + h

(2)
tji (βt)|Xi, δi, Yi], and W

∗(2)
ti = ξYi

(Xi, δi, t)fY (Yi)
∂

∂β
gβt(Yi).

Proof. Let H
(2)
t (β) = (n)−1

2

∑
i�=j h

(2)
tij (β) with h

(2)
tij (β) = ST (t|Yj)I(βTYi > βT Yj).

Similar to the proof of Theorem 4.1, the consistency of β̂t is established when

sup
β

|Ĥ(2)
t (β) − h

(2)
t (β)| = op(1)

holds. Here, h
(2)
t (β) = E[h

(2)
tij (β)] = θt(β)ST (t)(1 − ST (t)) + 0.5S2

T (t) has a unique

maximizer βt. From the boundedness of indicator functions, the above property can

be obtained through

sup
y

|ŜT (t|y) − ST (t|y)| = op(1) and sup
β

|H(2)
t (β) − h

(2)
t (β)| = op(1), (4.20)

which is a direct consequence of Corollary 2.1 of Dabrowska (1989) and the uniform

convergence of U-process H
(2)
t (β) to h

(2)
t (β).

From the consistency of β̂t to βt, one can further restrict β in op(1) neighborhoods

of βt in the following derivation. For β satisfying ||β −βt|| = op(1), it is implied from

Lemma A below, (A1), and (A5) that

Ĥ
(2)
t (β)− Ĥ

(2)
t (βt) = (H

(2)
t (β)−H

(2)
t (βt))+ (U(β)−U(βt))+ op(

||β − βt||
n1/2

)+ op(n
−1),

(4.21)

where U(β) = (n)−1
3

∑
i�=j �=k f

(λ)
tk (Yj)I(βTYi > βT Yj). Using the same argument for

(4.13), (H
(2)
t (β) − H

(2)
t (βt)) can be re-expressed as

1

2
(β − βt)

T V
(2)
t (β − βt) + (

1

n

n∑
i=1

W
(2)
ti )T (β − βt) + op(||β − βt||2) + op(n

−1) (4.22)
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uniformly over op(1) neighborhoods of βt. As for the term U(β) in (4.21), there exist

degenerate U-statistics Uk(β), k = 1, 2, 3, of order k so that

U(β) − U(βt) =
3∑

k=1

(Uk(β) − Uk(βt)). (4.23)

The property U1(β) = n−1
∑n

i=1 E[f
(λ)
ti (Y1)gβ(Y1)|Xi, Yi, δi], assumptions (A1)-(A4),

and the Taylor expansion theorem ensure that

U1(β) − U1(βt) = { 1

n

n∑
i=1

W
∗(2)
ti }T (β − βt) + op(||β − βt||2) + op(

||β − βt||
n1/2

) (4.24)

uniformly over op(1) neighborhood of βt. Note that U2ij(β) and U3ijk(β) are the kernel

functions of U2(β) and U3(β) and satisfy λp
m|U2ij(β) − U2ij(βt)| ≤ M ||β − βt|| and

λp
m|U3ijk(β)− U3ijk(βt)| ≤ M . It is implied from Theorem 3 of Sherman (1994b) and

assumption (A1) that for β satisfying ||β − βt|| = op(1),

|U2(β) − U2(βt)| = op(
||β − βt||

n1/2
) and |U3(β) − U3(βt)| = op(n

−1). (4.25)

From (4.21)-(4.25) and Theorem 1 of Sherman (1993), ||β̂t − βt|| = Op(n
−1/2) is

derived and, hence, (Ĥ
(2)
t (β̂t) − Ĥ

(2)
t (β)) is derived to be

1

2
(β̂t − βt)

T V
(2)
t (β̂t − βt) + { 1

n

n∑
i=1

W̄
(2)
ti }T (β̂t − βt) + op(n

−1). (4.26)

By applying Theorem 2 of Sherman (1993), the asymptotic representation
√

n(β̂t −
βt) = n−1

∑n
i=1{V (2)

t }−1W̄
(2)
ti + op(1) can be obtained and is shown to converge to a

(p − 1)-variate normal distribution with mean zero and variance-covariance matrix

Σ
(2)
t .

Theorem 4.4. Suppose that the conditions in Theorem 4.3 are satisfied. For

t ∈ (0, τ2],
√

n(̂TPRt(c, β̂t)−TPRt(c, βt), ̂FPRt(c, β̂t)−FPRt(c, βt))
T converges to a bi-

variate Gaussian process in c with mean zero and variance-covariance matrix Σ
(2)
1t (c),

where Σ
(2)
1t (c) is

Cov

(
(A

∗(2)
ti (c, βt) +

∂TPRt(c, βt)

∂β
(V

(2)
t )−1W̄

(2)
ti , A

(2)
ti (c, βt) +

∂FPRt(c, θ0t)

∂β
(V

(2)
t )−1W̄

(2)
ti )T

)
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with

A
(2)
ti (c, β) =

(I(βTYj > c) − FPRt(c, β))(ξYi
(Xi, δi, t)fY (Yi) + ST (t|Yi))

ST (t)
and

A
∗(2)
ti (c, β) =

(I(βTYi > c) − TPRt(c, β))((1 − ST (t|Yi)) − ξYi
(Xi, δi, t)fY (Yi))

1 − ST (t)
.

Moreover,
√

n(θ̂t(β̂t)− θt(βt)) converges to a normal distribution with mean zero and

variance V ar(v
(2)
it ), where

v
(2)
it =

E[h
(2)
tij (βt) + h

(2)
tji (βt)|Xi, δi, Yi] + gβt(Yi)ξYi

(Xi, δi, t)fY (Yi) − 2h
(2)
t (βt)

ST (t)(1 − ST (t))

− ST (t|Yi) + ξYi
(Xi, δi, t)fY (Yi) − ST (t)

2(1 − ST (t))2
.

Proof. Let

Z
dFPRt

(c, β) =
√

n( ̂FPRt(c, β) − FPRt(c, β)).

From Lemma A, Z
dFPRt

(c, β) has the following asymptotic representation

√
n

(n)2

∑
i�=j

(I(βTYi > c) − FPRt(c, β))(ST (t|Yi) + f
(ς)
tj (Yi))

ST (t)
. (4.27)

By the decomposition of a U-statistic into the sum of degenerate U-statistics and

Corollary 4 of Sherman (1994a), the term in (4.27) can be further approximated by

n−1/2
∑n

i=1 A
(2)
ti (c, β). The functional central limit theorem ensures that Z

dFPRt
(c, β)

converges weakly to a Gaussian process in (c, β). From Theorems 4.3 and the equicon-

tinuity of Z
dFPRt

(c, β) in (c, θt),
√

n( ̂FPRt(c, β̂t)−FPRt(c, βt)) is shown to be uniformly

equivalent to

1√
n

n∑
i=1

(A
(2)
ti (c, βt) +

∂FPRt(c, βt)

∂β
(V

(2)
t )−1W̄

(2)
ti ). (4.28)

Similar to the derivation for (4.28),
√

n(T̂PRt(c, β̂t) − TPRt(c, βt)) has the following

asymptotic representation

1√
n

n∑
i=1

(A
∗(2)
ti (c, βt) +

∂TPRt(c, βt)

∂β
(V

(2)
t )−1W̄

(2)
ti ). (4.29)
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Form (4.29), it can be shown that
√

n(̂TPRt(c, β̂t)−TPRt(c, βt), ̂FPRt(c, β̂t)−FPRt(c, βt))
T

converges weakly to bivariate Gaussian processes in c.

From (4.26) and ||β̂t − βt|| = Op(n
−1/2), one has

√
n(Ĥ

(2)
t (β̂t) − h

(2)
t (βt)) =

√
n(Ĥ

(2)
t (βt) − h

(2)
t (βt)) + op(1). (4.30)

By Lemma A and (4.30), the asymptotic representation of
√

n(θ̂t(β̂t) − θt(βt)) is

derived as

√
n

(n)3

∑
i�=j �=k

(
h

(2)
tij (βt)(1 + f

(ς)
tk (Yj)) − h

(2)
t (βt)

ST (t)(1 − ST (t))
− ST (t|Yi)(1 + f

(ς)
tj (Yi)) − ST (t)

2(1 − ST (t))2
). (4.31)

Since the random quantity in (4.31) is a mean zero U-statistics, it can be approximated

by n−1/2
∑n

i=1 v
(2)
it and, hence, the theorem is obtained.

Since the asymptotic variance-covariance matrices of β̃t, ˜TPRt(c, β̃t), ˜FPRt(c, β̃t),

β̂t, ̂TPRt(c, β̂t), and ̂FPRt(c, β̂t) involve the derivatives of unknown quantities, which

are complicated and hard to estimate directly under the nonparametric setting, the

bootstrap variance estimates are considered in our numerical studies and applications.

It is found from (4.18) and (4.30) that β̂t and β̃t have no effect on the asymptotic

variances of the corresponding classification accuracies θ̂t(β̂t) and θ̃t(β̃t). That is, the

performance of β̂T
t Y or β̃T

t Y are asymptotically equivalent to the ”observed” true

linear predictors. Thus, the statistical inferences for θt(βt) can be made through the

methods developed in Chapter 2 directly.

Lemma A. Suppose that assumptions (A1)-(A2) are satisfied. For t ∈ (0, τ2],

ŜT (t|y) − ST (t|y) =
1

n

n∑
i=1

f
(λ)
ti (y) + rn(t, y), (4.32)

where f
(λ)
ti (y) = ξy(Xi, δi, t)Kλ(Yi−y)−E[ξy(Xi, δi, t)Kλ(Yi−y)] and supy |rn(t, y)| =

Op(ln n/(nλp
M)) with ξy(Xi, δi, t) = −ST (t|y)

∫ t

0
duMi(u, y)/SX(u, y) and Mi(t, y) =

I(Xi ≤ t)δi + ln ST (t ∧ Xi|y).
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Proof. Paralleling the proof of Theorem 3.2 in Du and Akritas (2002), one can derive

that ŜT (t|y)−ST (t|y) = n−1
∑n

i=1 ξy(Xi, δi, t)Kλ(Yi−y)+r∗n(t, y) with supy |r∗n(t, y)| =

Op(ln n/(nλp
M)). By assumption (A1) and the property E[ξYi

(Xi, δi, t)|Yi] = 0, we

have supy |E[ξYj
(Xi, δi, t)Kλ(Yi − y)]| = O(λp+1

M ) and, hence, (4.32).



Chapter 5

Simulations and Applications

We conduct a series of Monte Carlo simulations to investigate the finite sample prop-

erties of the proposed estimators and inference procedures. Two empirical examples

form the Angiography CAD Study and the ACTG 175 Study are analyzed to demon-

strate the usefulness of our methodologies.

5.1 Monte Carlo Simulations

In the succeeding numerical studies, data are repeatedly generated 500 times in each

simulation setting. The performances of our methods are evaluated under different

sample sizes (n = 250 and 500), censoring rates (c.r. = 30% and 50%), and censoring

mechanisms over various time points tq’s and time intervals. In the exhibited tables,

tq is used to denote the qth quantile of the failure time T .

5.1.1 Scenario I - Time-Dependent AUC and PAUC

For the time-dependent AUC and PAUC, the continuous biomarker Y is generated

from a standard normal distribution. Conditioning on Y = y, T and C are indepen-

dently generated from a lognormal distribution with parameters μ = −0.22y and σ =

0.3, and an exponential distribution with scale parameter b{2I(y < 0) + I(y ≥ 0)}.

41
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Moreover, under totally independent censoring, C is independently generated from

another exponential distribution with scale parameter b. The constant b is mainly

used to control the expected censoring rates. With α =0.1, 0.3, and 1, the estimators

θ̂t(q̂αt) and θ̃t(q̃αt) are evaluated at the selected time points t0.4, t0.5, and t0.6. More-

over, the simultaneous confidence bands for θt(qαt) over the subintervals [t0.4, t0.5] and

[t0.4, t0.6] of interest are constructed. Since a small portion of cases or controls occur

outside [t0.4, t0.6], the simulation results are only presented within this time period.

Since the smoothing estimator Ŝ(t|y) is involved in the estimator θ̂t(q̂αt), an ap-

propriate smoothing parameter becomes necessary. It usually attempts to select a

bandwidth that minimizes the asymptotic mean squared error of an estimator, which

is obtained by using the plug-in method for unknown parameters. This approach,

however, would lead to further bandwidth selection problems and is infeasible in

our current setting. Here, we propose a simple and easily implemented data-driven

method to find a bandwidth λopt which is the minimizer of the integrated squared

error:

ISE(λ) =

∫ 1

0

{Ŝe(u) − (1 − u)}2dNei(u), (5.1)

where Ŝe(u) is the Kaplan-Meier estimator computed based on the data {ei, δi}n
i=1,

ei = 1 − Ŝ
(−i)
T (Xi|Yi), Ŝ

(−i)
T (t|y) is obtained as ŜT (t|y) with the ith observation

(Xi, δi, Yi) being deleted, and Nei(u) = δiI(ei ≤ u). The rationale behind (5.1) is

that {1−ST (Xi|Yi), δi}n
i=1 can be shown to be an independent censored sample from

a standard uniform distribution under the validity of marker-dependent censoring.

To assess the performance of (5.1), the estimators θ̂t(q̂αt) and Ψ̂αi(t)’s are computed

using the cross-validation bandwidth λopt and the subjective ones of 0.01 and 0.2.

Tables 5.1-5.4 summarize the simulation results under the setting of totally in-

dependent censoring. It can be found that θ̃t(q̃αt) and θ̂t(q̂αt) with λ = λopt have

relatively small biases especially for small α. These tables also show that the stan-

dard deviations of both θ̃t(q̃αt) and θ̂t(q̂αt) are are very close to the averages of Σ̃∗
α(t, t)

and Σ̂α(t, t). The standard deviation of θ̃t(q̃αt) is found to be sightly smaller than

that of θ̂t(q̂αt). Interestingly, the performance of θ̂t(q̂αt) is stable with high censoring
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rate while the standard deviation becomes larger. Compare with θ̂t(q̂αt), the bias of

θ̃t(q̃αt) is more serious to heavy censoring. The empirical pointwise and simultaneous

coverage probabilities of θ̂t(q̂αt) are further shown to be closer to the nominal level

0.95 than those of θ̃t(q̃αt) especially for high censoring rate, and small quantile value

and sample size. Overall, the performance of these methods can be significantly im-

proved by increasing sample size. As for the smoothing estimators for θt(qαt) with

λ = 0.01 and 0.2, the poor estimates are observed.

For the simulation setting of marker-dependent censoring, the related summary

statistics and empirical coverage probabilities are exhibited in tables 5.5-5.8. A similar

conclusion under totally independent censoring can be drawn for θ̂t(q̂αt). As for

the estimator θ̃t(q̃αt), an apparent bias arises especially for small α. The biases of

θ̂t(q̂0.1t) and θ̃t(q̃0.1t) appear to be larger because they are computed based on small

proportion of subjects in control group. Furthermore, the coverage probabilities of

θ̃t(q̃αt) systematically deviate from 0.95 even with large sample size. Although θ̃t(q̃αt)

is robust to violation of marker-dependent censoring, the performance of θ̂t(q̂αt) in

our simulation setting is detected to be better. Generally, the proposed bandwidth

selection procedure provides satisfactory results.

5.1.2 Scenario II - Time-Dependent AUC Regression Model

A univariate covariate Z is set to follow an exponential distribution with scale param-

eter 0.5. Conditioning on Z and a Bernoulli latent variable v with parameter 0.5, T

and Y are separately generated from exponential distributions with scale parameters

3−v and Z2v. The censoring time C is designed to be an exponential distribution

with different scale parameters, which result in the expected censoring rates. The

Kaplan-Meier estimator S̃C(t) is further used to estimate SC(t|z∗) and Gi(t, z
∗) =

−SC(t)
∫ t

0
dMCi(u)/SX(u) is used to estimate Ĝi(t, z

∗) = −S̃C(t)
∫ t

0
dM̃Ci(u)/S̃X(u).

Under the above setting, it can be derived that the true model for θt(Zi, Zj) has the

linear form

θ
(T )
t (Zi, Zj) = γt1Zij1 + γt2Zij2 + γt3Zij3 + γt4Zij4,
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where Zij1 = 1, Zij2 = (1 + Z−2
i )−1, Zij3 = (1 + Z2

j )−1, and Zij4 = Z2
i (Z

2
i + Z2

j )−1

with the corresponding coefficients γt1 = 0.125(e−t − e−2t), γt2 = 0.25(e−t − e−4t),

γt3 = 0.25(e−3t − e−4t), and γt4 = 0.25(e−3t − e−6t). In the simulation study, the true

response function h(T )(u) = u with the designed covariates Zijk’s are used in model

(3.1) to estimate γt. Moreover, the logistic regression model h(W )(u) = eu/(1 + eu)

is considered as a working model. Both the true and working models are used to

estimate the scientific relevant measures θ
(T )
t (z0, z0), z0 = 1.5, 2.5. We evaluate the

finite sample properties of the proposed estimators and inference procedures at the

selected time points t0.3, t0.5, and t0.7.

It is indicated from table 5.9 that the estimators γ̂t behave well in the mid time

period no matter how the sample size and the censoring rate change. However,

apparent biases appear for times near the boundary due to the small sample size

and the high censoring rate. This situation is greatly improved as the sample size

increases. All the standard deviation is also found to be nicely estimated by our

proposed empirical estimation methods. With moderate sample size and censoring

rate, most of the empirical coverage probabilities of pointwise confidence intervals

are close to the nominal level of 0.95. It is further shown in table 5.12 that the

empirical coverage probabilities of the simultaneous confidence bands for the intreval

[t0.5, t0.6] are closer to the nominal level than those of [t0.3, t0.7]. As expected, the

adequacy of the constructed confidence bands relies on the change of sample size and

censoring rate. We further detect in tables 5.10-5.11 that the estimates θ̂(T )(z0, z0)’s

and θ̂(W )(z0, z0)’s computed based on h(T )(u) and h(W )(u), respectively, are close to

the corresponding true values θ(T )(z0, z0)’s. The strong performance of the time-

varying coefficient logistic regression model results in wide usages in applications and

is evidenced in our simulation study.
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5.1.3 Scenario III - Optimal Composite Markers

In this simulation study, two markers Y1 and Y2 are considered in the time-varying

coefficient EGLM. We first generate Z = (Z1, Z2)
T from a bivariate normal distribu-

tion with mean (−0.5,−2), standard deviation (0.22, 0.25), and correlation coefficient

−0.7. Conditioning on Z, the failure time T is designed to follow a lognormal distri-

bution with parameters μ(Z) = −(Z1 + Z2)/1.6 and σ2(Z) = exp(2Z2). The markers

Y1 and Y2 are specified to be 1/σ(Z) and −μ(Z)/σ(Z). Under the above design, the

linear composite marker of the form (Y1 + βtY2) with βt = 1/ ln t can be shown to

be optimal at time t. Under totally independent censoring, C is generated from an

exponential distribution with scale parameter a. With marker-dependent censoring,

conditioning on (Y1, Y2) = (y1, y2), C is generated from a gamma distribution with

shape parameter (y2/a) and scale parameter (y2
1/10). The constant a in both set-

tings is used to obtained the censoring rates of 30% and 50%. The estimators and

inference procedures are evaluated at selected time points of t0.3, t0.5, and t0.7. In

the estimation of β̂t and θ̂t(β̂t), the standard normal density function is used as a

kernel function. For the smoothing parameters involved in S̃T (t|y), an appropriate

selection procedure becomes necessary for simplifying the process and preventing the

investigators from arbitrarily choosing the bandwidth in practical implementation.

One possible method, for instance, is to select small enough smoothing parameters

so that β̃t and β̂t are comparable. In the current simulation study, the bandwidths

are all set to be 0.05.

Tables 5.13-5.14 exhibit the simulation results under totally independent censor-

ing. One can see that the biases of both estimators β̂t and β̃t are quite small, whereas

the standard error of β̃t is smaller than that of β̂t. At the boundary time points, the

standard errors of both estimates β̂t and β̃t become substantially large especially when

the sample size is small and the censoring rate is high. It can be observed that the

bootstrap method provides good estimates of the standard deviations. The empirical

coverage probabilities of the bootstrap confidence intervals are nearly the assigned
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nominal level of 0.95 with moderate sample size and censoring rate. A similar con-

clusion about the biases of θ̂t(β̂t) and θ̃t(β̃t) can also be drawn. Here, the variation of

θ̂t(β̂t) are detected to be slightly larger. The empirical coverage probabilities of the

constructed confidence intervals based on the bootstrap analogue of θ̂t(β̂t) are more

close to the nominal level than those based on the bootstrap analogue of θ̃t(β̃t). As

one can expect, the performance of β̃t is generally better than that of β̂t under totally

independent censoring while both estimators θ̂t(β̂t) and θ̃t(β̃t) are comparable and

acceptable.

Simulation results under marker-dependent censoring are provided in tables 5.15-

5.16. One can see from these tables that the averages of β̂t and θ̂t(β̂t) are close to

the corresponding true values at the selected time points. Interestingly, the bias of

β̃t is not apparent and shows the robustness against violation of marker-dependent

censoring. The bootstrap standard errors and the empirical coverage probabilities are

also close to the standard deviations of the estimators and the nominal level. On the

other hand, the estimator θ̃t(β̃t) is very sensitive to the violation of totally independent

censoring and is is evidenced by the occurrence of large biases. In summary, the

performance of θ̂t(β̂t) is better under marker-dependent censoring, and β̃t is also

suggested to be used in the estimation due to its robustness. One advantage of

applying β̃t is that no complicated smoothing technique is involved.

5.2 Applications

5.2.1 ACTG 175 Study

We apply our methods to the data from the ACTG 175 study. Since patients with

lower CD4 cell counts are more likely to have a higher risk of AIDS or death, a strictly

decreasing transformation of CD4 cell counts, e.g. Y =-CD4, is used to ascertain that

most of the AUC values fall within the range of 0.5 to 1. In our analysis, a class of

appropriate survival models is applied to investigate the relationship between the

censoring time and the CD4 cell counts, and no apparent association is detected.
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We thus assume that totally independent censorship is reasonable and the estimator

θ̃t(q̃αt) is suggested to be used in this analysis. Due to a small number of failures

and large variation of estimators at the initial weeks, we only provide the estimates

within the time period after week 98. The nonparametric estimates of AUCs for all

patients are displayed in figure 5.3 (a) together with the corresponding 0.95 pointwise

and simultaneous confidence intervals, which are constructed from (2.25) and (2.28).

A high classification accuracy curve of CD4 cell counts throughout appears within

the time period of interest.

Let Y (1) and Y (2) be the CD4 cell biomarkers of non-therapy and therapy patients

with the corresponding time-dependent PAUCs θ
(1)
t (q

(1)
αt ) and θ

(2)
t (q

(2)
αt ). Our aim in

this data study is to evaluate the effect of prior therapy on the classification accuracy

of CD4 cell counts. Currently, there is still no standard of clinically meaningful values

of FPR for the PAUC in AIDS research, we consider the time-dependent PAUC with

FPR less than 0.1, 0.3, and 1. Based on two independent data sets {X(1)
i , δ

(1)
i , Y

(1)
i }n1

i=1

and {X(2)
i , δ

(2)
i , Y

(2)
i }n2

i=1, the confidence intervals for θ
(k)
t (q

(k)
αt )’s are constructed and

compared with α2/2. It is detected from figure 5.1 that the time-dependent PAUCs

θ
(1)
t (q

(1)
αt ) and θ

(2)
t (q

(2)
αt ) are significantly higher than 0.5α2 for all α during the time

period of interest. This indicates that CD4 cell counts are useful in classifying pa-

tient’s survival time for all patients. For patients without prior therapy, a decreasing

trend in θ
(1)
t (q

(1)
αt ) over time is detected especially for small α. The decreasing trend

is also found for θ
(2)
t (q

(2)
αt ) before week 155, but it appears to increase after that time.

For the time-dependent AUC, this classification measures stay very close to a con-

stant throughout the study period for both groups. In view of the time-dependent

AUC, the classification ability of CD4 cell counts seems to be irrelevant to the time

parameter t.

The difference in the classification accuracies of Y (1) and Y (2) can be further

measured by the summary index γα(t) = θ
(1)
t (q

(1)
αt )−θ

(2)
t (q

(2)
αt ). It is natural to estimate

γα(t) by γ̃α(t) = θ̃
(1)
t (q̃

(1)
αt ) − θ̃

(2)
t (q̃

(2)
αt ). Along the same lines as the proof in Section

2.2, we can derive that
√

n(γ̃α(t) − γα(t)) converges weakly to a mean zero Gaussian
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process in t with variance-covariance function

Γ∗
α(s, t) =

1

κ
E[Ψ

∗(1)
αi (s)Ψ

∗(1)
αi (t)] +

1

1 − κ
E[Ψ

∗(2)
αi (s)Ψ

∗(2)
αi (t)] (5.2)

provided that n1/n → κ (0 < κ < 1) as n = (n1 + n2) → ∞, where Ψ
∗(k)
αi (t) is a

counterpart of Ψ∗
αi(t), k = 1, 2. To make inference on γα(t), Γ∗

α(s, t) is first estimated

by

Γ̃α(s, t) =
n

n2
1

n1∑
i=1

Ψ̃
∗(1)
αi (s)Ψ̃

∗(1)
αi (t) +

n

n2
2

n2∑
i=1

Ψ̃
∗(2)
αi (s)Ψ̃

∗(2)
αi (t). (5.3)

A (1− ς) pointwise confidence interval for γα(t) and a (1− ς) simultaneous confidence

band for {γα(t) : t ∈ [τ1, τ2]} are separately given via

γ̃α(t) ± Zς/2

√
Γ̃∗

α(t, t)

n
and {γ̃α(t) ± L(γ)

ς

√
Γ̃∗

α(t, t)

n
: t ∈ [τ1, τ2]} (5.4)

with L
(γ)
ς being obtained as that in (2.4). It is revealed in figures 5.2 (a)-(c) that

only γα(t) with α=0.1 and 0.3 tend to be positive before week 155 but the difference

becomes negligible for all α’s after that week. Thus, with small values of FPRt(y),

a prior antiretroviral therapy might lower the performance of CD4 cell counts in

classifying subject’s t-week survival. One possible explanation for this conclusion is

that the prior therapy makes patients more homogeneous in survival time and CD4

cell counts. For long term survival classification, the performance of CD4 cell counts

is irrelevant to whether patients receive prior therapy or not. Since no significant

difference between θ
(1)
t (q

(1)
αt ) and θ

(2)
t (q

(2)
αt ) exists, it would necessitate increasing sample

size to detect a difference between the time-dependent PAUCs.

To characterize the effect of the therapy status (Z = 1 indicates a patient with

prior therapy and 0 otherwise) on the classification accuracy of CD4 cell counts, we

consider a saturated time-varying coefficient logistic regression model

θt(Zi, Zj) =
exp(γt1 + γt2Zi + γt3Zj + γt4ZiZj)

1 + exp(γt1 + γt2Zi + γt3Zj + γt4ZiZj)
.i �= j,

As evidenced by our numerical study, the performance of this working model is gener-

ally good in the estimation of θt(Zi, Zj). A positive linear combination of coefficients
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γt2 + γt3 + γt4 (figure 5.3 (b)) means that the CD4 cell counts of patients with a

prior therapy are more sensitive in classifying failure status than those without. We

find that CD4 cell counts perform better among patients with a prior therapy ex-

cept for weeks 118-152. However, the difference is not significant enough and the

same conclusion can be drawn based on the nonparametric estimate of γ̃α(t). Using

the time-varying coefficient logistic regression model, the estimated time-dependent

AUCs are given in figures 5.3 (c)-(d). These figures show the appropriateness of model

specification because the same patter as obtained by nonparametric methods (figures

5.1 (e)-(f)).

5.2.2 Angiography CAD Study

The main objective of this study is to evaluate the classification abilities of CRP, SAA,

IL-6, and tHcy on the CAD-related vital status over time. Let θ
(CRP)
t , θ

(SAA)
t , θ

(IL-6)
t ,

and θ
(tHcy)
t denote the time-dependent AUCs of CRP, SAA, IL-6, and tHcy, respec-

tively. Nonparametric estimates of the quantities (θ̃
(CRP)
t , θ̃

(SAA)
t , θ̃

(IL-6)
t , θ̃

(tHcy)
t ) based

on θ̃t(q̃1t) and (θ̂
(CRP)
t , θ̂

(SAA)
t , θ̂

(IL-6)
t , θ̂

(tHcy)
t ) based on θ̂t(q̂1t), which are computed un-

der the validity of totally independent censoring and marker-dependent censoring, are

displayed in figures 5.4-5.5. The estimates of θ
(tHcy)
t is the highest at the beginning

and decreases rapidly from 0.732 to 0.643, and the estimates of other biomarkers are

all lower than 0.7. The comparable estimates are found in these figures and imply

the first estimation approach is robust against violation of marker-dependent censor-

ing. The results of statistical analysis in the paper of Lee, et al. (2006) indicated

that the performance of IL-6 is superior than the other biomarkers. This conclusion

is also evidenced in our analysis in which the classification accuracy of IL-6 is the

largestat the end of study. We further detect that the plasma biomarker of tHcy

has the best classification power at the stating time period. It can be seen that the

time-dependent AUC of CRP and tHcy have a decreasing trend while that of IL-6 has

an increasing trend. As for that of SAA, the estimates seem to stably stay around

0.6. The constructed 0.95 confidence intervals show that all plasma biomarkers are
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indicative of disease over time.

To further improve the classification accuracy of multiple plasma biomarkers, we

search for combinations of these biomarkers through a very flexible time-varying co-

efficient EGLM in (4.1) for the conditional survival distribution. In the numerical

implementation, the linear predictors without considering tHcy are not likely to be

optimal composite biomarker. For the sake of identifiability, the coefficient of tHcy

in the linear predictor is set to be one. The smoothing parameters for β̂t are all set

to be 0.05 and a bootstrap sampling is carried out to compute the standard errors

of the estimators and construct the confidence intervals of the parameter functions.

The analysis results are exhibited in tables 5.17-5.18. One can see that form table

5.17 that CRP and IL-6 are negatively and positively, respectively, associated with

CAD-related death and significantly classify the CAD-related vital status after about

day 1500 and day 2000. Except at the small period around day 2000, the effect of

SAA is generally nonsignificant. Moreover, tHcy is detected to have an overall supe-

rior classification capacity within the study period. It is found in table 5.18 that the

estimated values θ̃t(β̃t) and θ̂t(β̂t) decline as time progresses and are higher than 0.7

before day 3500, which demonstrate the advantage from combining biomarkers.

The appropriateness of a time-varying coefficient logistic regression model is also

investigated via comparing the estimated linear predictors β̄t1tHcy+β̄t2CRP+β̄t3SAA+

β̄t4IL-6 of Chiang and Huang (2009) with those of optimal linear predictors and the

corresponding estimates of the time-dependent AUCs. The estimated coefficients im-

ply a rather similar biological explanation. Although the estimated values θ̂t(β̄t) and

θ̃t(β̄t) are found to be relatively lower than θ̂t(θ̂t) and θ̃t(θ̃t), they are not significantly

different from our estimates within the study period. The time-varying coefficient

logistic regression model might be a suitable working model to characterize the con-

ditional survival distribution.



51

Table 5.1: The averages (Mean) and the standard deviations (SD) of 500 estimates,
the averages of 500 standard errors (SE) of estimators, and the empirical coverage
probabilities (CP) under totally independent censoring

α = 0.1 c.r. = 30%

n 250 500
tq θt(qαt) Mean SD SE CP Mean SD SE CP
t0.4 0.0264 0.0276 0.0070 0.0048 0.826 0.0270 0.0049 0.0039 0.876

θ̂t(q̂αt) t0.5 0.0269 0.0284 0.0071 0.0048 0.810 0.0275 0.0051 0.0038 0.846
(0.01) t0.6 0.0279 0.0293 0.0071 0.0050 0.808 0.0284 0.0053 0.0040 0.864

t0.4 0.0264 0.0221 0.0064 0.0078 0.942 0.0234 0.0047 0.0056 0.952

θ̂t(q̂αt) t0.5 0.0269 0.0233 0.0068 0.0074 0.918 0.0244 0.0048 0.0054 0.942
(λopt) t0.6 0.0279 0.0252 0.0076 0.0072 0.886 0.0258 0.0052 0.0054 0.910

t0.4 0.0264 0.0193 0.0043 0.0082 0.966 0.0189 0.0029 0.0059 0.872

θ̂t(q̂αt) t0.5 0.0269 0.0210 0.0051 0.0077 0.932 0.0202 0.0036 0.0057 0.846
(0.2) t0.6 0.0279 0.0228 0.0059 0.0076 0.914 0.0218 0.0041 0.0058 0.854

t0.4 0.0264 0.0293 0.0070 0.0069 0.928 0.0279 0.0048 0.0048 0.928

θ̃t(q̃αt) t0.5 0.0269 0.0306 0.0076 0.0071 0.880 0.0287 0.0049 0.0050 0.918
t0.6 0.0279 0.0332 0.0088 0.0075 0.832 0.0301 0.0056 0.0054 0.910

α = 0.1 c.r. = 50%

n 250 500
tq θt(qαt) Mean SD SE CP Mean SD SE CP
t0.4 0.0264 0.0272 0.0073 0.0049 0.802 0.0268 0.0051 0.0040 0.880

θ̂t(q̂αt) t0.5 0.0269 0.0271 0.0075 0.0050 0.786 0.0271 0.0056 0.0040 0.820
(0.01) t0.6 0.0279 0.0268 0.0082 0.0051 0.756 0.0278 0.0062 0.0042 0.798

t0.4 0.0264 0.0223 0.0070 0.0085 0.944 0.0234 0.0055 0.0062 0.944

θ̂t(q̂αt) t0.5 0.0269 0.0235 0.0077 0.0081 0.910 0.0243 0.0057 0.0060 0.920
(λopt) t0.6 0.0279 0.0251 0.0086 0.0080 0.884 0.0257 0.0060 0.0059 0.906

t0.4 0.0264 0.0192 0.0046 0.0091 0.964 0.0186 0.0032 0.0066 0.894

θ̂t(q̂αt) t0.5 0.0269 0.0209 0.0055 0.0087 0.958 0.0200 0.0040 0.0064 0.878
(0.2) t0.6 0.0279 0.0227 0.0069 0.0085 0.914 0.0221 0.0049 0.0065 0.896

t0.4 0.0264 0.0304 0.0080 0.0081 0.922 0.0284 0.0060 0.0055 0.916

θ̃t(q̃αt) t0.5 0.0269 0.0319 0.0091 0.0083 0.882 0.0292 0.0062 0.0057 0.920
t0.6 0.0279 0.0349 0.0106 0.0091 0.830 0.0312 0.0063 0.0062 0.908
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Table 5.2: The averages (Mean) and the standard deviations (SD) of 500 estimates,
the averages of 500 standard errors (SE) of estimators, and the empirical coverage
probabilities (CP) under totally independent censoring

α = 0.3 c.r. = 30%

n 250 500
tq θt(qαt) Mean SD SE CP Mean SD SE CP
t0.4 0.1420 0.1436 0.0192 0.0138 0.836 0.1433 0.0134 0.0115 0.908

θ̂t(q̂αt) t0.5 0.1423 0.1441 0.0190 0.0135 0.842 0.1434 0.0138 0.0111 0.886
(0.01) t0.6 0.1446 0.1451 0.0195 0.0138 0.820 0.1450 0.0140 0.0112 0.880

t0.4 0.1420 0.1331 0.0197 0.0215 0.958 0.1366 0.0136 0.0149 0.960

θ̂t(q̂αt) t0.5 0.1423 0.1341 0.0202 0.0203 0.940 0.1376 0.0136 0.0142 0.960
(λopt) t0.6 0.1446 0.1376 0.0210 0.0201 0.924 0.1403 0.0144 0.0143 0.940

t0.4 0.1420 0.1266 0.0164 0.0230 0.974 0.1257 0.0115 0.0166 0.920

θ̂t(q̂αt) t0.5 0.1423 0.1294 0.0172 0.0215 0.954 0.1277 0.0125 0.0157 0.902
(0.2) t0.6 0.1446 0.1329 0.0183 0.0211 0.956 0.1309 0.0131 0.0157 0.914

t0.4 0.1420 0.1474 0.0187 0.0192 0.936 0.1448 0.0130 0.0134 0.952

θ̃t(q̃αt) t0.5 0.1423 0.1480 0.0194 0.0191 0.928 0.1456 0.0135 0.0135 0.934
t0.6 0.1446 0.1523 0.0210 0.0199 0.900 0.1483 0.0145 0.0141 0.928

α = 0.3 c.r. = 50%

n 250 500
tq θt(qαt) Mean SD SE CP Mean SD SE CP
t0.4 0.1420 0.1422 0.0211 0.0145 0.820 0.1423 0.0140 0.0120 0.908

θ̂t(q̂αt) t0.5 0.1423 0.1414 0.0207 0.0142 0.814 0.1420 0.0148 0.0117 0.874
(0.01) t0.6 0.1446 0.1396 0.0233 0.0146 0.762 0.1437 0.0162 0.0119 0.848

t0.4 0.1420 0.1325 0.0217 0.0238 0.956 0.1355 0.0156 0.0166 0.952

θ̂t(q̂αt) t0.5 0.1423 0.1345 0.0228 0.0228 0.932 0.1366 0.0157 0.0161 0.946
(λopt) t0.6 0.1446 0.1372 0.0235 0.0226 0.928 0.1391 0.0161 0.0162 0.948

t0.4 0.1420 0.1263 0.0180 0.0257 0.972 0.1246 0.0125 0.0186 0.944

θ̂t(q̂αt) t0.5 0.1423 0.1296 0.0186 0.0244 0.968 0.1269 0.0135 0.0178 0.930
(0.2) t0.6 0.1446 0.1325 0.0217 0.0241 0.954 0.1317 0.0152 0.0179 0.926

t0.4 0.1420 0.1477 0.0217 0.0220 0.942 0.1448 0.0156 0.0154 0.938

θ̃t(q̃αt) t0.5 0.1423 0.1503 0.0229 0.0226 0.926 0.1458 0.0160 0.0158 0.938
t0.6 0.1446 0.1545 0.0247 0.0238 0.904 0.1490 0.0163 0.0168 0.940
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Table 5.3: The averages (Mean) and the standard deviations (SD) of 500 estimates,
the averages of 500 standard errors (SE) of estimators, and the empirical coverage
probabilities (CP) under totally independent censoring

α = 1 c.r. = 30%

n 250 500
tq θt(qαt) Mean SD SE CP Mean SD SE CP
t0.4 0.7769 0.7765 0.0345 0.0255 0.842 0.7773 0.0236 0.0211 0.912

θ̂t(q̂αt) t0.5 0.7746 0.7742 0.0341 0.0250 0.832 0.7748 0.0242 0.0205 0.884
(0.01) t0.6 0.7765 0.7732 0.0345 0.0253 0.854 0.7758 0.0242 0.0205 0.892

t0.4 0.7769 0.7574 0.0374 0.0388 0.962 0.7660 0.0259 0.0263 0.946

θ̂t(q̂αt) t0.5 0.7746 0.7541 0.0386 0.0381 0.946 0.7639 0.0251 0.0258 0.954
(λopt) t0.6 0.7765 0.7565 0.0385 0.0389 0.940 0.7648 0.0265 0.0265 0.948

t0.4 0.7769 0.7455 0.0334 0.0419 0.964 0.7451 0.0232 0.0299 0.914

θ̂t(q̂αt) t0.5 0.7746 0.7447 0.0332 0.0409 0.968 0.7431 0.0241 0.0295 0.904
(0.2) t0.6 0.7765 0.7456 0.0341 0.0420 0.964 0.7445 0.0242 0.0303 0.902

t0.4 0.7769 0.7800 0.0326 0.0340 0.946 0.7790 0.0237 0.0239 0.944

θ̃t(q̃αt) t0.5 0.7746 0.7766 0.0343 0.0339 0.946 0.7770 0.0237 0.0238 0.948
t0.6 0.7765 0.7794 0.0345 0.0349 0.934 0.7781 0.0250 0.0246 0.938

α = 1 c.r. = 50%

n 250 500
tq θt(qαt) Mean SD SE CP Mean SD SE CP
t0.4 0.7769 0.7745 0.0378 0.0266 0.838 0.7765 0.0258 0.0221 0.896

θ̂t(q̂αt) t0.5 0.7746 0.7712 0.0371 0.0261 0.818 0.7733 0.0267 0.0215 0.890
(0.01) t0.6 0.7765 0.7651 0.0414 0.0268 0.782 0.7738 0.0282 0.0216 0.880

t0.4 0.7769 0.7566 0.0413 0.0434 0.958 0.7639 0.0278 0.0297 0.962

θ̂t(q̂αt) t0.5 0.7746 0.7553 0.0426 0.0428 0.948 0.7614 0.0290 0.0295 0.954
(λopt) t0.6 0.7765 0.7538 0.0437 0.0444 0.956 0.7619 0.0299 0.0306 0.952

t0.4 0.7769 0.7451 0.0369 0.0467 0.968 0.7437 0.0255 0.0337 0.936

θ̂t(q̂αt) t0.5 0.7746 0.7460 0.0362 0.0460 0.974 0.7423 0.0262 0.0334 0.932
(0.2) t0.6 0.7765 0.7457 0.0403 0.0478 0.976 0.7459 0.0277 0.0347 0.944

t0.4 0.7769 0.7785 0.0379 0.0390 0.946 0.7775 0.0267 0.0274 0.962

θ̃t(q̃αt) t0.5 0.7746 0.7772 0.0393 0.0395 0.946 0.7749 0.0282 0.0279 0.936
t0.6 0.7765 0.7762 0.0426 0.0416 0.942 0.7755 0.0291 0.0293 0.946
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Table 5.4: The empirical coverage probabilities of 0.95 simultaneous confidence bands
under totally independent censoring

c.r. = 30% n = 250 n = 500
α [t0.4, t0.5] [t0.4, t0.6] [t0.4, t0.5] [t0.4, t0.6]
0.1 0.718 0.664 0.812 0.792

θ̂t(q̂αt) 0.3 0.794 0.750 0.862 0.840
(0.01) 1 0.818 0.792 0.904 0.878

0.1 0.916 0.882 0.932 0.930

θ̂t(q̂αt) 0.3 0.946 0.930 0.962 0.952
(λopt) 1 0.956 0.942 0.952 0.958

0.1 0.930 0.920 0.882 0.866

θ̂t(q̂αt) 0.3 0.962 0.960 0.932 0.928
(0.2) 1 0.966 0.964 0.918 0.924

0.1 0.860 0.812 0.906 0.884

θ̃t(q̃αt) 0.3 0.922 0.892 0.928 0.918
1 0.940 0.924 0.926 0.924

c.r. = 50% n = 250 n = 500
α [t0.4, t0.5] [t0.4, t0.6] [t0.4, t0.5] [t0.4, t0.6]
0.1 0.714 0.650 0.772 0.712

θ̂t(q̂αt) 0.3 0.728 0.672 0.832 0.806
(0.01) 1 0.760 0.722 0.854 0.824

0.1 0.908 0.876 0.914 0.892

θ̂t(q̂αt) 0.3 0.936 0.916 0.936 0.934
(λopt) 1 0.960 0.952 0.962 0.956

0.1 0.950 0.922 0.884 0.896

θ̂t(q̂αt) 0.3 0.974 0.970 0.928 0.926
(0.2) 1 0.978 0.980 0.948 0.954

0.1 0.850 0.788 0.868 0.854

θ̃t(q̃αt) 0.3 0.898 0.884 0.928 0.918
1 0.946 0.932 0.940 0.942
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Table 5.5: The averages (Mean) and the standard deviations (SD) of 500 estimates,
the averages of 500 standard errors (SE) of estimators, and the empirical coverage
probabilities (CP) under marker-dependent censoring

α = 0.1 c.r. = 30%

n 250 500
tq θt(qαt) Mean SD SE CP Mean SD SE CP
t0.4 0.0264 0.0274 0.0073 0.0048 0.796 0.0268 0.0052 0.0040 0.834

θ̂t(q̂αt) t0.5 0.0269 0.0276 0.0073 0.0048 0.794 0.0272 0.0055 0.0040 0.846
(0.01) t0.6 0.0279 0.0282 0.0080 0.0049 0.738 0.0279 0.0055 0.0041 0.848

t0.4 0.0264 0.0219 0.0068 0.0081 0.954 0.0234 0.0050 0.0058 0.948

θ̂t(q̂αt) t0.5 0.0269 0.0233 0.0070 0.0077 0.926 0.0248 0.0054 0.0056 0.932
(λopt) t0.6 0.0279 0.0252 0.0078 0.0075 0.890 0.0264 0.0055 0.0056 0.924

t0.4 0.0264 0.0192 0.0043 0.0086 0.974 0.0190 0.0032 0.0062 0.894

θ̂t(q̂αt) t0.5 0.0269 0.0208 0.0053 0.0082 0.942 0.0203 0.0037 0.0061 0.868
(0.2) t0.6 0.0279 0.0231 0.0067 0.0082 0.918 0.0218 0.0045 0.0061 0.864

t0.4 0.0264 0.0301 0.0076 0.0082 0.940 0.0294 0.0052 0.0058 0.948

θ̃t(q̃αt) t0.5 0.0269 0.0314 0.0077 0.0085 0.928 0.0301 0.0053 0.0060 0.932
t0.6 0.0279 0.0340 0.0084 0.0092 0.902 0.0314 0.0058 0.0065 0.940

α = 0.1 c.r. = 50%

n 250 500
tq θt(qαt) Mean SD SE CP Mean SD SE CP
t0.4 0.0264 0.0258 0.0080 0.0050 0.760 0.0266 0.0062 0.0042 0.786

θ̂t(q̂αt) t0.5 0.0269 0.0248 0.0079 0.0049 0.722 0.0268 0.0064 0.0041 0.772
(0.01) t0.6 0.0279 0.0238 0.0083 0.0050 0.668 0.0265 0.0066 0.0043 0.754

t0.4 0.0264 0.0233 0.0078 0.0093 0.954 0.0237 0.0057 0.0067 0.950

θ̂t(q̂αt) t0.5 0.0269 0.0245 0.0086 0.0086 0.912 0.0250 0.0061 0.0064 0.918
(λopt) t0.6 0.0279 0.0268 0.0095 0.0081 0.864 0.0266 0.0071 0.0064 0.892

t0.4 0.0264 0.0195 0.0053 0.0098 0.970 0.0192 0.0037 0.0073 0.952

θ̂t(q̂αt) t0.5 0.0269 0.0214 0.0066 0.0094 0.928 0.0209 0.0047 0.0071 0.932
(0.2) t0.6 0.0279 0.0235 0.0078 0.0090 0.906 0.0225 0.0056 0.0072 0.908

t0.4 0.0264 0.0337 0.0090 0.0116 0.934 0.0303 0.0060 0.0080 0.972

θ̃t(q̃αt) t0.5 0.0269 0.0346 0.0093 0.0120 0.920 0.0310 0.0062 0.0085 0.986
t0.6 0.0279 0.0380 0.0099 0.0134 0.928 0.0330 0.0067 0.0095 0.978
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Table 5.6: The averages (Mean) and the standard deviations (SD) of 500 estimates,
the averages of 500 standard errors (SE) of estimators, and the empirical coverage
probabilities (CP) under marker-dependent censoring

α = 0.3 c.r. = 30%

n 250 500
tq θt(qαt) Mean SD SE CP Mean SD SE CP
t0.4 0.1420 0.1431 0.0197 0.0141 0.836 0.1424 0.0140 0.0116 0.880

θ̂t(q̂αt) t0.5 0.1423 0.1424 0.0197 0.0138 0.844 0.1427 0.0142 0.0113 0.874
(0.01) t0.6 0.1446 0.1429 0.0204 0.0141 0.830 0.1438 0.0137 0.0115 0.892

t0.4 0.1420 0.1318 0.0210 0.0223 0.952 0.1362 0.0144 0.0154 0.948

θ̂t(q̂αt) t0.5 0.1423 0.1337 0.0208 0.0210 0.938 0.1383 0.0150 0.0147 0.932
(λopt) t0.6 0.1446 0.1374 0.0213 0.0207 0.930 0.1414 0.0143 0.0146 0.940

t0.4 0.1420 0.1272 0.0169 0.0242 0.982 0.1265 0.0122 0.0174 0.938

θ̂t(q̂αt) t0.5 0.1423 0.1297 0.0179 0.0227 0.960 0.1281 0.0129 0.0164 0.914
(0.2) t0.6 0.1446 0.1342 0.0191 0.0223 0.956 0.1310 0.0137 0.0164 0.916

t0.4 0.1420 0.1493 0.0200 0.0228 0.946 0.1496 0.0139 0.0159 0.950

θ̃t(q̃αt) t0.5 0.1423 0.1504 0.0194 0.0221 0.946 0.1494 0.0138 0.0156 0.952
t0.6 0.1446 0.1543 0.0197 0.0225 0.950 0.1515 0.0145 0.0159 0.930

α = 0.3 c.r. = 50%

n 250 500
tq θt(qαt) Mean SD SE CP Mean SD SE CP
t0.4 0.1420 0.1377 0.0226 0.0148 0.788 0.1417 0.0167 0.0122 0.826

θ̂t(q̂αt) t0.5 0.1423 0.1330 0.0222 0.0145 0.768 0.1407 0.0168 0.0118 0.824
(0.01) t0.6 0.1446 0.1274 0.0231 0.0147 0.668 0.1389 0.0176 0.0120 0.796

t0.4 0.1420 0.1355 0.0238 0.0249 0.942 0.1369 0.0168 0.0176 0.948

θ̂t(q̂αt) t0.5 0.1423 0.1366 0.0242 0.0235 0.928 0.1390 0.0173 0.0168 0.934
(λopt) t0.6 0.1446 0.1410 0.0247 0.0228 0.916 0.1418 0.0184 0.0169 0.928

t0.4 0.1420 0.1278 0.0196 0.0275 0.974 0.1273 0.0137 0.0201 0.968

θ̂t(q̂αt) t0.5 0.1423 0.1306 0.0212 0.0257 0.960 0.1295 0.0154 0.0190 0.954
(0.2) t0.6 0.1446 0.1340 0.0227 0.0249 0.948 0.1321 0.0163 0.0190 0.938

t0.4 0.1420 0.1569 0.0232 0.0297 0.948 0.1523 0.0157 0.0212 0.964

θ̃t(q̃αt) t0.5 0.1423 0.1570 0.0231 0.0286 0.946 0.1521 0.0154 0.0203 0.958
t0.6 0.1446 0.1615 0.0234 0.0284 0.936 0.1541 0.0163 0.0203 0.944
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Table 5.7: The averages (Mean) and the standard deviations (SD) of 500 estimates,
the averages of 500 standard errors (SE) of estimators, and the empirical coverage
probabilities (CP) under marker-dependent censoring

α = 1 c.r. = 30%

n 250 500
tq θt(qαt) Mean SD SE CP Mean SD SE CP
t0.4 0.7769 0.7775 0.0355 0.0256 0.874 0.7760 0.0244 0.0212 0.926

θ̂t(q̂αt) t0.5 0.7746 0.7729 0.0352 0.0252 0.844 0.7746 0.0238 0.0205 0.906
(0.01) t0.6 0.7765 0.7708 0.0353 0.0256 0.858 0.7743 0.0247 0.0207 0.886

t0.4 0.7769 0.7555 0.0398 0.0396 0.940 0.7665 0.0263 0.0268 0.948

θ̂t(q̂αt) t0.5 0.7746 0.7531 0.0391 0.0387 0.934 0.7631 0.0263 0.0264 0.946
(λopt) t0.6 0.7765 0.7557 0.0385 0.0392 0.946 0.7633 0.0269 0.0270 0.944

t0.4 0.7769 0.7479 0.0341 0.0426 0.968 0.7436 0.0237 0.0305 0.888

θ̂t(q̂αt) t0.5 0.7746 0.7461 0.0341 0.0415 0.956 0.7431 0.0236 0.0298 0.894
(0.2) t0.6 0.7765 0.7486 0.0339 0.0422 0.968 0.7442 0.0242 0.0306 0.908

t0.4 0.7769 0.7827 0.0353 0.0345 0.918 0.7853 0.0242 0.0241 0.920

θ̃t(q̃αt) t0.5 0.7746 0.7792 0.0342 0.0342 0.942 0.7812 0.0240 0.0239 0.930
t0.6 0.7765 0.7811 0.0336 0.0349 0.950 0.7809 0.0246 0.0245 0.918

α = 1 c.r. = 50%

n 250 500
tq θt(qαt) Mean SD SE CP Mean SD SE CP
t0.4 0.7769 0.7658 0.0419 0.0272 0.788 0.7755 0.0280 0.0222 0.866

θ̂t(q̂αt) t0.5 0.7746 0.7554 0.0408 0.0271 0.760 0.7682 0.0288 0.0218 0.854
(0.01) t0.6 0.7765 0.7418 0.0435 0.0281 0.660 0.7621 0.0308 0.0223 0.824

t0.4 0.7769 0.7605 0.0438 0.0434 0.944 0.7650 0.0298 0.0304 0.956

θ̂t(q̂αt) t0.5 0.7746 0.7576 0.0441 0.0425 0.932 0.7621 0.0303 0.0301 0.942
(λopt) t0.6 0.7765 0.7607 0.0449 0.0429 0.944 0.7626 0.0323 0.0310 0.934

t0.4 0.7769 0.7465 0.0393 0.0481 0.972 0.7457 0.0277 0.0346 0.930

θ̂t(q̂αt) t0.5 0.7746 0.7455 0.0399 0.0467 0.968 0.7424 0.0280 0.0342 0.928
(0.2) t0.6 0.7765 0.7454 0.0413 0.0475 0.964 0.7420 0.0296 0.0351 0.924

t0.4 0.7769 0.7915 0.0398 0.0388 0.914 0.7879 0.0273 0.0276 0.936

θ̃t(q̃αt) t0.5 0.7746 0.7859 0.0407 0.0388 0.908 0.7823 0.0268 0.0276 0.938
t0.6 0.7765 0.7871 0.0413 0.0397 0.928 0.7808 0.0285 0.0284 0.942
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Table 5.8: The empirical coverage probabilities of 0.95 simultaneous confidence bands
under marker-dependent censoring

c.r. = 30% n = 250 n = 500
α [t0.4, t0.5] [t0.4, t0.6] [t0.4, t0.5] [t0.4, t0.6]
0.1 0.710 0.606 0.800 0.754

θ̂t(q̂αt) 0.3 0.780 0.734 0.860 0.838
(0.01) 1 0.834 0.802 0.890 0.868

0.1 0.918 0.878 0.936 0.908

θ̂t(q̂αt) 0.3 0.932 0.918 0.946 0.936
(λopt) 1 0.946 0.942 0.948 0.946

0.1 0.946 0.924 0.888 0.878

θ̂t(q̂αt) 0.3 0.970 0.966 0.934 0.936
(0.2) 1 0.970 0.976 0.914 0.922

0.1 0.912 0.888 0.912 0.900

θ̃t(q̃αt) 0.3 0.938 0.932 0.944 0.940
1 0.914 0.922 0.910 0.908

c.r. = 50% n = 250 n = 500
α [t0.4, t0.5] [t0.4, t0.6] [t0.4, t0.5] [t0.4, t0.6]
0.1 0.616 0.520 0.702 0.614

θ̂t(q̂αt) 0.3 0.670 0.584 0.774 0.720
(0.01) 1 0.712 0.610 0.850 0.794

0.1 0.916 0.844 0.908 0.878

θ̂t(q̂αt) 0.3 0.926 0.900 0.940 0.928
(λopt) 1 0.940 0.924 0.958 0.954

0.1 0.938 0.896 0.940 0.896

θ̂t(q̂αt) 0.3 0.964 0.948 0.966 0.952
(0.2) 1 0.972 0.968 0.946 0.942

0.1 0.920 0.904 0.970 0.972

θ̃t(q̃αt) 0.3 0.950 0.932 0.968 0.952
1 0.884 0.878 0.918 0.916
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Table 5.9: The averages (Mean) and standard deviations (SD) of 500 estimates,
the averages of 500 standard errors (SE) of estimators, and the empirical coverage
probabilities (CP) of 0.95 pointwise confidence intervals of γ̂t

c.r. = 30%

n 250 500
tq γt Mean SD SE CP Mean SD SE CP
t0.3 0.086 0.088 0.054 0.053 0.948 0.086 0.037 0.037 0.942

γ̂t1 t0.5 0.111 0.112 0.051 0.054 0.952 0.112 0.038 0.038 0.938
t0.7 0.157 0.162 0.067 0.070 0.944 0.161 0.047 0.049 0.940
t0.3 0.115 0.117 0.083 0.080 0.928 0.114 0.054 0.055 0.948

γ̂t2 t0.5 0.099 0.101 0.079 0.080 0.956 0.098 0.054 0.054 0.960
t0.7 0.063 0.058 0.103 0.105 0.946 0.063 0.071 0.072 0.954
t0.3 0.427 0.425 0.104 0.101 0.932 0.430 0.073 0.071 0.948

γ̂t3 t0.5 0.469 0.463 0.104 0.102 0.930 0.473 0.073 0.072 0.944
t0.7 0.518 0.521 0.123 0.119 0.912 0.521 0.084 0.083 0.940
t0.3 0.286 0.284 0.111 0.108 0.940 0.284 0.076 0.075 0.940

γ̂t4 t0.5 0.211 0.212 0.110 0.108 0.938 0.208 0.074 0.075 0.954
t0.7 0.105 0.099 0.131 0.125 0.934 0.100 0.093 0.088 0.908

c.r. = 50%

n=250 n=500
tq γt Mean SD SE CP Mean SD SE CP
t0.3 0.086 0.089 0.057 0.057 0.932 0.085 0.038 0.040 0.946

γ̂t1 t0.5 0.111 0.115 0.064 0.063 0.934 0.108 0.041 0.044 0.942
t0.7 0.157 0.151 0.106 0.099 0.904 0.156 0.073 0.069 0.912
t0.3 0.115 0.109 0.085 0.085 0.928 0.116 0.057 0.059 0.954

γ̂t2 t0.5 0.099 0.096 0.098 0.095 0.936 0.102 0.063 0.066 0.944
t0.7 0.063 0.075 0.177 0.155 0.910 0.066 0.111 0.108 0.934
t0.3 0.427 0.418 0.109 0.110 0.952 0.429 0.073 0.076 0.954

γ̂t3 t0.5 0.469 0.470 0.120 0.122 0.950 0.471 0.082 0.085 0.962
t0.7 0.518 0.519 0.179 0.166 0.910 0.517 0.119 0.120 0.924
t0.3 0.286 0.301 0.122 0.117 0.922 0.287 0.081 0.082 0.952

γ̂t4 t0.5 0.211 0.216 0.132 0.131 0.950 0.210 0.091 0.091 0.944
t0.7 0.105 0.112 0.196 0.179 0.906 0.108 0.133 0.131 0.930
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Table 5.10: The averages (Mean) and standard deviations (SD) of 500 estimates

θ̂
(T )
t (z0, z0)’s, the averages of 500 standard errors (SE) of estimators, and the empirical

coverage probabilities (CP) of 0.95 pointwise confidence intervals

c.r. = 30%

n 250 500
z tq θ(t|z, z) Mean SD SE CP Mean SD SE CP

t0.3 0.560 0.560 0.038 0.038 0.934 0.561 0.026 0.027 0.950
1.5 t0.5 0.571 0.570 0.038 0.038 0.950 0.573 0.027 0.027 0.938

t0.7 0.587 0.590 0.046 0.047 0.952 0.591 0.034 0.033 0.948
t0.3 0.613 0.612 0.052 0.050 0.932 0.615 0.035 0.035 0.948

2.5 t0.5 0.634 0.632 0.051 0.050 0.940 0.637 0.036 0.035 0.944
t0.7 0.665 0.669 0.059 0.060 0.946 0.668 0.044 0.043 0.935

c.r. = 50%

n 250 500
z tq θ(t|z, z) Mean SD SE CP Mean SD SE CP

t0.3 0.560 0.562 0.042 0.040 0.934 0.562 0.027 0.029 0.960
1.5 t0.5 0.571 0.577 0.043 0.044 0.944 0.571 0.032 0.031 0.950

t0.7 0.587 0.590 0.071 0.066 0.888 0.588 0.051 0.048 0.910
t0.3 0.613 0.614 0.055 0.053 0.940 0.615 0.036 0.038 0.962

2.5 t0.5 0.634 0.641 0.056 0.058 0.954 0.634 0.041 0.042 0.946
t0.7 0.665 0.665 0.093 0.086 0.894 0.665 0.064 0.062 0.932
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Table 5.11: The averages (Mean) and standard deviations (SD) of 500 estimates

θ̂
(W )
t (z0, z0)’s, the averages of 500 standard errors (SE) of estimators, and the empirical

coverage probabilities (CP) of 0.95 pointwise confidence intervals

c.r. = 30%

n 250 500
z tq θ(t|z, z) Mean SD SE CP Mean SD SE CP

t0.3 0.560 0.567 0.047 0.047 0.926 0.567 0.033 0.033 0.944
1.5 t0.5 0.571 0.576 0.045 0.045 0.950 0.579 0.033 0.032 0.925

t0.7 0.587 0.597 0.054 0.054 0.944 0.597 0.039 0.038 0.931
t0.3 0.613 0.624 0.059 0.057 0.906 0.626 0.040 0.040 0.931

2.5 t0.5 0.634 0.641 0.055 0.054 0.936 0.646 0.039 0.038 0.913
t0.7 0.665 0.676 0.061 0.062 0.932 0.675 0.045 0.044 0.927

c.r. = 50%

n 250 500
z tq θ(t|z, z) Mean SD SE CP Mean SD SE CP

t0.3 0.560 0.569 0.053 0.050 0.926 0.569 0.034 0.036 0.954
1.5 t0.5 0.571 0.585 0.052 0.053 0.936 0.577 0.038 0.038 0.938

t0.7 0.587 0.597 0.083 0.077 0.888 0.595 0.059 0.055 0.916
t0.3 0.613 0.626 0.063 0.061 0.924 0.627 0.041 0.043 0.944

2.5 t0.5 0.634 0.651 0.060 0.063 0.928 0.643 0.044 0.045 0.934
t0.7 0.665 0.673 0.096 0.088 0.882 0.672 0.066 0.063 0.920
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Table 5.12: The empirical coverage probabilities of 0.95 simultaneous confidence
bands with the sample sizes of 250 and 500, and the censoring rates of 30% and
50%

c.r. = 30%

n = 250 n = 500
[t0.5, t0.6] [t0.3, t0.7] [t0.5, t0.6] [t0.3, t0.7]

γ̂t1 0.936 0.926 0.946 0.933
γ̂t2 0.964 0.934 0.958 0.950
γ̂t3 0.926 0.918 0.923 0.931
γ̂t4 0.928 0.910 0.946 0.921

θ̂
(T )
t (1.5, 1.5) 0.940 0.922 0.933 0.927

θ̂
(T )
t (2.5, 2.5) 0.932 0.920 0.935 0.948

θ̂
(W )
t (1.5, 1.5) 0.942 0.922 0.921 0.938

θ̂
(W )
t (2.5, 2.5) 0.910 0.886 0.896 0.915

c.r. = 50%

n = 250 n = 500
[t0.5, t0.6] [t0.3, t0.7] [t0.5, t0.6] [t0.3, t0.7]

γ̂t1 0.896 0.896 0.934 0.918
γ̂t2 0.926 0.902 0.948 0.948
γ̂t3 0.916 0.894 0.936 0.930
γ̂t4 0.920 0.892 0.936 0.930

θ̂
(T )
t (1.5, 1.5) 0.944 0.900 0.946 0.922

θ̂
(T )
t (2.5, 2.5) 0.934 0.896 0.946 0.930

θ̂
(W )
t (1.5, 1.5) 0.930 0.902 0.932 0.930

θ̂
(W )
t (2.5, 2.5) 0.908 0.846 0.924 0.900
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Table 5.13: The averages and standard deviations (SD) of 500 estimates, the boot-
strap standard errors (BSE), and the empirical coverage probabilities (CP) under
totally independent censoring with c.r. = 30%

n tq βt β̂t SD BSE CP θt(βt) θ̂t(β̂t) SD BSE CP
t0.3 0.679 0.693 0.050 0.050 0.95 0.817 0.816 0.034 0.033 0.95

250 t0.5 0.637 0.648 0.038 0.042 0.96 0.803 0.801 0.035 0.033 0.96
t0.7 0.602 0.612 0.034 0.040 0.95 0.805 0.802 0.037 0.037 0.95

t0.3 0.679 0.689 0.035 0.034 0.93 0.817 0.812 0.024 0.024 0.95
500 t0.5 0.637 0.646 0.027 0.028 0.92 0.803 0.798 0.024 0.024 0.96

t0.7 0.602 0.609 0.023 0.025 0.95 0.805 0.799 0.025 0.027 0.97

n tq βt β̃t SD BSE CP θt(βt) θ̃t(β̃t) SD BSE CP
t0.3 0.679 0.683 0.042 0.046 0.95 0.817 0.821 0.031 0.031 0.93

250 t0.5 0.637 0.639 0.032 0.038 0.97 0.803 0.808 0.032 0.031 0.93
t0.7 0.602 0.604 0.029 0.034 0.97 0.805 0.812 0.035 0.035 0.92

t0.3 0.679 0.684 0.033 0.032 0.96 0.817 0.816 0.023 0.023 0.93
500 t0.5 0.637 0.640 0.023 0.025 0.95 0.803 0.802 0.023 0.023 0.94

t0.7 0.602 0.603 0.021 0.022 0.93 0.805 0.807 0.024 0.025 0.94
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Table 5.14: The averages and standard deviations (SD) of 500 estimates, the boot-
strap standard errors (BSE), and the empirical coverage probabilities (CP) under
totally independent censoring with c.r. = 50%

n tq βt β̂t SD BSE CP θt(βt) θ̂t(β̂t) SD BSE CP
t0.3 0.679 0.708 0.063 0.057 0.936 0.817 0.811 0.040 0.039 0.964

250 t0.5 0.637 0.662 0.054 0.054 0.916 0.803 0.792 0.042 0.040 0.958
t0.7 0.602 0.627 0.052 0.054 0.922 0.805 0.792 0.046 0.045 0.962

t0.3 0.679 0.690 0.037 0.038 0.952 0.817 0.812 0.028 0.027 0.958
500 t0.5 0.637 0.649 0.031 0.034 0.944 0.803 0.796 0.029 0.028 0.940

t0.7 0.602 0.614 0.028 0.033 0.928 0.805 0.794 0.032 0.032 0.932

n tq βt β̃t SD BSE CP θt(βt) θ̃t(β̃t) SD BSE CP
t0.3 0.679 0.686 0.051 0.053 0.966 0.817 0.823 0.037 0.036 0.924

250 t0.5 0.637 0.643 0.040 0.046 0.962 0.803 0.808 0.037 0.037 0.934
t0.7 0.602 0.607 0.040 0.043 0.954 0.805 0.814 0.041 0.041 0.914

t0.3 0.679 0.681 0.035 0.036 0.970 0.817 0.820 0.026 0.026 0.932
500 t0.5 0.637 0.638 0.026 0.030 0.970 0.803 0.807 0.028 0.026 0.922

t0.7 0.602 0.605 0.025 0.027 0.958 0.805 0.809 0.030 0.030 0.934
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Table 5.15: The averages and standard deviations (SD) of 500 estimates, the boot-
strap standard errors (BSE), and the empirical coverage probabilities (CP) under
marker-dependent censoring with c.r. = 30%

n tq βt β̂t SD BSE CP θt(βt) θ̂t(β̂t) SD BSE CP
t0.3 0.679 0.692 0.054 0.054 0.95 0.817 0.811 0.037 0.037 0.96

250 t0.5 0.637 0.645 0.047 0.045 0.96 0.803 0.796 0.037 0.036 0.96
t0.7 0.602 0.610 0.042 0.042 0.95 0.805 0.799 0.041 0.039 0.95

t0.3 0.679 0.687 0.037 0.037 0.97 0.817 0.813 0.027 0.026 0.96
500 t0.5 0.637 0.643 0.030 0.030 0.94 0.803 0.799 0.028 0.026 0.95

t0.7 0.602 0.605 0.026 0.027 0.96 0.805 0.800 0.029 0.029 0.96

n tq βt β̃t SD BSE CP θt(βt) θ̃t(β̃t) SD BSE CP
t0.3 0.679 0.688 0.045 0.048 0.97 0.817 0.833 0.030 0.032 0.89

250 t0.5 0.637 0.644 0.034 0.039 0.96 0.803 0.818 0.031 0.031 0.88
t0.7 0.602 0.609 0.032 0.035 0.96 0.805 0.819 0.034 0.033 0.90

t0.3 0.681 0.687 0.031 0.033 0.95 0.817 0.833 0.022 0.023 0.86
500 t0.5 0.638 0.643 0.024 0.026 0.95 0.803 0.817 0.022 0.022 0.88

t0.7 0.605 0.607 0.020 0.023 0.96 0.805 0.819 0.024 0.024 0.87
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Table 5.16: The averages and standard deviations (SD) of 500 estimates, the boot-
strap standard errors (BSE), and the empirical coverage probabilities (CP) under
marker-dependent censoring with c.r. = 50%

n tq βt β̂t SD BSE CP θt(βt) θ̂t(β̂t) SD BSE CP
t0.3 0.679 0.704 0.075 0.065 0.936 0.817 0.805 0.047 0.045 0.964

250 t0.5 0.637 0.658 0.068 0.060 0.922 0.803 0.790 0.047 0.043 0.952
t0.7 0.602 0.619 0.057 0.057 0.928 0.806 0.790 0.049 0.047 0.958

t0.3 0.679 0.697 0.051 0.044 0.934 0.817 0.808 0.035 0.032 0.942
500 t0.5 0.637 0.648 0.041 0.039 0.920 0.803 0.795 0.036 0.032 0.926

t0.7 0.602 0.611 0.037 0.036 0.938 0.805 0.797 0.039 0.034 0.930

n tq βt β̃t SD BSE CP θt(βt) θ̃t(β̃t) SD BSE CP
t0.3 0.679 0.691 0.057 0.055 0.964 0.817 0.842 0.036 0.036 0.822

250 t0.5 0.637 0.645 0.044 0.046 0.948 0.803 0.827 0.036 0.035 0.816
t0.7 0.602 0.612 0.037 0.042 0.966 0.806 0.827 0.037 0.037 0.874

t0.3 0.681 0.690 0.038 0.038 0.962 0.817 0.841 0.026 0.026 0.804
500 t0.5 0.638 0.645 0.028 0.031 0.968 0.803 0.824 0.026 0.025 0.798

t0.7 0.605 0.609 0.025 0.027 0.944 0.805 0.825 0.027 0.027 0.836
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Figure 5.1: The estimated time-dependent PAUCs (solid curve) with the correspond-
ing 0.95 pointwise (dotted curve) and simultaneous confidence bands (dashed curve)
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Figure 5.2: The estimated curves for the difference of the time-dependent PAUCs
between non-therapy and therapy patients (solid curve) with the corresponding 0.95
pointwise (dotted curve) and simultaneous confidence bands (dashed curve)
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Figure 5.3: The estimated coefficient and time-dependent AUC curves (solid curve)
with the corresponding 0.95 pointwise (dotted curve) and simultaneous confidence
bands (dashed curve)
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Figure 5.4: The estimated time-dependent AUCs (solid curve) under totally indepen-
dent censoring with the corresponding 0.95 pointwise (dotted curve) and simultaneous
(dashed curve) confidence bands
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Figure 5.5: The estimated time-dependent AUCs (solid curve) under marker-
dependent censoring with the corresponding 0.95 pointwise (dotted curve) and si-
multaneous (dashed curve) confidence bands
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Table 5.17: The estimates of the coefficients in the linear predictor tHcy +βt2CRP +
βt3SAA + βt4IL-6 (95% bootstrap confidence intervals) at the selected time points

Days β̂t2 β̂t3 β̂t4

300 -0.25 ( -1.64 , 1.69 ) 0.22 ( -0.41 , 1.04 ) -0.31 ( -1.51 , 3.45 )
500 -0.16 ( -1.54 , 0.32 ) 0.27 ( -0.45 , 1.60 ) -0.33 ( -1.23 , 3.13 )
1000 -0.38 ( -2.40 , 0.02 ) 0.23 ( -0.39 , 1.63 ) 0.51 ( -0.84 , 6.96 )
1500 -1.32 ( -4.72 , 0.04 ) 0.27 ( -0.77 , 1.76 ) 4.76 ( 0.11 , 15.95 )
2000 -1.79 ( -5.67 , -0.43 ) 1.17 ( 0.01 , 3.13 ) 4.29 ( -0.51 , 14.49 )
2500 -2.32 ( -6.62 , -0.60 ) 0.44 ( -0.43 , 2.64 ) 9.74 ( 1.11 , 26.09 )
3000 -4.31 ( -8.67 , -1.00 ) 1.81 ( -0.16 , 4.01 ) 14.43 ( 2.42 , 29.73 )
3500 -1.70 ( -6.02 , -0.50 ) 0.24 ( -0.49 , 2.42 ) 6.84 ( 1.22 , 22.52 )

Days β̃t2 β̃t3 β̃t4

300 -0.25 ( -2.01 , 0.17 ) 0.22 ( -0.55 , 1.50 ) -0.31 ( -1.51 , 4.50 )
500 -0.16 ( -1.98 , 0.46 ) 0.27 ( -0.20 , 2.16 ) -0.33 ( -1.45 , 4.11 )
1000 -0.42 ( -2.54 , -0.04 ) 0.29 ( -0.26 , 2.00 ) 0.36 ( -0.84 , 6.81 )
1500 -0.76 ( -4.50 , -0.08 ) 0.15 ( -0.53 , 2.07 ) 3.11 ( -0.12 , 16.09 )
2000 -1.51 ( -4.89 , -0.35 ) 1.17 ( 0.09 , 3.13 ) 3.69 ( -0.51 , 11.73 )
2500 -2.60 ( -6.92 , -0.52 ) 1.34 ( -0.26 , 3.52 ) 8.99 ( 1.04 , 25.26 )
3000 -2.87 ( -7.19 , -1.03 ) 1.49 ( -0.08 , 3.69 ) 9.78 ( 1.98 , 26.05 )
3500 -1.14 ( -5.36 , -0.18 ) 0.20 ( -1.01 , 2.15 ) 3.84 ( -0.51 , 17.94 )
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Table 5.18: Estimates of θ
(CRP)
t , θ

(SAA)
t , θ

(IL-6)
t , θ

(tHcy)
t , and θt(βt) at the selected time

points

Days θ̂
(CRP)
t θ̂

(SAA)
t θ̂

(IL-6)
t θ̂

(tHcy)
t θ̂t(β̂t) θ̂t(β̄t)

300 0.638 0.629 0.653 0.730 0.777 0.738
500 0.616 0.645 0.653 0.734 0.764 0.732
1000 0.598 0.618 0.666 0.719 0.752 0.745
1500 0.605 0.592 0.681 0.683 0.737 0.732
2000 0.596 0.620 0.668 0.666 0.733 0.725
2500 0.596 0.609 0.663 0.627 0.697 0.684
3000 0.596 0.623 0.678 0.634 0.707 0.695
3500 0.576 0.589 0.634 0.642 0.680 0.675

Days θ̃
(CRP)
t θ̃

(SAA)
t θ̃

(IL-6)
t θ̃

(tHcy)
t θ̃t(β̃t) θ̃t(β̄t)

300 0.640 0.641 0.663 0.730 0.779 0.739
500 0.623 0.652 0.659 0.733 0.768 0.735
1000 0.606 0.627 0.672 0.724 0.760 0.751
1500 0.611 0.601 0.687 0.690 0.744 0.742
2000 0.595 0.626 0.673 0.673 0.745 0.737
2500 0.598 0.616 0.672 0.633 0.708 0.697
3000 0.599 0.630 0.687 0.636 0.724 0.711
3500 0.523 0.550 0.597 0.635 0.675 0.668



Chapter 6

Discussion

6.1 Concluding Remarks

Based on censored survival data, a unified approach to make inference about the time-

dependent AUC and PAUC is developed. We express these accuracy measures as a

functional of the joint survival function S(t, y) and simplify the estimation problem.

Under different types of censoring mechanisms, two easily computed nonparametric

estimators are proposed with rigorously established asymptotic Gaussian processes.

Together with the directly estimated variance-covariance functions and the asymp-

totic i.i.d. representations, statistical inferences about the time-dependent AUC and

PAUC are constructed. Provided S(t, y) is estimable, our estimation procedures can

also be successfully applied to data with various truncation and/or censoring mech-

anisms. As mentioned in the paper of Cai et al. (2006), the cases and controls con-

sidered for the time-dependent ROC analysis are more suitably defined as {T = t}
and {T > τ} (or {T > t}), respectively, in some applications such as the breast

cancer study, where τ is a pre-specified time point or the end of study. The proposed

methods can be naturally extended to these settings with a slight modification. This

extension is reasonable at least in the case with discrete failure time.

Since the performance of a biomarker might be influenced by possible risk fac-

tors, an appropriate regression model for the time-dependent AUC is usually used to
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delve into their relationship. Another important issue arises when multiple biomark-

ers are available as we have encountered in the Angiography CAD Study. It is desire

to seek combinations of CRP, SAA, IL-6, and tHcy to achieve higher classification

abilities at different time points. Our proposed nonparametric estimation method

for the time-dependent AUC can be applied to these two topics. For the regression

model of the time-dependent AUC, we are motivated by spirit of the estimator θ̃t(q̃1t)

to develop estimating equations for the parameters of interest. Under the validity

of a time-varying coefficient EGLM with unspecified link function Gt(·), the non-

parametric estimation procedures for the optimal composite biomarkers are obtained

via maximizing the modified time-dependent AUC quantities. The predictor β̂T
t Y is

found to be appropriate in predicting the vital statuses of subjects in the numerical

studies, while the predictor β̃T
t Y is shown to be suitable even if the censoring time

is highly correlated with the baseline markers. We also provide estimation methods

for the corresponding accuracy measures ROCt(βt) and θt(βt) of βT
t Y . As we can see

the time-varying coefficient EGLM is very flexible and contains many practical used

models as special cases such as the Cox’s proportional hazards model, the GAFT

model, and the time-varying coefficient logistic regression model. Our methods can

also be used to diagnose the appropriateness of model specification. The rationale

behind this fact is that the estimated time-dependent AUC based on a specific model

should be close to that based on our nonparametric estimators if the model is correctly

specified.

When the assumption of marker-dependent censorship is valid, it is usually un-

avoidable to use smoothing techniques which will complicate the development of

the corresponding inference. Obviously, this can be seen in the issue of combining

biomarkers where a higher order kernel function is required to ensure
√

n-consistency.

When the number of biomarkers is large, the curse of dimensionality will be encoun-

tered and the estimation will become more unstable. It is evidenced by our limited

simulation studies that the estimators proposed under totally independent censorship

are robust toward the violation of marker-dependent censorship. In applications, they
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have the advantage that no smoothing technique is involved. Thus, we suggest to use

and compare both methods even the behavior of censoring is believed to be highly

correlated with biomarkers.

6.2 Future Works

6.2.1 Multiple Biomarker Comparison

The time-dependent ROC curve as well as its summary measures are usually used

to evaluate the classification abilities of biomarkers. As shown in the analysis of

ACTG 175 study in Chapter 5, our proposed methodologies can be extended to

compare the corresponding time-dependent AUCs and PAUCs of several biomarkers.

On the other hand, different accuracy measures might be more preferable in the

assessment. Provided a subject being diagnose to be disease at the current stage, a

scientific question might be raised concerning the probability that the subject is really

diseased in the future. Thus, the prediction ability is more relevant to the end user or

subject being diagnosed. Two measure indices are widely applied in the assessment:

the time-dependent positive predictive value PPVt(q) = P (T ≤ t|FY (Y ) > q) and

the time-dependent negative predictive value NPVt(q) = P (T > t|FY (Y ) ≤ q) with

FY (y) = P (Y ≤ y) (Zheng et al. (2008)), display the prediction accuracy at various

quantile value q. One can observe that the higher the curves, the better the biomarker

in prediction. The given condition {FY (Y ) > q} and {FY (Y ) ≤ q} represent ”predict

100(1 − q)% of subjects to be diseased” and ”predict 100q% of subjects to be non-

diseased”, respectively. The purpose of using FY (y) in the definitions is mainly to

facilitate biomarkers with different measurement scales to have the same base of

comparison, i.e., the same q. Interestingly, we can derive that

PPVt(q) = 1 − ST (t) − (1 − q) · NPVt(q)

q
, (6.1)

which is a monotone function of NPVt(q) for any fixed q. It’s further implied from

this fact that we only need to consider PPVt(q) in the comparison of prediction
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abilities. Same with the role of the AUC in the time-dependent ROC curve analysis,

the quantity
∫ 1

0
PPVt(q)dq can be used as a summary measure of prediction ability.

Let the biomarker Y (k) have the corresponding TPR
(k)
t (y), FPR

(k)
t (y), and PPV

(k)
t (q),

k = 1, 2. Recall that we adopt that measure γα(t) in 5.2.1 to compare the classification

abilities. As to the case of assessing prediction abilities, the quantity

μ(t) =

∫ 1

0

{PPV
(1)
t (q) − PPV

(2)
t (q)}dq (6.2)

provides useful information. The positive (negative) value of γα(t) or μ(t) then in-

dicate the superiority (inferiority) of Y (1) is classification or prediction. Just like we

have discussed the insensitivity of the AUC in Chapter 2, two total different biomark-

ers may result in μ(t) = 0. The more sensitive summary measures of the difference

between Y (1) and Y (2) are the area between the curves (ABC), which are defined as

ABCROC(t) =

∫ ∞

−∞
|TPR

(1)
t (FPR

(1)−1
t (u)) − TPR

(2)
t (FPR

(2)−1
t (u))|du (6.3)

and

ABCPPV (t) =

∫ 1

0

|PPV
(1)
t (q) − PPV

(2)
t (q)|dq. (6.4)

The magnitude of difference between Y (1) and Y (2) in classification (prediction) abil-

ities is then reflected by the distance of ABCROC(t) (ABCPPV (t)) and zero.

In some empirical examples such as the paired-design experiment in clinical trial

where each subject undergoes both diagnostic tests, data of the form {Xi, δi, Y
(1)
i , Y

(2)
i }n

i=1

are often collected. The scientific interests usually focus on the comparison of the

performances between Y (1) and Y (2). We can re-expressed the aforementioned sum-

mary measures as functionals of S(1)(t, y) = P (T > t, Y (1) > y) and S(2)(t, y) =

P (T > t, Y (2) > y). Under the totally independent censoring (C and (T, Y (1), Y (2))

are independent), the proposed estimation criterion can be naturally applied to make

statistical inferences about these quantities directly because S(1)(t, y) and S(2)(t, y)

can be marginally estimated by {Xi, δi, Y
(1)
i }n

i=1 and {Xi, δi, Y
(2)
i }n

i=1. As an illustra-

tive example in the CAD study, the censoring mechanism might relate to the baseline
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biomarkers. The assumptions of marker-dependent censorship made separately on

(T, C, Y (1)) and (T, C, Y (2)) are clearly inappropriate. Under a more flexible marker-

dependent censoring assumption (T and C are independent conditioning on Y (1) and

Y (2)), the estimators used for S(1)(t, y) and S(2)(t, y) in this article need to be further

modified. To circumvent this difficulty, Akritas (1994) suggested using

Ŝ(t, y1, y2) =
1

n

n∑
i=1

Ŝ(t|Y (1)
i , Y

(2)
i )I(Y

(1)
i > y1, Y

(2)
i > y2), (6.5)

to estimate S(t, y1, y2) = P (T > t, Y (1) > y1, Y
(2) > y2), where Ŝ(t|y1, y2) is a

smoothing estimator of P (T > t|Y (1) = y1, Y
(2) = y2) (cf. Beran (1981)). Thus,

S(1)(t, y) and S(2)(t, y) can be separately estimated by Ŝ(t, y,−∞) and Ŝ(t,−∞, y).

It is worthwhile to investigate the related comparison procedures in the future study.

6.2.2 Optimality in Classification and Prediction

It is found in our recent research that the problem of prediction power can be equiv-

alently transformed into that of classification ability. More precisely speaking, we

obtain that a biomarker with the highest time-dependent ROC curve will possess

the largest PPVt(q) and, hence, NPVt(q) for any q, and vice versa. One interesting

topic arises in whether we can find another estimation procedure for the parameter of

the optimal composite biomarker. Instead of maximizing the time-dependent AUC,

we seek the optimal markers that maximizes the area under the curve of PPVt(q).

Although it can be concluded that these criteria are the same from the above argu-

ments, the obtained estimators of optimal composite biomarkers might be different.

The gain and loss of these estimators will be promised to be deeply studied in future.

As we have discussed in Chapter 2, the AUC is an overall evaluation and some

useful information may not be captured. To significantly improve the classification

accuracy, an alternative strategy is to find an optimal combination in the sense that

the time-dependent true positive rate is maximized at the same value of false positive

rate. The optimization can be also achieved via maximizing the time-dependent

PAUC of composite biomarker. According to the research purposes, our proposed



79

estimators for the time-dependent PAUC, TPRt(c, β), and FPRt(c, β) can be naturally

generalized to this issue and should be investigated.

6.2.3 Partly Conditional Time-Dependent AUC

Throughout this thesis, we only focus on the classification ability of a baseline biomarker

for time-dependent vital status. When the considered biomarker has an underly-

ing continuous-time stochastic process {Y (s) : s ∈ [0, τ ]}, the succeeding measured

biomarker might be more predictive than the baseline one. Thus, we can consider a

more flexible partly conditional partly conditional AUC to characterize the updated

information in classifying the binary vital status, which is formulated as

θst = P (Yi(s) > Yj(s)|s < Ti ≤ t, Tj > t) for i �= j, 0 < s < t.

In some applications such as the ACTG 175 study, a test result might be intermit-

tently collected at multiple follow-up times. Based on the censored survival data

{Xi, δi, Yi(si1), · · · , Yi(sini
)}n

i=1 with sij’s being longitudinal measurement times, the

corresponding statistical inference procedure for θst remains to be established in fu-

ture studies. Again, when the time-dependent or time-independent covariates Z(s)

are considered as possible risk factors on the performance of Y (s), the covariate-

specific time-dependent AUC

θst(Zi, Zj) = P (Yi(s) > Yj(s)|s < Ti ≤ t, Tj > t, Zi(s), Zj(s)) for 0 < s < t,

can be appropriately modeled by the the time-varying coefficient regression model

θst(Zi, Zj) = h(γstZij(s)),

where h is a response function and Zij(s) is a function of Zi(s) and Zj(s). Similar to

the discussion in Chapter 3, the estimating equations for γst can be constructed from

the estimation method for θst.
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