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Abstract

To evaluate the performance of test results in early detection of disease,
the receiver operating characteristic (ROC) curves are widely used.
The area under the ROC curve (AUC) and the partial area under the
ROC curve (PAUC) are the most popular summary measures for its
generality and ease of probability interpretation. In applications, data
with the binary time-varying disease status are frequently encountered.
The cases and controls in the ROC analysis are more suitable defined
over time. A major challenge in dealing this issue is that the failure
status of some individuals might not be available due to censoring. To
further increase classification ability of multiple biomarkers, research
interests usually focus on seeking combinations of these biomarkers with
the highest ROC curve.

In contrast to the existing methods, we propose nonparametric es-
timators for the time-dependent AUC and PAUC with explicit expres-
sions and a rigorous theoretical development for these methods. More-
over, we use a generalized linear model with time-varying coefficients to

characterize the time-dependent AUC as a function of covariate values.
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For the parameter functions and the related classification accuracies,
the estimation and inference procedures are also proposed. Under the
validity of an extended generalized linear model (EGLM) with time-
varying coefficients and an unknown link function for the conditional
survival distribution, two nonparametric procedures are proposed to
estimate the optimal composite markers based on the estimation pro-
cedures of the time-dependent AUC. Two empirical examples from the
AIDS Clinical Trials Group (ACTG) 175 study and the Angiography
Coronary Artery Disease (CAD) study are used to illustrate the use-
fulness of our methods. Finally, some concluding remarks and further

research topics of interests are devoted in this thesis.

Key words and phrases: AUC, classification, disease-status, opti-
mal composite biomarker, prediction, ROC, survival time
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Chapter 1

Introduction

1.1 The ROC Curve Analysis

Decision-making is an important issue in many fields such as psychology, radiology,
medicine, etc. For example, in clinical preventive medicine preoperative diagnos-
tic tests are medically necessary and implemented to determine those patients for
whom surgery is beneficial. For the sake of cost-saving or performance improve-
ment, new diagnostic tests are often introduced and the classification accuracies of
them are evaluated and compared with the existing ones. The decision is usually
to classify a subject to be diseased or underwent operation if the test result Y is
greater than a threshold value y. In practice, two conditional probabilities are ap-
plied to evaluate the performance of such classification criterion: the true positive
rate (sensitivity) TPR(y) = P(Y > y|D = 1) and the false positive rate (1-specificity)
FPR(y) = P(Y > y|D = 0) with D being the binary disease status where D = 1 in-
dicates diseased and D = 0 otherwise. Although a good classifier should possess high
TPR(y) and low FPR(y), it is observed that both measures are decreasing functions of
y. The trade-off between TPR(y) and FPR(y) then become crucial in the assessment.
The ROC curve, a graph of (FPR(y), TPR(y)) points, is widely used to display the
relationship between TPR(y) and FPR(y). A merit to favor the ROC curve is that

the choice of possible value y may depend on different research purposes and related



cost. Without cosidering a specific threshold value, the ROC curve shows the inher-
ent classification capability of a biomarker. Interestingly, the test result Y and any
strictly increasing transformation ¢g(Y’) have the same ROC curve. This invariance
characteristic of the ROC curve in measurement scale further provides a suitable base
to compare different biomarkers. Geomerically, the more the curve moves toward the
point (0, 1) the better a biomarker performs, while a straight line pass through (0, 0)
and (1,1) indicates a useless one.

In applications, one of the most popular overall performance measures is the area
under the ROC curve (AUC). It has the probability explanation that the considered
marker of a randomly selected diseased case is greater than that of a non-diseased
one, ie., P(Y; > Y;|D; = 1,D; = 0). Obviously, a perfect marker will have the
AUC value 1 while a poor one takes a value close to 0.5. What is the value of the
AUC should a good or acceptable marker possess? The standard is quite different
and might depend on different research purposes. A biomarker with the AUC value
greater than 0.75 is regarded as being indicative of disease in medical practice. In
emergency medicine, however, a useful diagnostic test should have the AUC value at
least 0.9. Since the AUC is an overall evaluation, relevant information might not be
entirely captured in some cases. For example, two crossed ROC curves might have the
same AUC but totally different performances. It is more reasonable to evaluate the
performance of a biomarker over the practically acceptable portion of the ROC curve
only. The partial AUC (PAUC) for FPR over the relevant interval was adopted by
McClish (1989) as the summary measure. Jian, Metz, and Nishikawa (1996) argued
that women with false-negative findings at mammography cannot be benefited from
timely treatment of the cancer and, hence, suggested using the PAUC with restricted
true positive range in their applied data. As mentioned by Dwyer (1997), the PAUC
is a regional analysis of the ROC curve intermediate between the AUC and individual
points on the ROC curve. In view of these points, it is more useful to consider the

PAUC as alternative summary measure due to its sensitivity and flexibility. The
PAUC with FPR(y) < «, a € (0,1], of a perfect biomarker should be « while a



useless one is 0.5a2. Similar to the probability explanation of AUC, the PAUC can
be explained as the probability that the test result of a case is higher than that of
a control with its value exceeding the corresponding (1 — «)th quantile value, i.e.,
P(Y; >Y; > q|D; = 1,D; = 0),i # j, where ¢ satisfying P(Y > ¢|D = 0) = a.
Several estimation and inference procedures have been proposed by Emir, Wieand,
Jung, and Ying (2000), Zhang, Zhou, Freeman, and Freeman (2002), and Dodd and
Pepe (2003), among others. Since the AUC is a special case of the PAUC and all the
inference procedures developed for the PAUC can be reduced to that for the AUC.
A more thorough understanding of the ROC and the related measures can also be

found in Zhou, McClish, and Obuchowski (2002) and Pepe (2003).

1.2 Motivating Examples

Two empirical examples are illustrated in this section to provide some perspectives
that are not considered in the traditional ROC methodologies. As we will see in
these studies that the disease status is induced from the time of a specific event,
which is different from the traditional one. It motivates the development of novel

methodologies in this thesis.

1.2.1 Angiography Coronary Artery Disease (CAD) Study

The first considered data were obtained from the British Columbia Vital Statistics
database which has been analyzed by Lee, et al. (2006). A total of 1050 patients were
recruited between 1993 and 1995 from two Vancouver teaching hospitals for selective
coronary angiography. The blood of each recruited patient was taken and frozen to
store. In 2002, the blood samples were thawed and the plasma biomarkers of CRP,
SAA, IL-6, and tHcy were recorded. The disease time of patients were collected in
2004 and 95 patients were found to die by CAD during the study period. The aim
of this study is mainly to seek the best plasma biomarker in classifying patient’s

CAD-related death status. The analysis results of Lee, et al. (2006) indicated that



the elevated levels of 11.-6 and tHcy are superior than those of CRP and SAA. The
authors concluded that the AUC of IL-6 is significantly higher than the others.

1.2.2 AIDS Clinical Trials Group (ACTG) 175 Study

In the ACTG 175 study, a total of 2467 HIV-1-infected patients, whose CD4 cell
counts ranged from 200 to 500 cells cu/mm, were recruited between December 1991
and October 1992. Among these patients, 1395 patients received the prior antiretrovi-
ral therapy while the rest 1072 patients did not. During the study period, 308 patients
died of all causes or were diagnosed with AIDS. In contrast to the CAD study, the
biomarker CD4 cell counts were intermittently collected within the study period.
These longitudinal measured biomarkers will provide updated information about the
disease progress. Full details of the design, medical implication, and methods of this

study can be found in Hammer et al. (1996).

1.3 Time-Dependent Monitoring Rule

Recent research in ROC methodology has extended the binary disease status D to the
time-dependent setting where the time-dependent disease status is defined through
the failure time of a specific event. This generalization further provide the time-
evolution effect in classification. In the CAD study, the disease status is induced
from the CAD-related death time in which a patient is treated as a case if he/she
died by CAD before the time point of interest. In the same manner, the time to
AIDS in the ACTG 175 study is used to define the disease status. To simplify the
succeeding presentation, the failure time of a specific event is denoted by T. For
any fixed time point ¢, the time-dependent disease status is classified as a case if
{T < t} and a control otherwise. Based on the time-dependent setting, Heagerty,
Lumley, and Pepe (2000) first generalized the traditional TPR(y) and FPR(y) to
TPR:(y) = P(Y > y|T < t) and FPR,(y) = P(Y > y|T > t), respectively. The
time-dependent ROC, AUC, and PAUC are naturally derived and can be applied to



evaluate the performance of Y in classifying {T" < ¢} and {T" > t}.

Instead of using a single biomarker, an appropriate combination of multiple ones
will improve the accuracy in classifying subject’s vital status. As shown in the CAD
study the time-dependent AUCs of CRP, SAA, IL-6, and tHcy are not high enough.
It is desirable to seek an optimal composite biomarker of them that can improve
classification accuracy and possesses the highest time-dependent ROC curve at each
time point. As to the ACTG 175 study, it has been well known that CD4 cell counts
are highly correlated with AIDS. A further scientific question is to investigate the
effects of other risk factors Z such as the baseline therapy status on the performance
of the biomarker. For instance, does CD4 biomarker performs better for patients with
prior antiretroviral therapy. The covariate-specific time-dependent AUC denoted by
0.(Z;, Z;) = P(Y; > Y;|T; < t,T; > t, Z;, Z;) provides useful information to assess
whether the prior therapy can enhance the classification ability of CD4 cell counts.
Full understanding of this quantity could help searching suitable subpopulation where
the biomarker performs well. A generalized linear regression model for 6,(Z;, Z;) was

usually considered in the research to account for the heterogeneity arising from 7.

1.4 Existing Methods for Time-Dependent Vital
Status

By applying the Baye’s rule, Heagerty, Lumley, and Pepe (2000) proposed nonpara-
metric estimators for TPR;(y) and FPR(y) under different censoring mechanisms.
These authors also suggested to estimate the time-dependent AUC and PAUC via
calculating the relevant trapezoidal area under the estimated time-dependent ROC
curve. In contrast to the numerical integration technique, Chambless and Diao (2006)
developed the recursive estimators for TPR;(y), FPR;(y), and the time-dependent
AUC. Their recursive estimators can, however, only provide estimates on the ob-
served failure times while practical research might be interested in the estimation of

the time-dependent AUC at a pre-specified time point ¢. For direct estimation of



the time-dependent PAUC, there is no study in the literatures concerning this topic
currently. To investigate the effects of the covariates on the performance of a test
result, Cai et al. (2006) proposed a class of semiparametric regression models for the
time-dependent true and false positive rates. The covariate-specific time-dependent
AUC is then computed numerically while the effects of Z on 6,(Z;, Z;) can not be
well explained. In view of this point, a model for the relationship between covariates
and the AUC becomes necessary. Under the time-invariant disease status, Dodd and
Pepe (2003) proposed a semiparametric regression model for the covariate-specific
AUC P(Y; > Y;|D; = 1,D; = 0,Z;,Z;) and develop the corresponding estimation
procedure for the parameters of interest. So far, there is still no statistical method
for the covariate-specific time-dependent AUC.

As to the problem of seeking an optimal combination of multiple biomarkers Y =
(Y1,---,Y},), existing methods mainly rely on appropriately modeling the relationship
between T" and Y. Provided P(T < t|Y = y) is an increasing function of g,(y) for any
fixed t, the transformation g;(Y") is derived to be the optimal composite biomarker in
the sense that no other function of Y can have a higher time-dependent ROC curve.
Research interest usually focuses on the estimation of such optimal transformation
g:(+). In applications, a Cox’s proportional hazards model A(t|y) = \o(t) exp(57y),
where \o(t) is the baseline hazard function and 8 = (8, -+, 3,)7 is the effects of Y on
the hazard rate, is widely used to find an optimal classifier. It is straightforwardly to
see that ¢;(Y) = 7Y in such model and 3 can be estimated by the partial likelihood
estimation procedure. A more flexible model which also implies ¢;(Y) = 7Y is
the generalized accelerated failure time (GAFT) model h(T) = —87Y + e. Here
h(-) is an unknown and increasing link function and e represents a random error
with unknown distribution. To estimate 3, Khan and Tamer (2007) and Song, Ma,
Huang, and Zhou (2007) have proposed the partial rank (PR) estimator and the
smoothed PR estimator, respectively. One merit of the PR estimation method is to
handle marker-dependent censorship, which is more acceptable in practice. Without

involving the censoring distribution in the estimation, Cai and Cheng (2008) provided



a more robust nonparametric estimator for 3 at the expense of assuming totally
independent censorship. To incorporate the time influence nature of Y in classifying
{T <t} and {T" > t}, Zheng, Cai, and Feng (2006) considered the logistic regression
model P(T < t|y) = exp(a; + 8L y)/{1+exp(a; + Bly)} with time-varying coefficient
Bi = (B, -+, Bip)’. These authors showed that ¢,(Y) = 8]'Y and applied the inverse
probability weighting (IPW) technique to estimate (3;. Without further modeling
of the censoring distribution, Chiang and Huang (2008) considered an imputation

method to estimate the optimal composite biomarkers.

1.5 Main Contributions

With censored survival data, traditional methodologies for the ROC curve and the
related summary indices cannot be applied directly. The first aim of this thesis is to
propose some estimation procedures for the time-dependent AUC and PAUC under
different censoring mechanisms. In Chapter 2 we find that the time-dependent PAUC
can be expressed as a functional of S(t,y) = P(T > t,Y > y), i.e., the joint survival
function of T"and Y. By substituting reasonable estimators for S(¢,y), a class of non-
parametric estimators are derived. In contrast to the methods of Heagerty, Lumley,
and Pepe (2000) and Chambless and Diao (2006), our estimators are easily computed
without involving very complicated numerical calculation. As one can see that there
is no explicit expressions for their estimators which might be difficult to develop
the corresponding asymptotic properties. All of these authors suggested using the
time-consuming bootstrap method to make statistical inferences. By applying the
functional Delta method, our estimators are shown to converge weakly to Gaussian
processes with estimated variance-covariance functions. The developed properties
further facilitate us to construct the approximated pointwise and simultaneous con-
fidence bands for the time-dependent AUC and PAUC.

In Chapter 3, we consider the generalized linear regression model

0:(Zi, Z;) = h(~v/ Zi;) (1.1)



with time-varying coefficient v; = (741, -+, )" to model the relationship between
the time-dependent AUC and covariates Z, where h(-) is a known smooth response
function and Z;; is a p x 1 vector function of Z; and Z;. When data are completely
observed, the method of Dodd and Pepe (2003) can be applied by simply replacing the
binary disease status D by the time-dependent one I(7T < t). With the appearance of
censoring, their method might lead to biased estimates without handling unavailable
vital status. By generalizing the proposed nonparametric estimator for the time-
dependent AUC, we develop an estimating equation for the parameter ; in this
thesis. The large sample properties for the estimators of v, and 6,(Z;, Z;) are also
derived to form the basis of statistical inferences.

The issue of combining biomarkers to achieve higher classification ability is studied
in Chapter 4. It can be seen that the usefulness of the existing methods mainly rely
on the appropriate specification for the working model. Under the validity of well
behaved model for failure time, the linear combination of biomarkers is optimal in
classifying the vital status over time. Robust estimation procedure is required in

practice with less restrictive model assumption. A more flexible extended generalized
linear model (EGLM)

P(T <tlY =y) = G(By) (1.2)

is used to characterize the relationship between T" and Y, where 8, = (B4, , Bip)?
is the p-variate time-varying parameter of interest and G(-) is an unknown strictly
increasing function which may also depended on t. It is ensured from the increasing
property of Gy(+) that 87'Y is the optimal composite biomarker at time ¢. The flexibil-
ity of (1.2) can be seen that all the aforementioned models such as the GAFT model
and the time-varying coefficient logistic regression model are special cases. Based
on the EGLM, we propose estimating equations for ; via maximizing the estimated
time-dependent AUC quantities under different censoring mechanisms. Interestingly,
the root-n consistency for estimators of 3; can be verified even if G,(-) is treated as a
nuisance parameter. Moreover, estimators for the time-dependent ROC curve and re-

lated summary measures of the optimal composite biomarker 3/'Y are also proposed



by applying the estimation methods in Chapter 2 with little modifications.



Chapter 2

Time-Dependent AUC and PAUC

As mentioned in Chapter 1, there is still no rigorous inference procedure for the time-
dependent AUC and PAUC. Consider the censored survival data {X;,d;, Y;}7; with
X; being the minimum of failure time 7; and censoring time C;, §; = I(X; = T;)
denoting the censoring status, and Y; being the biomarker of the ith subject. The
aim of my research in this chapter is to propose easily computed nonparametric
estimators for these classification accuracies and the related inference procedures.
Here, we focus on the time-dependent PAUC 6;(qn:) with FPR,(y) < «, where
Got = FPR; (o) = inf{y : FPR,(y) < a} is the (1 — a)th quantile of Y conditioning
on {T" >t} at a fixed time point ¢. The reason for this is because the time-dependent
PAUC with restricted TPR;(y) can be derived in the same manner by reversing the
roles of cases and controls. In addition, the time-dependent AUC can be treated as
a special case of 0;(q.) by setting @ = 1. We show that the estimation procedures
for 6:(q.t) are mainly based on nonparametric estimators of S(¢,y). The asymp-
totic Gaussian processes of the proposed estimators and the corresponding estimated

variance-covariance functions facilitate the construction of inference procedures.

10
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2.1 Nonparametric Estimation

From the geometric display of relevant {F'PR;(y), TPR:(y)} points in the marker
space, 0;(gat) has the form — [ TPRy(y)I(FPRy(y) < a)d,FPR(y). Moreover, the
conditional probabilities F'PR;(y) and T PR;(y) can be expressed as a functional of

S(t,y):

FPRy(y) = 75(75 s and TPRy(y) = 1= S(t —00) (2.1)
It is straightforward to derive that
S(t,u)) (> qor)duS(t,
br(gur) = 45 (8, )Tt 2 gat)duS(, u) (2.2)

In view of (2.2), the estimation problem of 6;(q,:) obviously becomes that of S(¢,y).
Under totally independent censoring (C' is independent of (7),Y")), which is an
appropriate assumption for the Type I censoring, two estimators

~ PLIX > 0Y = i 01 (Xi > 1Y,

S(C)(t,y) — Zz:l ( ~> ) > y) and S(B)(t,y) — Zz_l <~ > > y) (23)
for S(t,y) are proposed by Campbell (1981) and Burke (1988), respectively. The
Sc(t) and Sx(t) = n! Yo I(X; > t) are the Kaplan-Meier estimator of S¢(t) =
P(C > t) and an estimator of Sy(t) = P(X > t). Using the estimators S (¢, y)

and S(©) (t,y), we propose a more robust estimator against the violation of totally

independent censoring as below.

— [{S®)(0,u) — §B (t, u)H (> Goy)du SO (¢, )

{1 = 5®)(t, —00)}S) (¢, —00)

_ i 52£(XZ §j7XJ > t>¢23< a) (24)

n? 4= Se(X:)Sx(t)(1— Sr(t)

gt(zjat) =

— —1 — ~ ~
where ¢;(y) = I(Y; > Y; > y) and ¢y = FPR, (a) with FPR(y) = S (t,y)/S©
(t, —o00). By substituting the time-dependent vital status {T' < t} for the binary
discase status D, 0(Ga;) will reduce to the the estimator of Dodd and Pepe (2003a)

when the complete failure time data are available.
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Since the censoring time might associate with the baseline biomarker, it can be
verified that gt(fjat) is not a consistent estimator of 6;(¢.:). Under a more flexible
marker-dependent censoring assumption (Conditioning on Y, T and C' are indepen-
dent), Akritas (1994) suggested using S(t,y) = —fyoo Sr(t]Y;)dSy (y) to estimate
S(t,y), where

- F(Sy(Y:) - S
Sty =[] - AN S, 25)
{i:X;<t,0;=1} nSx (Xily)
§Y(Z/) =n"! > 1(Y; > y), and §X(t|y> =n"! > 1(X; > t)KA(S\Y(Y}> - §Y(Z/))
are estimators for Sy(tly) = P(T > t|Y = vy), Sy(y) = P(Y > y), and Sx(t|y) =
P(X > t|Y = y), respectively. As for the kernel function K,(u) = XK (u/)), a
uniform density function K(u) = 0.5I(Ju| < 1) and a positive smoothing parameter
A are specified. Replacing S(¢,y) with S(¢,y) in (2.2), an alternative estimator for
0:(qat) is proposed by
o — [(5(0,u) — S(t, u)) I (u > Gor)duS(t, u)
9t<Qat) = = —
S(t, —00)(1 = 5(t, —00))
n 23, (1 = Sr(tY)Sr(tY))diy(Gur)

_ , 2.6
Sr(t)(1 - Sr(t)) 20

where Sp(t) = §(t, —00) and Gu = FPR, (o) with FPRi(y) = S(t,y)/Sr(t). Note
that the kernel function in (2.5) provides the nearest neighbor estimator (NNE) for
St(t|ly). Other kernel functions are also possible and will yield different estimators.
As mentioned in Akritas (1994), the asymptotic properties of S (t,y) is irrelevant to
the choice of kernel function under some regularity conditions and so is @(@at). The
author further showed that any other estimator for S(¢,y) is at least as dispersed as
S (t,y). One merit of the kernel function K (u) is that the choice of A is irrelevant to
the measurement scale of a biomarker.

When the research interest is focused on estimating the time-dependent PAUC
with o < FPRy(y) < o/, 0 < a < o/ < 1, this classification accuracy can be expressed

as (0,(qort) — 01(qor)) and is estimated by (6(Gar) — 0:(Gat)) or (B1(Gart) — 01(Gut))
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depending on the corresponding censoring structure. In the estimation of the time-
dependent AUC, both ¢;;(qgut) and ¢;;(Ga:) will simplify to 1(Y; > Y;) and, hence, the
estimators gt(i]vlt) and é\t((ﬁt) are directly obtained. Let

§(B) (07 y) B §(B) (tv y) S S

TPTu(y) = S0 and TP, (y) = 20y~ 5(ty)
1 — S®B)(t, —o0) 1 — Sr(t)

L@

One can see that gt(fjlt) and @(EJ\H) can also be computed as the area under the
right-continuous step function with jumps based on (lﬁt(y), f?’ﬁt(y)) points and
(F/ﬁlt(y),@t(y)) points, respectively. Interestingly, if we replace I(Y; > Y;) by
I(Y; > Y;), the modified estimators are equivalent to compute the area under the left-
continuous step function with jumps base on those estimates for (FPR(y), TPR:(y)).
In many applications, a most widely used approach to estimate the time-dependent
AUC is to compute the area under the polygon formed by connecting the estimates
(FPRi(y), TPR(y)) points. We further find the derived estimator is merely to re-
place I(Y; > Yj) by I(Y; > Y;) + 0.51(Y; = Y;). Since the differences among these
estimators will converge to 0 with rate O,(1/n), we can conclude that the asymp-
totic properties of these modifications are the same. This fact provides a theoretical
basis for the existing estimation methods of ;(g,:) and facilitate the construction of

inferences.

2.2 Asymptotic Properties

In this section, the weak convergence of the proposed nonparametric estimators are
established. The asymptotic properties are derived via applying the functional central
limit theorem to the independent and identically distributed (i.i.d.) representations
of our estimators. These i.i.d. approximations can be further used to estimate the
asymptotic variance-covariance functions and thus facilitate the development of sta-

tistical inference procedures for the time-dependent AUC and PAUC.

Theorem 2.1. Suppose that marker-dependent censoring and the conditions made
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below and in Akritas (1994) are satisfied.
(A1) fi(y) = —OFPR:(y)/0y exists with inf; fi(qa) > 0.
(A2) sup, e {FPR(qat + €) — FPRi(quat)} + fi(qat)] — 0 as € — 0.

Then, v/72(0;(Gat) — 0:(gat)) is uniformly approximated by n=/2 5" W(t), where
U, () is defined in the proof, and converges weakly to a Gaussian process in t € (0, 7]
with zero mean and variance-covariance function ¥, (s,t) = E[W,;(s) W4 (t)], where 7

satisfies inf, P(X > 7|Y =y) > 0.

Proof. From Theorem 3.1 of Akritas (1994), one has
~ n n
s VA(3(t,) ~ S(6,) ~ LS Vit )| = 0,00), 23)
Y i=1

where Vi(t,y) = {Sr(t|Y:) + &) (Y > y) — S(t,v),

b d M (u]Yy)

&i(t) = —Sr(t|Ys) L SxlY)

and t A X; = min{t, X;}. Let h;;(t,y) = (1 — Sr(t|Y:))Sr(t]Y;)di;(y) with expectation
h(t,y), /};z’j(ta y) = (1 - §T(t|3§))§T(t|Y})¢z’j(y)v and h(t,y) = n? D i /};ij(tv y). The
uniform consistency of Sy (t|y) (cf. Dabrowska (1987)) ensures that

Rlty) = 5 O huylt) + g S (SeHY) — SelHY))Sr(11Y;)6,(v)

i#j i#j
+% > (1= Sr([Y)(Sr(tY;) — S(t[Y;)éi(y) + rialt,y)  (2.9)
i#

with sup, , [r1a(t, y)| = 0,(n~'/?). By a direct calculation and (2.8), a simplified form
of the second term in the righthand side of (2.9) is obtained as below.

LS S ey)1 > ) S sy > v) - 56 )

= ;_21 Z St (tY)&: ()93 (y) + r2n(t,y), (2.10)
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where sup, , |ro, (t,y)| = 0,(n~'/?). Similarly, the third term can be derived to be
1

n2
i,

with sup, , [r3.(t, y)| = 0p(n™"/2). It follows from (2.9)-(2.11), the decomposition of a

(1= Sr(tYi))&;(t) i (y) + 73n (L, y) (2.11)

U-statistic into a sum of degenerate U-statistics (Serfling (1980)), and Corollary 4 of
Sherman (1994) that

sup [V (t.5) = h(t.)) = LY e, 0)] = 0,(1) (2.12)
with

Ui(t,y) = E[hij(ta y) + hji(ta y)|Xi,Yi, 0] — 2h(t,y) + {Sy(Ys) = S(t,y) }&:(O)I(Yi > y).

By the Taylor expansion of 6,(y) = h(t,y){Sr(t)(1 — Sp(t)}* at (h(t,y), Sr(t)) =
(h(t,y),Sr(t)), (2.8), and (2.12), one has
Ui(t, y +77 (t, y)Vi(t, —0)

sup [Va(6i () ~ 6, Z (1= S2(0))

where n(t,y) = h(t,y)(257(t) — 1){Sr(t) — T(t)}_l. Applying the functional central

| =0p(1),  (2.13)

limit theorem, v/7((qae) — 6:(gat)) is shown to converge to a mean zero Gaussian
process in t.

As for the asymptotic Gaussian process of @(@at), it can established through the
equality \/ﬁ(é\t(fl\at) — 0i(qat)) = \/ﬁ(é\t(zfat) — 0:(Gut)) + V/n(0:(Get) — 02(gar)). Let
VGt — Gat) = VR(Q(S) — Q(S)) with Q : S — (. By assumptions (A1)-(A2), the
Hadamard differentiability of ) is a direct result of Lemma A.1 in Daouia, Florens,
and Simar (2008). Together with the functional delta method (cf. Van der Vaart
(2000)), we have

t fo% t’
sup|\/_(qat—qat Z QtQt ST(()

and the weak convergence of \/n(Ga: — qat). Moreover, it is ensured by (a version of)

Lemma 19.24 of van der Vaart (2000) and (2.13) that

Sltlp |\/ﬁ(§t(a\at) — 0:(qat) — \/ﬁ(é\t(Qat) — 01(qat))| = 0p(1). (2.15)

—OO)

=o()  (214)
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By the first order Taylor expansion of ;(Gat) at Gut = qat, the continuity of 96,(y)/dy,

sup, |@at — gat| = 0,(1), and the continuous mapping theorem, one derives that imply

OzST<t> - SY(Qat) ft(Qat)\/ﬁ(a\Oét — Qat)| = Op(l)- (2.16)

Slip V1 (0:(Gor) — 0:(qar)) —

1—Sr(t)
It follows from (2.13)-(2.16) that
~ n n
o VA @) ~ lae)) L W] = 0,(1), where (217

i=1

Ui(t, qat) + 0(t, gat)Vi(t, —00) + (aS7(t) — Sy (qat)) (Vi(t, gar) — aVi(t, —00))

Sr(t)(1 = Sr(t)) '
Finally, the proof is completed by applying the functional central limit theorem to
the approximated term n=1/23"" W, (¢) in (2.17). O

\I]ai (t) ==

The weak convergence of v/71(60;(Gat) — 0:(a)) can be derived in a similar manner

and is given in the following theorem.

Theorem 2.2. Suppose that S(t,y) and Sc(t) are absolutely continuous. Under
totally independent censoring, \/ﬁ(gt(fjat) — 04(qat)) is uniformly approximated by
n~1/23°" W (t) and converges weakly to a Gaussian process in ¢t € (0, 7] with mean
zero and variance-covariance function X} (s,t) = E[VZ,;(s)V%,(t)], where V¥, (1) is

defined in the proof and 7 satisfies P(X > 7) > 0.

Proof. Let

0 (t:9) = 5y 0% < 035 > 005(0). () = Ela(t.)]

~ 0 ~ 1 ~
.. = — . < . .. —_ E ..
gzy (t, y) Sc(XZ) I(XZ = t, XJ > t>¢zg (y), g(tv y) n2 — glj (ta y),

The martingale representation of survivor function (c¢f. Fleming and Harrington
(1991)) ensures that /n(Sy(t) — Sp(t)) and /n(Sc(t) — Sc(t)) can be uniformly
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approximated by

—Sp(t \FZ/ dMT’ and — So(t \FZ/ dMCZ . (2.18)

From (2.18), one can obtain that

s [V 0) ~ 9t~ (- 3 sttt [ L) —gta )} = 0,00

te[0,7] (n)s itk 0 Sx(u)

(2.19)
By 6;(y) = (¢, y){Sx(t)(1 — Sr(t))}~! and taking the Taylor expansion of 6;(y) at
(G(t,y), Sx(t), Sp(t)) = (g(t,y), Sx(t), Sr(t)), it is further established that
TL z]k: ) — 0
Sup |\/_(9t< ) Z 1_ ST( >>| - P(l)a

NOIR=

) —g(t, y)(

[(Xz > '[Z) ST(t) ¢ dMTZ(U)
S 1= 50 / Sx(w)
(2.20)

Similar to the derivation of (2.12), v/n(6,(y) — 6;(y)) is uniformly approximated by

Uit y) = 9i5(t, y)(1+/0 idSMXCi(sz;L)

Vi Z U "t y)
Sx(t)(1 — Sr(t))
with Uf(t,y) = EUj(ty) + Uit y) + Usy(t,y)| X, Vi, 6. Tt follows from the
functional central limit theorem that \/7(6;(gar) — 0¢(gat)) converges weakly to a
mean zero Gaussian process.

Similar to the arguments of (2.14) and (2.17), we have

Stuyp |\/7;(QM tht Z Y >ffa;at;SO)é(>(I§Xi > t>| = 0p(1). (221)

This, the weak convergence of \/n(Go: — qot) and

SUP V(0u(Gat) — 01(qar)) Z U (t)| = 0p(1) where (2.22)

with
Ui (¢, gar) + (ST (t) — Sy (gar)) (L (Yi > gar) — a)I(Xi > ¢)
Sx(¢)(1 = 57(t)) '

can be ensured and, the proof is completed. O

v (t> =
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Paralleling the proofs of Theorems 2.1-2.2, we can also derive the asymptotic

Gaussian processes of \/ﬁ{(@(fja/t) - é\t(a\at)) — (04(qart) —0:(qar)) } and \/ﬁ{(@;(fjalt) -

0,(Gut)) — (0:(qar) — 0:(qer))} with the corresponding variance-covariance functions
El(Wari(s) = Wai(5)) (Vari(t) — Vai(t))] and E[(W5,;(s) — W5 (s)) (Vo (t) — UL (0))]-
2.3 Inference Procedures

With the marker-dependent censorship, the variance-covariance function ¥, (s,t) is

suggested to be estimated by

ia(sa t) = % Z \/I}m(s)\/l\fm(t), (2‘23)
where
U (t) = ﬁi(t, dot) +1(t, a\at)‘/}i(t, —00) + (OzS'\T(t) - :S’\Y(Ejat))(‘/}(t Qot) — aV(t —0))
E Sr(t)(1 = Sr(t)) =
i) = = 3 (us(t9) + Bt ) = 2h(t.9) + (B (1) = S)E O > ),
{7:5#1}

h(t,y) (257 (t) — 1)
Sp(t) — S2(t)

Vi(t.y) = {Sr(t|Y3) + &)} (Y; > y) — S(t,y). 7t y) =

td M ; - .
o Sx(uly;)

As to the setting of totally independent censoring, the variance-covariance function

Yr(s,t) is estimated by

S (s, 1) ny (2.24)

where

B (1) = Uit Ga) + (@S1(t) = Sy (@) Ui > Gor) = ) (X > )
Sx(t)(1 - Sr(1))

. e SdMeg(u), o I(Xi>t)  Sp(t) [T dMpi(w)
Uijk(tay)_gw(tvy)(l—{'/(; 7§X(u>) 9(t,y)( 50 +1_§T(t)/0 T

Y

)7
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~ 1 - ~
*(t = — E s (t (T U.(t
2
UZ( ,y) n ( zgk( ,y) + hk( 7y) + kz( y))

Mpi(t) = 6,1(X; < t)+In Sp(tAX,), and Meq(t) = (1—6;)1(X; < ) +1InSc(tA X;).

Under the assumed conditions, the weak convergence of \/ﬁ(éA’t(qAat) —0,(qat)) and
V(0 (Gat) — 0,(gar)) to Ganssian processes are derived in Section 2.2. Together with
the estimated variance-covariance matrices provided above, the inference procedure
for 6;(gat) can be established. A (1 —¢), 0 < ¢ < 1, pointwise confidence interval for
0:(qat) can be constructed via

a(n Ze/2 & q (= Ze/2 G2
Qt(qat) + ;21/2(@ t) and Qt(qat) + —Z* / (t, t), (225)
\/ﬁ a \/ﬁ a

where Z/; is the (1 —¢/2) quantile value of the standard normal distribution. As for
the simultaneous confidence band of 6;(q,;) within the subinterval [r, 7] € [0, 7] of
interest, the re-sampling technique of Lin, Wei, Yang, and Ying (2000) and the i.i.d.
representations in (2.17) and (2.22) can be used to determine critical points L. and

Lf so that

|\/ﬁ(§t(zl\at> 9 (Qat))

P( sup <L)=1-g 2.26
(tE[ﬂ,Tz} 21/2(t t) | §) ( )
and
\/_(et(qat) (qat)) .
sup <LH)=1-g. 2.27
(te[ﬁ Tﬂl 5200 | < L7) (2.27)

Details of the re-sampling procedures are stated in the following steps:

1. Independently generate random samples {W( r,l=1,--- B, from a standard

normal distribution to calculate

n O (¢ (OK?
Fl: sup |Zz:1Wz a2<>|and1“;‘: |Zz IW az()

telrm] {nSa(t, t)}1/2 retriom] {n3x (¢, 1) }1/2

2. Determine L, and L7 to be the (1—¢) quantile of {T';}{2, and {T'; }2,, respectively.
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3. The approximated (1 —¢) simultaneous confidence bands for {0;(q.¢) : t € [11, 2]}
are constructed via

{6,(Gor) jiza/%t t):t € [r1, )} and {0;(Gu) £ 512:’;1/2@ t):t € [m, ]}
(2.28)

Remark 1. From the proof in Section 2.2, both pointwise and simultaneous confi-
dence bands for (6;(qat) —0:(qat)) can also be constructed in a similar manner through

the i.i.d. representations n=2 S (Ws(t) — Wy (£)) or 23" (Wi () — Wi (1)),



Chapter 3

Semiparametric Regression Model

for the Time-Dependent AUC

Chapter 3 is devoted to explore the effects of covariates Z on the time-dependent
classification accuracy of a biomarker. We consider a generalized linear regression

model:

0.(Zi, Z;) = h(vf Zij), i # J, (3.1)

where h(-) is a known smooth link function, Z;; is designed a p x 1 vector function of
Z;and Z;, and v, = (41, -+, Yip)” 18 the vector time-varying coefficients of Z;;. This
model is used mainly to account for the heterogeneity arising from Z. The linear, logit,
probit, complementary log, and complementary log-log models, for instance, are some
potential choices for h. The logistic regression model has been shown to be effective
in applications and is more natural when one wants to interpret the odds ratios for
the categorical covariates. Motivated by the nonparametric estimation method for
0:(qat), We propose estimating equations for 7, based on the censored survival data
{(X;,0;,Yi, Z;)},. Inference procedures for v, and h(y} Z;;) are further provided
in the succeeding section by applying the asymptotic Gaussian process property of

estimator for ;.

21
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3.1 Estimation

As we can see in (2.3) with a = 1, 6,(Ga;) can be obtained by solving the following

estimating equation

SeX)se() >0 = bilaw)) =0, (3.2

i#]
with Sc(t) being substituted by the Kaplan-Meier estimator Sc(t). When S¢(¢|2*) =
P(C > t|Z* = z*), Z* = (Y, Z), is known, we generalize the equation (3.2) to our
data setting. By using the property

ez sewz L > Y - W Zig)\ 2, 23] = 0,1 # (3.3)

the estimators of 7, is proposed to be the solution of the estimating equations

h (’}/ Zz;) (SZI(XZ <t, Xj > t)

1
UinSe) = G, 229077, SR 20500 )

1
<— Z Utlj e SC (34)
ij

(I(Y: > Y;) = h(v" Zyy))

1>

where b’ is the derivative of h, v = h(1 — h) represents the conditional variance of
I(Y; >Y;), and (n), =n(n—1)---(n—m+1). We note that (3.3) holds under the
validity of (3.1) and conditional independent censoring (Conditioning on Z*, T and
C' are independent). Generally, the range of h should be restricted within the interval
(0,1) to ascertains that v is bounded away from zero.

Since S¢(t|z*) = P(C > t|Z* = z*) is usually unknown, an appropriate consistent
estimator should provided. To avoid the complicated and mathematical intractable
modeling between C' and Z*, a widely used Cox’s proportional hazards model can
be applied. A practical estimation approach for Sc(t|z*) is based on the partial
likelihood estimation procedure and the Breslow estimator (Fleming and Harrington
(1991)). Another option is to use an accelerated failure time (AFT) model in the
current study. When C' is further independent of Z*, Sc(t|z*) can be reduced to

Sc(t) and the Kaplan-Meier estimator is suggested. By substituting a consistent
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estimator Se(t)2*) for Sc(t|2*), we propose to estimate 4, by the solution 3, of the
equation Uy (7, §C) = 0. The covariate-specific time-dependent AUC at Z;; = 2 is
naturally estimated by h(7] z).

3.2 Asymptotic Properties

In this section, the large sample properties of 7; are considered in the interval [y, ]
with ¢ = inf,{u : sup,. P(T" > u|Z* = z*) < 1} and ¢, = sup,{u : inf,- P(X >
u|Z* = 2z*) > 0}. For the convenience of succeeding presentation, let || - || denote the
supremum norm of a vector or a square matrix and

W (v Zi))*0l (X < 8, X > 1)
v(v Zij)Sc(Xi| Z;)Sc(t| Z})

H(t) = —B(2, 25 ]

Some mild conditions are further assumed in the following:

(A1) h(u) is monotone, and h(u) and h'(u) are Lipschitz continuous and bounded.
(A2) Z is bounded.

(A3) H(t) is nonsingular for ¢t € [gp, 1].

(A4) 4 is cadlag on [y, 1.

(A5) sup, - So(t]z*) = Sc(t]z*) —n=t S0, Gy(t, 2%)] = 0,(n~"2) with G4(t, 2*) being

a zero mean function of (X, 0;,Y;, Z;) for any fixed (¢, z*).

Although the bounded assumption in (A2) is frequently occurring in many empirical
examples, this condition can be relaxed via making assumption on the moments of
Z. Tt is entailed from assumptions (A1l)-(A4) that the classes of kernel functions of
Ui(y, Sc¢) and OU, (v, Sc) /07 indexed by (v, t) are Euclidean. This is a necessary con-
dition in the application of uniform consistency of U-process and the functional central
limit theorem. Note that assumption (A5) is automatically satisfied for the survivor
function estimated from the proportional hazards model and the Kaplan-Meier es-

timator under suitable conditions. For the Kaplan-Meier estimator, the martingale
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representation in (2.18) shows that G;(t, z*) = =S¢ (t) fot dMei(u)/Sx (u).

Theorem 3.1. Suppose that assumptions (A1)-(Ab) are satisfied. Under the validity
that T" and C' are independent conditioning on Z*, sup,¢, o, | 7% — 7t [[= 0,(1) and
Vn(; — 1) is uniformly approximated by n=Y/2Y""  —{H(t)}~'U;(t) and converges
weekly to a Gaussian process in t € [, ;] with mean zero and variance-covariance
function X(s,t) = HY(s)E[U;(s)UT (¢t)]H ' (t), where U;(t) is defined in the proof.

Proof. We first show the uniform consistency of 7;. Using the property E[U;(y:, S¢)] =
0 and Corollary 7 of Sherman (1994), one has

sup | LUy Se) — H() [1= 0(1). (3.5)

t€[so,51] 0

It follows from (3.5) and assumption (A3) that ; is the unique solution of E[U;(~, S¢)] =

0. By assumption (A5), the uniform consistency of 7; can be derived by verifying
sup [| Ui(y, Se) = E[U:(7, Sc)l = 0p(1). (3.6)
7,

Since the property in (3.6) is a direct consequence of the uniform convergence theorem
of a U-process, it is obviously to obtain that sup,e, o1 | % — 71 [|= 0p(1).

As to the weak convergence, the first order Taylor expansion of Uy (7, §c) with
respect to v, implies that

~ 5 a [ ~
0 = vnU,(3e. Se) = vVnUi(w, Sc) + {aUt(% ,Se) (e — 1), (3.7)
t

where 7/ lies on the line segment between 7; and ;. From (3.5), assumption (Ab),
and the uniform consistency of 7; to -y, one can obtain that

swp | LU0 5e) - HE) [= o(1). (3.8)

t€[so,51] 0

It is further implied from assumption (A5) that

sup || Vil So) = L5 ST Uguat) 1= 0p(1), (39)

tE[COSl] (n>4 ’L#]#k’#l
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where
Sc(Xi|Z}) Sc(t|Z7)

Together with (3.7)-(3.8), the decomposition of the above U-statistic into the sum of

Uiga(t) = Utj(e, Se){1 —

degenerate U-statistics, and Corollary 4 of Sherman (1994), the weak convergence of

Vn(F; — ) is ensured through the following random quantity:
Vi -
VIS {H () U, (3.10)
i=1

where U2<t> = E[Uijkl(t> + Ujikl(t) + Ujkil<t> + Ujkli(iﬂXi, Y’Z', Zi, 52] for ¢ 7éj 75 k 75 [.
By a direct calculation and assumption (A5), U;(t) can be further derived as

So(X;127) -~ So(tlZg)
Applying the functional central limit theorem, Theorem 3.1 is obtained. 0

Ui(t) = E|Uu; (v, Se)+Usi(ve, Sc)—=Urik (e, Se){ WX, Ys, Zi, 04).

The weak convergence of the covariate-specific time-dependent AUC estimator can
be ensured from Theorem 3.1. From (3.10) and using the functional Delta method,

Vr(h(AL z9) — h(v] 2)) is uniformly approximated by
n n
VIS W (T2 (HB) T ). (3.11)
i=1

Similarly, /n(h(37 20) — h(7{2)) can be shown to converge weakly to a Gaussian

process in t with mean zero and variance-covariance matrix

L(s,t) = (75 20)l' (7 20)79 2(s, 1) z0-

3.3 Inference Procedures

For the asymptotic variance-covariance matrix 3(s,t), a sandwich-type estimator is
proposed. First, the quantity E[U;(s)UI(t)] is estimated by the sample analogue
nt S Uy(s)UT (t) with

~ - GilX5, 7))

1 S S N Gi(t, Z})
Ui(t) = — > Uuij(, Sc) + Usi(e, Se) — Ui (G, S )i = + =
(1 nZ o S2) + UGt ) = UG S5 2+ 20

}



26

and G(t, 2*) being a consistent estimator of Gy (t, z*). By using H(t) = dU,(3,, S¢:) /0y

as an estimator of H(t), the estimator of X(s,t) is given by

(s, 1) = e ZU (OHHM} (3.12)

Same with the foregoing argument, the Kaplan-Meier estimator is applied when
So(t]|2*) = Se(t) and, hence, Gy(t, z*) = —Sc(t) [3 dMey(u)/Sx (u).
By applying the asymptotic properties established in Section 3.2, the approxi-

mated (1 — <) confidence region of v; are given by

{3 n@ =W H{EED A — 1) < Xiasoh (3.13)

where x2 ;__is the 100(1—¢)th percentile of the Chi-square distribution with p degrees
of freedom. The simultaneous confidence band for v; over a pre-specified time period
T C [0, 1] can also be constructed by the re-sampling technique. Details are stated

as below.

1. Independently generate random samples {W( ».,b=1,--- B, from a standard

normal distribution to calculate

[y = SUPZW TIO{H Y H{nS (0} HHD)} ().

teY

2. Determine L. to be the (1 — ) quantile of {T',}Z ;.

3. The approximated (1 — <) simultaneous confidence band for {v; : t € T} is con-

structed via
{{v @ — 3 {EE O} e —w) < Ly it € T (3.14)

As to the covariate-specific time-dependent AUC h(~]2) for any fixed zp, an

approximated (1 — ¢) confidence interval is constructed to be

h@?zwizjgh/( ) {2 St £)20} 1. (3.15)




27

Similarly, the simultaneous confidence band can be constructed through the above

Step 1-3 except the quantity we calculate in Step 1 is replace by

W LH ()} Ot

7

,

sup | S TV1/2
te¥ = {nzoX(t,t)z{ }Y

and the simultaneous confidence band for {h(yl 2) : t € T} is established as

{h(Al 2) £ %H(@Tzo){zgi(t, )z} ? te T} (3.16)



Chapter 4
Optimal Composite Markers

As indicated in the analysis results of Chiang and Huang (2009) for the CAD study,
the time-dependent AUC of each marker, CRP, SAA, IL-6, and tHcy, is generally not
large enough to classify the CAD-related vital status over time. In order to enhance
the classification power, we aim to seek the optimal composite biomarkers based on

a flexible extended generalized linear model (EGLM)

P(T <tlY =y) = Gi(5/y), (4.1)
where Y = (Y7,---,Y,)" is a vector of continuous biomarkers measured at or before
the outset of study, 5; = (B, -, Byp)7 is the vector of time-dependent coefficients,

and Gy(-) is an unknown link function and increasing in the linear predictor for each
time point ¢. Let ROCy(3;) be the time-dependent ROC curve of 37Y which displays
the pair values of FPR;(c, 3;) = P(BLY > ¢|T > t) and TPRy(c, 3;) = P(BLY > ¢|T <
t) for varying threshold value ¢. Using Neyman-Pearson lemma, we can show that
ROC,(/3;) is higher than any ROC curve of the transformation of Y under the validity
of model (4.1). It means that the linear predictor 8!Y is the optimal composite
biomarker in classifying patients who survive at ¢ or not and thus the corresponding
time-dependent AUC 6;(3;) is thus the greatest.

Under independent and marker-dependent censoring mechanisms, two types of

28
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objective functions ate proposed for the estimation of 3; based on the censored sur-
vival data {(X;,d;,Y;)}",. Moreover, the estimators for ROC;(3;) and classification
accuracy 6;(f;) are provided. It is found that (3, is not identifiable for the unspec-
ified link function but ROC,(3;) = ROCy(af;) any positive constant a. The issue of
non-identifiability can be circumvented by imposing a reasonable constraint on the
parameters. Without loss of generality, (3;; is set to be one provided that the marker
Y] is associated with 7. Thus, the optimality will be reduced to search for the true
parameters (S, -, 3)" in the (p — 1)-dimensional compact parameter space B;.
For the convenience of succeeding presentation, we let 3; = (B, -+, Bip)" and define

ﬁ?yzYl_FﬁtQY?_'_"'—{_ﬁtp}{p-

4.1 Estimation Procedures
Sine
Oy = arg mgmx 0,(3), (4.2)

the target function is designed as a sample analogue of §,(/3) for the estimation of ;.
Under totally independent censoring, an estimator of 6;(3) for given (3 is obtained,

by substituting 1(87Y; > 87Y;) for I(Y; > Y;) in (2.4) with a =1, as

%8 = o So(X:)Sx(t)(1 — Sr(t))

. (4.3)
2 i
Thus, §; is suggested to be estimated by Et, which is the maximizer of é;(ﬁ) One
may further assess the performance of 3/'Y through ROC;(3;) and the classification
accuracy 6;(05;). By generalizing the estimators ﬁt(y) and Iﬁt(y) in Section 2.1
to our data setting, TPRy(c, 5;), FPRy(c, 3;), and 6,(3;) are naturally estimated by
"SI(X <t BT > ¢) e "X >t 7Y > ¢

TPR(c, 3;) = ; o (X (1 — 82 (0) , FPR(c, Bt) = ; nSx (1)

Y

(4.4)
and @(B}), respectively.
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In the CAD study, the censoring times of patients might be affected by the baseline
plasma biomarkers. The assumption of marker-dependent censoring should be more
reasonable and (3, might be biased. Let Sx(t,y) = P(X > #|Y = y)fy(y) and
Ssx(t,y) = P(X > t,0 = 1Y = y)fy(y) with fy(y) being the probability density

function of Y. These bivariate functions are estimated by the smoothing estimators

~ “LI(X; > OKL(Y — ~ 61X > KLY —
SX(tay):Z ( - )n)\( y) and S&X(tay):z ( 31 )\( y)’
i=1 =1
where K(u) = [T5_y A7 K (uA;h), w = (u1, -, up)", A= (A, -+, Ap)7 is a vector of

non-negative smoothing parameters, and K (v) is symmetric about zero with bounded
variation and satisfies [ K(v)dv =1, [v*"K(v) =0, k=1,--- ,p, and [P K (v) <
0o. The reason of using a higher order kernel function K (u) is mainly to ensure
\/n-consistency of the proposed estimator. From (2.6) with v = 1, an alternative

objective function

> 1 (1= Sr(tY) Se(tY)I(51Y; > BTY5)
’ (n)2 ; Sr(t)(1 - Sr(t))

(4.5)

is considered, where

. d,Ssx (1, Ky\(Y; —
Setly) =Py + 22y T B,
SX (U, y) {i:X;<t,6;=1} nSX (Xza y)

is a smoothing estimator of Sy(tly), Sp(t) = n=! > Sr(t|Y;) is an estimator of
St(t), and P denotes the infinite product integral over [0,¢]. Together with (4.2), an
estimator Bt of 3 is defined as the maximizer of @(ﬁ) As for the quantities quantities

TPR(c, 3;), FPRy(c, B;) and 0,(f3;), we propose the corresponding estimators

== 5 " (1= SetYNIBIY: > ¢) =55, 4 " Sr(t|Y)I(BTY; > )
TPRt s M) — = ,FPRt s M) — =
@B =2 5 @B =2, = 5

)

(4.6)
and @(Bt)
We note that the optimality of 3'Y is mainly based on the increasing property

of link function. The facts of (4.2) motivates the estimation of (§; via maximizing
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6,(3) and ,(3). Provided that (4.2) is valid, the linear predictor 37Y is still optimal
in the sense that 6;(3;) is the largest among the class of linear combinations of Y.
The asymptotic properties of Bt and Bt derived in Section 4.2 are applicable when
B, is the unique maximizer of 6,(3). The monotonicity of ﬁ(c, B;), 1*:}3}/215(0, B;),
ﬁ’\Rt(c, Bt), and @(c, Bt) in ¢ further imply the monotonicity of the estimators
for ROCy(8,). Similar to the discussion in Section 2.1, the values of 6;(3;) and @(B\t)
are exactly the areas under the right-continuous step function with jumps based on
the estimated (Z?ﬁ}/%t(c, B;),fﬁﬁt(c, B;)) points and (@(C,@),@(C,@)) points,
respectively. Different modifications of I(87Y; > 37Y;) will result in different geo-
metric meanings but the same large sample properties.

The implementation of the optimization procedures are time consuming due to the
non-differentiability an indicator function. To overcome this problem, the distribution-
like kernel functions of Horowitz (1992) can be applied to approximate I(57Y; >
BTY;). By incorporating our theoretical results, the same large sample properties of
the smoothed nonparametric estimators can be derived similarly as in Song et al.
(2007). In our numerical studies, Si(t|y) = S (t|y)1(0 < Sp(tly) < 1) + I(Sp(tly) >
1) is used to substitute for Sp(t|y) in estimation and modifies unreasonable condi-

tional survival estimates caused by a higher order kernel smoother.

4.2 Asymptotic Properties

It can be shown that the target function are

_ AY(5) ~ H?(B) — ()3 Yoo, Sr(t|Yi) Sr(t]Y))
0, = = = and 6, = — — 4.7
D= S = &) W 5r 01— 5r(t)) 4D
with 5
gy _ L i . . Ty o 4Ty
HY(8) = o) ; X I(X; <t,X; >t,687Y; > 5TY)) (4.8)
and
AP(8) = = 3 5otV 1(8™Y: > 57Y)). (4.9)

i#]
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Thus, the asymptotic properties of Bt and Bt can be established based on the facts:
3, = arg max f[t(l)(ﬁ) and (3, = arg mﬁaxf[t@)(ﬁ). (4.10)

In the proof of the results, we repeatedly apply the uniform convergence theorem
of U-process (Nolan and Pollard (1987)). The imposed assumptions together with
Lemmas 2.12-2.14 of Pakes and Pollard (1989) and Lemma 22 of Nolan and Pollard

(1987) ensure that the underlying classes of functions are Euclidean.

Theorem 4.1. Under the validity of (4.1) and totally independent censoring, B 2B,
and /1 (B, — ;) <, »—1(0, E&)) for t € (0, 7] and 7y satisfying P(X > 71) > 0, where
5 = (Vi Con iy,

W _ 200 w_ 9 0 1) | s
‘/t - 6ﬁ85T ht (ﬁt)7 Wti - aﬁE[htzl (ﬁt) + htli (ﬁt) + BtlQZ(/@t)lX’L) Yu 51]
X
Biiji(8) = hiy) () / AMcr(v) o Mea(t) = 1(X; < £)(1 = 6) + In Solt A Xo).
0 SX(U)

Proof. Define Hfl)(ﬂ) = (n)y* D it h(l)(ﬁ), where

tig

Mgy = 2 _1(x, <t X, Ty, > 3Ty,
htz](ﬁ) SC’(Xz) ( Z_ta Vi >t75 7,>ﬁ ])-

It is straightforward to show that (; is the unique maximizer of hil)(ﬁ) =F [hg% (8)]
and hgl)(ﬁ) is proportional to 6;(5)Sc(t)Sr(t)(1 — Sr(t)). From the uniform conver-
gence of Se(t) and U-process Ht(l)(ﬁ), one has

sup |H(8) — HV(B)] = 0,(1) and sup |H "V (8) — bV (8)| = 0,(1).  (4.11)
8 B8

Following the argument of Newey and McFadden (1994), the consistency of Bt can be
derived from supg |f[t(1)(ﬁ) - hil)(ﬁ)| = 0,(1), which is a direct consequence of (4.11).
For the asymptotic normality of Bt, we first find an appropriate quadratic ap-

proximation of flt(l)(ﬁ) around o,(1) neighborhoods of ;. The Taylor expansion of
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(f[t(l) (ﬁ)—f[t(l)(ﬁt)) at Sc(t) = Sc(t) and the martingale representation of \/n(Se () —
Sc(t)) in (2.18) imply

(HMY(B) — HY(3)) Z{hm — hii (81) + Buji(B) — Buii(Be)} + 0p(n™")
s (4.12)

for (3 satisfying ||3 — B;|| = 0,(1). Along the same lines as the proof of Theorem 4 in
Sherman (1993) and the property E[By;r(5)|Xs, Ys, 0] = 0, s € {i, j}, for § satisfying
|18 — Bi|| = 0p(1), (4.12) can be further approximated by

(ﬁ BV (B~ By) + ZWM (B — B:) + 0,(|18 — Bil|?) + 0p(n™1). (4.13)

Together with Theorems 1-2 of Sherman (1993), v/n(B,—3,) = n™! zizl{vf”}-lwtﬁ%r
0p(1) and converges to a (p — 1)-variate normal distribution with mean zero and

. : . 1
variance-covariance matrix 2§ ), O

The large sample properties of (ﬁ(c, Bt),zﬁ(c, Zf;)) and @;(@) are given in

the following theorem.

Theorem 4.2. Suppose that the conditions in Theorem 4.1 are satisfied. For
t € (0, 7], \/ﬁ(fﬁﬁt(c, 3,) = TPR,(c, 3,), Z*:ﬁ}/%t(c, 3,) — FPRy(c, 3;))" converges to a bi-
variate Gaussian process in ¢ with mean zero and variance-covariance matrix Eﬁ)(c),

where Zﬁ) (c) is

OTPR,(c, B;)
B

aFPRt(C, 5t)

( >1Wm= t7, ( ﬁt) 8@

Cov ((Ag,.”(c, 8,) + (%(”)‘IWti”)T>

with

AN (e, B) = duile, B) — TPRi(c, B) + Eldy (¢, B)( /O j % - dgﬁgff)‘)

)|X7,a 517 Yz]a

I(X; >t,81Y; > ¢
Sx(t)

FPRt(C, 6)

A;kz(l) (Ca ﬁ) = SX(t)

(I(Xi >t) = Sx(t)),

— FPR(c, B) —
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6 1(BLY; > ¢)
So(Xi)(1 = Sr(t))

(btl(c Ht) and MTZ(u) = I(XZ S u)éz + In ST(t N Xz)

Moreover, v/7(6,(3,) — 6,(/3)) converges to a normal distribution with mean zero and

: 1
variance Var(vi(t )), where

Bl (5) + high(B) + Buwa(8)1X0, 6. Y] — 20 (5,)

Sc()Sr(t)(1 — Sr(t))
N hY (3,) CdMei(u) 1= 287(t) thTi(u))
Sc(t)St(t)(1 = Sr(t)) Jo Sx(u) 1—Sp(t) Jo Sx(u) ”
Proof. Let

Zipn,(¢.8) = Vn(TPR,(c, ) = TPRi(c. 5)).
By the first order Taylor expansion of Zz (c, 5) at (Sc(X,), 8p(t)) = (Se(X,), Sp(t))
and the uniform convergence of S¢(t) and Sr(t), Z 77m, (¢, 3) can be uniformly approx-
imated by

Sc(X:) — Se(X;) N Sr(t) — Sp(t)
Sc(X;) 1 — Sr(t)

f Z% ¢, B) — TPR:(c, B) — du(c, B)( ). (4.14)

it
Together with the martingale representations of Sc(t) and Sy(t), the term in (4.14)
is asymptotically uniformly equivalent to
\/ﬁ Xi dMC](U) ¢ dMT](U)
—— i(c, ) = TPR(c, B) + ¢ulc, B ——— | —————=) (415
(n)2 Z;gbt ( ) t( ) t ( )( 0 Sx(U) 0 Sx(U) ) ( )
over all (¢, 3). By the decomposition of a U-statistic into the sum of degenerate U-
statistics and Corollary 4 of Sherman (1994a), the term in (4.15) can be approximated
by n=Y23" Agzl )(c B). The functional central limit theorem further ensures that
Zpg, (¢, B) converges weakly to Gaussian process in (c, 3). From Theorem 4.1 and the

equicontinuity of Zzz, (¢, 3) in (¢, B), it follows that \/n (T PRy(c, B;) — TPRy(c, 3;)) is

uniformly equivalent to

i=1
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Similar to the derivation for (4.16), \/ﬁ(l*:ﬁ%t(c, 3,) — FPR,(c, ;) have the following

asymptotic representation

7 e )+ LR ), (a.17

Thus, we conclude form (4.16)-(4.17) that \/ﬁ(flgﬁt(c, 3,)—TPR,(c, By), F/’l?’f/{t(c, B,)—
FPR;(c, 3;))T converges weakly to a bivariate Gaussian process in c.
From (4.13) and ||3, — Bi|| = O,(n~/2), one has

VaHD () = b (B) = va(HD (B) = hY(8) + 0,(1) (4.18)

It follows from (4.18) that \/ﬁ(@;(@) — 0,(;)) can be approximated by

t dMe; 1-257(t) [t dMry(u)
\F Z Py () + Buel) = W (501 — SXC(“ ~ 50w Jo Sxtw ) (4.19)
Ryt 50( )Sr(t)(1 = S7(t))
: : L : _ 1
Since (4.19) is a mean zero U-statistics and can be approximated by n=1/2 3" Z(t),
the proof is completed by applying the central limit theorem. O

For the asymptotic properties of @, (T{PE(C, B\t), @(c, B\t)), and @(Bt), the fol-

lowing conditions are made for Theorems 4.3-4.4 and the technical lemma.

(A1) A% (Inn)~! < oo and nA¥» — oo, where A, = min{\;,---, A} and Ay, =

max{A, -, A}
(A2) K(-)is a (p+ 1)th order kernel function with bounded variation.

(A3) gs(y) = P(BTY > Ty) has a uniformly bounded second derivative with respect
to .

(A4) The (p + 1)th order derivatives of &,(x,0,t) in Lemma A and aa—ﬁgﬁt(y) with

respect to y are uniformly bounded.

(A5) P(BT(Y:—Y;) > 0,58 (Y: = Y;) <0) < M||3— 3] for some positive bounded

constant M.
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Theorem 4.3. Suppose that assumptions (A1)-(A5) in the Appendix are satisfied.

Under the validity of model in (4.1) and marker-dependent censoring, Bt 2, 3, and

V(B — B) <, »—1(0, 2(2)) for t € (0, 2] and 7 satisfying inf, Sx(72,y) > 0, where
Y= (VP Con WV,

20? = x
VO 2 B = W+ W
@ _ 9 @ “(2) 9
Wtz %E[htz] (ﬁt> + ht]z (ﬁt)|X27 617}/2] and Wtz £Yz<X27 6i7t>fY<}/;)%gﬁt<}/;>'

Proof. Let HP(B) = (n)3' Y., hig (8) with h;/(3) = Sr(t|Y;))I(BTY; > BTY)).

Similar to the proof of Theorem 4.1, the consistency of B\t is established when
sup [H;(8) = hi” (8)] = op(1)

holds. Here, h{*(3) = E[h{)(8)] = 0,(8)Sr(t)(1 — Sr(t)) + 0.552(t) has a unique
maximizer ;. From the boundedness of indicator functions, the above property can

be obtained through
sup |Sr(tly) — Sr(tly)| = 0,(1) and s%pm?)(m —hP(B)] = 0,(1),  (4.20)
Yy

which is a direct consequence of Corollary 2.1 of Dabrowska (1989) and the uniform
convergence of U-process Ht@) (B) to hig) (5).

From the consistency of Bt to B, one can further restrict 5 in o,(1) neighborhoods
of B, in the following derivation. For (3 satisfying || — 5:|| = 0,(1), it is implied from
Lemma A below, (Al), and (A5) that

a2(3) - B2 (8,) = (HP(8) — HP(68,) + (U(8) - U(5)) +op<7”ﬁnj/f’*”>+ op(nY),

(4.21)
where U(8) = (n);' Z##kf ( VI(BTY; > B1Y;). Using the same argument for
(4.13), (HP(8) — H®(B,)) can be re-expressed as

(ﬁ BTV (B - B) + ZWM (B = B:) +0p(|18 = Bell®) + 0p(n7")  (4.22)
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uniformly over o,(1) neighborhoods of ;. As for the term U(f3) in (4.21), there exist
degenerate U-statistics Ug(3), k = 1,2, 3, of order k so that

UB) = UG) = p_(Uk(B) = Ux(Br))- (4.23)

WE

e
Il

1

The property Ui(8) = n~t> ", E[ft(f)(Yl)gﬁ(YlﬂXi,Yi,éi], assumptions (Al)-(A4),

and the Taylor expansion theorem ensure that

1 . * ﬁ B ﬁ
0 (8) ~ U3 = (2 S WaY7(8 - ) + 0,18 — 11 + o, L2y (a2
i=1
uniformly over 0,(1) neighborhood of ;. Note that Uy;;(3) and Us;;i, (/) are the kernel
functions of Uy(B3) and Us(B) and satisty AP |Usii(5) — Usii(6r)] < M||B — 5| and
N0 \Usiji(8) — Usijie(B)| < M. It is implied from Theorem 3 of Sherman (1994b) and
assumption (A1) that for g satistying ||5 — Bi|| = 0,(1),

|Uz(8) — Ua(By)| = Op(#) and |Us(3) — Us(B3;)] = op(n"). (4.25)

From (4.21)-(4.25) and Theorem 1 of Sherman (1993), ||3 — 8| = O,(n"Y2) is
derived and, hence, (H*(3,) — H'”(B)) is derived to be

26— BTV Go= 0) + 5 WV Bi= B +opln™). (420
=1

By applying Theorem 2 of Sherman (1993), the asymptotic representation \/ﬁ(@ —
B) =n! Zﬁzl{m(”}—lﬁ/ﬁ) + 0,(1) can be obtained and is shown to converge to a
(p — 1)-variate normal distribution with mean zero and variance-covariance matrix

), O

Theorem 4.4. Suppose that the conditions in Theorem 4.3 are satisfied. For

t € (0, 7], va(TPR,(c, B;) — TPR(c, ), FPR,(c, i) — FPRy(c, 3;))" converges to a bi-

variate Gaussian process in ¢ with mean zero and variance-covariance matrix Eﬁ)(c),

where £ (c) is

OTPRy(c, Bt)
9B

aFPRt(C, 00t>

(VYR AD (¢, 3, + 55

Cou ((A:‘F)<c, B+ m(?’)-lww)
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with
Ag)(c, ﬁ) _ (I(ﬂTY; > C) — FPRt<C, ﬁ)?g(fz)(Xz, (Sz,t)fy( ) + ST<t|Y>> and
#(2) _ (I(B"Yi > ¢) = TPR(c, ) (1 — Sr(t[Y3)) — & (Xi, 6, t) frr(Y2))
Ati (Cvﬂ)_ 1—ST(t) .

Moreover, \/n(6,(3;) — 6,(3;)) converges to a normal distribution with mean zero and

: 2
variance Var(vi(t )), where

o _ B G) + hE 801X 85 il + g5, (V)€ (X, 61, ) fr (Vi) — 2087 (5)
v Se(t)(1 = 51(1)
St(tY;) + & (Xy, 0, ) fy (Vi) — S7(t)
21— 5 (1)) |

Proof. Let

Z@{t(ca ﬁ) = \/E(FPRt(Ca ﬁ) - FPRt(Ca ﬁ))
From Lemma A, Z g5, (¢, B) has the following asymptotic representation

\/_ Z (I(B7Y; > ¢) — FPRy(c, B))(Sr(1]Y;) + [ (V7))
Sr(t) .

(4.27)
2 it

By the decomposition of a U-statistic into the sum of degenerate U-statistics and
Corollary 4 of Sherman (1994a), the term in (4.27) can be further approximated by
n=125" A% (¢, 3). The functional central limit theorem ensures that Z 7, (6 0)
converges weakly to a Gaussian process in (¢, 3). From Theorems 4.3 and the equicon-
tinuity of Z;, (¢, 8) in (c, 0;), \/ﬁ(@(c, 3,)— FPRy(c, ,)) is shown to be uniformly
equivalent to

7 AR 80 + P (4.28)

Similar to the derivation for (4.28), \/ﬁ(@t(c, @) — TPRy(c, 3¢)) has the following

asymptotic representation

R~ #(2) OTPR;(c, () 177/(2)
%;(An‘ (c,B:) + T( ). (4.29)
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Form (4.29), it can be shown that \/E(T{PE(C, B\t)—TPRt(c, Br), @(C, @)—FPRt(C, BT
converges weakly to bivariate Gaussian processes in c.
From (4.26) and ||§t — Bil| = 0,(n~Y?), one has

Va(HP () — b (8) = Va(HP (B) — b (5)) + 0p(1). (4.30)

By Lemma A and (4.30), the asymptotic representation of \/ﬁ(é\t(@) — 6,(0)) is

derived as

f Z 3 <1+f“>< Vi) = h?(3)  Se(tY)(1+ £5 () = Se(®)
()1 =S¢ (1)) 20— 51

). (4.31)
3 itjtk
Since the random quantity in (4.31) is a mean zero U-statistics, it can be approximated

by n=1/23" Uft and, hence, the theorem is obtained. O

Since the asymptotic variance-covariance matrices of Bt, Zfﬁ/Rt(c, Bt), 1?]3]%(0, Bt),
B, T/PE(C, Bt), and Z@(c, B\t) involve the derivatives of unknown quantities, which
are complicated and hard to estimate directly under the nonparametric setting, the
bootstrap variance estimates are considered in our numerical studies and applications.
It is found from (4.18) and (4.30) that 3, and f, have no effect on the asymptotic
variances of the corresponding classification accuracies @(B\t) and 6,(3,). That is, the
performance of BtT Y or B;T Y are asymptotically equivalent to the ”observed” true
linear predictors. Thus, the statistical inferences for 6;(;) can be made through the

methods developed in Chapter 2 directly.

Lemma A. Suppose that assumptions (A1)-(A2) are satisfied. For t € (0, 7],

Sr(tly) — Sr(tly) = me )+ 1t ), (4.32)

where £V (y) = &,(Xi, 6, ) Ka(Yi —y) — E€,(Xi, 6, ) K(Y; — )] and sup, [ra(t, )|
O,(Inn/(nA},) with &(X;,8;,t) = —Sr(tly) fo duMi(u,y)/Sx(u,y) and M;(t,y)
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Proof. Paralleling the proof of Theorem 3.2 in Du and Akritas (2002), one can derive
that Sy (tly) —Sr(tly) = 1= Y0 &(Xe, 61, ) K (Yimy) 415 (¢, ) with sup, [ (£, )| =
O,(Inn/(nA%,)). By assumption (Al) and the property E[&y,(X;,d;,t)|Y:] = 0, we
have sup,, |E[&y, (X, i, t) Kx(Y; — y)]| = O(A*1) and, hence, (4.32). O



Chapter 5
Simulations and Applications

We conduct a series of Monte Carlo simulations to investigate the finite sample prop-
erties of the proposed estimators and inference procedures. Two empirical examples
form the Angiography CAD Study and the ACTG 175 Study are analyzed to demon-

strate the usefulness of our methodologies.

5.1 Monte Carlo Simulations

In the succeeding numerical studies, data are repeatedly generated 500 times in each
simulation setting. The performances of our methods are evaluated under different
sample sizes (n = 250 and 500), censoring rates (c.r. = 30% and 50%), and censoring
mechanisms over various time points ¢,’s and time intervals. In the exhibited tables,

tq is used to denote the gth quantile of the failure time 7.

5.1.1 Scenario I - Time-Dependent AUC and PAUC

For the time-dependent AUC and PAUC, the continuous biomarker Y is generated
from a standard normal distribution. Conditioning on Y =y, T" and C are indepen-
dently generated from a lognormal distribution with parameters p = —0.22y and 0 =

0.3, and an exponential distribution with scale parameter b{2I(y < 0) + I(y > 0)}.

41
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Moreover, under totally independent censoring, C' is independently generated from
another exponential distribution with scale parameter b. The constant b is mainly
used to control the expected censoring rates. With o =0.1, 0.3, and 1, the estimators
@(qAat) and é;(f[at) are evaluated at the selected time points tg4, tos, and tgg. More-
over, the simultaneous confidence bands for 6;(q,) over the subintervals [t 4, to5] and
[to.4,t0.6] of interest are constructed. Since a small portion of cases or controls occur
outside [to.4, to¢], the simulation results are only presented within this time period.
Since the smoothing estimator S(t|y) is involved in the estimator @(Z]\at), an ap-
propriate smoothing parameter becomes necessary. It usually attempts to select a
bandwidth that minimizes the asymptotic mean squared error of an estimator, which
is obtained by using the plug-in method for unknown parameters. This approach,
however, would lead to further bandwidth selection problems and is infeasible in
our current setting. Here, we propose a simple and easily implemented data-driven
method to find a bandwidth A,, which is the minimizer of the integrated squared

ISE()) = / {8.u) — (1 — w)}2dN,(u). (5.1)

where S.(u) is the Kaplan-Meier estimator computed based on the data {e;, d;}™,,
e, = 1 — §;_i)(Xi|Y;), §}_i)(t|y) is obtained as Sp(t|y) with the ith observation
(X;, 6, Y;) being deleted, and Ng;(u) = 6;1(e; < u). The rationale behind (5.1) is
that {1 — Sp(X;]Y;), 0}, can be shown to be an independent censored sample from
a standard uniform distribution under the validity of marker-dependent censoring.
To assess the performance of (5.1), the estimators (o) and Was(t)’s are computed
using the cross-validation bandwidth A, and the subjective ones of 0.01 and 0.2.
Tables 5.1-5.4 summarize the simulation results under the setting of totally in-
dependent censoring. It can be found that @;(E[at) and @(Ejat) with A = A, have
relatively small biases especially for small a. These tables also show that the stan-
dard deviations of both 6;(g.;) and @(qAat) are are very close to the averages of 3% (¢, 1)
and S, (t,t). The standard deviation of 6,(gu;) is found to be sightly smaller than
that of @(qAat) Interestingly, the performance of /Q;(Z]\at) is stable with high censoring
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rate while the standard deviation becomes larger. Compare with é\t(@at), the bias of
é;(f[at) is more serious to heavy censoring. The empirical pointwise and simultaneous
coverage probabilities of @(@at) are further shown to be closer to the nominal level
0.95 than those of @;(E]’at) especially for high censoring rate, and small quantile value
and sample size. Overall, the performance of these methods can be significantly im-
proved by increasing sample size. As for the smoothing estimators for 6;(q.;) with
A =0.01 and 0.2, the poor estimates are observed.

For the simulation setting of marker-dependent censoring, the related summary
statistics and empirical coverage probabilities are exhibited in tables 5.5-5.8. A similar
conclusion under totally independent censoring can be drawn for @(qAat) As for
the estimator g’;(fjat), an apparent bias arises especially for small . The biases of
@e(@o.u) and gt('qvo,lt) appear to be larger because they are computed based on small
proportion of subjects in control group. Furthermore, the coverage probabilities of
@(aat) systematically deviate from 0.95 even with large sample size. Although @(Zjat)
is robust to violation of marker-dependent censoring, the performance of é\t(fjat) in
our simulation setting is detected to be better. Generally, the proposed bandwidth

selection procedure provides satisfactory results.

5.1.2 Scenario II - Time-Dependent AUC Regression Model

A univariate covariate Z is set to follow an exponential distribution with scale param-
eter 0.5. Conditioning on Z and a Bernoulli latent variable v with parameter 0.5, T
and Y are separately generated from exponential distributions with scale parameters
37 and Z?. The censoring time C is designed to be an exponential distribution
with different scale parameters, which result in the expected censoring rates. The
Kaplan-Meier estimator Sc(t) is further used to estimate Sc(#]z*) and Gy(t, z*) =
—Sc(t) [3 dMey(u)/Sx (u) is used to estimate Gj(t, 2*) = —Sa(t) [y dMey(u)/Sx (u).
Under the above setting, it can be derived that the true model for 6,(Z;, Z;) has the

linear form

et(T)(Zi’ Z;) = Y Zij1 + Yeelijo + Vi3 Zijs + YeuZija,
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where Zijl = 1, Zijg = (1 + Z7;_2)_1, Zij3 = (1 + Zj2>_1, and Zij4 = ZZQ(ZZ2 —+ ZJ2>_1
with the corresponding coefficients v;1 = 0.125(e™" — e72!), 440 = 0.25(e™t — ™)

Y3 = 0.25(e73 — e74) and vy = 0.25(e73 — 7). In the simulation study, the true

Y

response function h™)(u) = u with the designed covariates Z;j;’s are used in model
(3.1) to estimate v,. Moreover, the logistic regression model h(W)(u) = e*/(1 + e%)
is considered as a working model. Both the true and working models are used to
estimate the scientific relevant measures Ht(T)(zo, 20), 20 = 1.5,2.5. We evaluate the
finite sample properties of the proposed estimators and inference procedures at the
selected time points tg .3, to.5, and tg 7.

It is indicated from table 5.9 that the estimators 7; behave well in the mid time
period no matter how the sample size and the censoring rate change. However,
apparent biases appear for times near the boundary due to the small sample size
and the high censoring rate. This situation is greatly improved as the sample size
increases. All the standard deviation is also found to be nicely estimated by our
proposed empirical estimation methods. With moderate sample size and censoring
rate, most of the empirical coverage probabilities of pointwise confidence intervals
are close to the nominal level of 0.95. It is further shown in table 5.12 that the
empirical coverage probabilities of the simultaneous confidence bands for the intreval
[to5,t0.6] are closer to the nominal level than those of [tys,to7]. As expected, the
adequacy of the constructed confidence bands relies on the change of sample size and
censoring rate. We further detect in tables 5.10-5.11 that the estimates g(T)(zo, 20)’s
and g(W)(zo, 2)’s computed based on A" (u) and h")(u), respectively, are close to
the corresponding true values 07)(zy, z9)’s. The strong performance of the time-
varying coefficient logistic regression model results in wide usages in applications and

is evidenced in our simulation study.
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5.1.3 Scenario Il - Optimal Composite Markers

In this simulation study, two markers Y; and Y5 are considered in the time-varying
coefficient EGLM. We first generate Z = (Z, Z»)” from a bivariate normal distribu-
tion with mean (—0.5, —2), standard deviation (0.22,0.25), and correlation coefficient
—0.7. Conditioning on Z, the failure time T is designed to follow a lognormal distri-
bution with parameters u(Z) = —(Z; + Z)/1.6 and 0*(Z) = exp(2Z5). The markers
Y) and Y3 are specified to be 1/0(Z) and —u(Z)/o(Z). Under the above design, the
linear composite marker of the form (Y; + (5;Y3) with 5, = 1/Int can be shown to
be optimal at time t. Under totally independent censoring, C' is generated from an
exponential distribution with scale parameter a. With marker-dependent censoring,
conditioning on (Y1,Y2) = (y1,42), C is generated from a gamma distribution with
shape parameter (y;/a) and scale parameter (y?/10). The constant a in both set-
tings is used to obtained the censoring rates of 30% and 50%. The estimators and
inference procedures are evaluated at selected time points of tg3, to5, and tg7. In
the estimation of Bt and @\t(@), the standard normal density function is used as a
kernel function. For the smoothing parameters involved in §T(t|y), an appropriate
selection procedure becomes necessary for simplifying the process and preventing the
investigators from arbitrarily choosing the bandwidth in practical implementation.
One possible method, for instance, is to select small enough smoothing parameters
so that Bt and Bt are comparable. In the current simulation study, the bandwidths
are all set to be 0.05.

Tables 5.13-5.14 exhibit the simulation results under totally independent censor-
ing. One can see that the biases of both estimators B\t and B; are quite small, whereas
the standard error of Bt is smaller than that of @. At the boundary time points, the
standard errors of both estimates Bt and B; become substantially large especially when
the sample size is small and the censoring rate is high. It can be observed that the
bootstrap method provides good estimates of the standard deviations. The empirical

coverage probabilities of the bootstrap confidence intervals are nearly the assigned
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nominal level of 0.95 with moderate sample size and censoring rate. A similar con-
clusion about the biases of @(B\t) and 6,(3,) can also be drawn. Here, the variation of
@(@) are detected to be slightly larger. The empirical coverage probabilities of the
constructed confidence intervals based on the bootstrap analogue of @(B\t) are more
close to the nominal level than those based on the bootstrap analogue of @;(Bt) As
one can expect, the performance of Et is generally better than that of B\t under totally
independent censoring while both estimators @(Bt) and 6,(3,) are comparable and
acceptable.

Simulation results under marker-dependent censoring are provided in tables 5.15-
5.16. One can see from these tables that the averages of Bt and @(Bt) are close to
the corresponding true values at the selected time points. Interestingly, the bias of
Bt is not apparent and shows the robustness against violation of marker-dependent
censoring. The bootstrap standard errors and the empirical coverage probabilities are
also close to the standard deviations of the estimators and the nominal level. On the
other hand, the estimator @(B}) is very sensitive to the violation of totally independent
censoring and is is evidenced by the occurrence of large biases. In summary, the
performance of é\t(@) is better under marker-dependent censoring, and Et is also
suggested to be used in the estimation due to its robustness. Omne advantage of

applying Et is that no complicated smoothing technique is involved.

5.2 Applications

5.2.1 ACTG 175 Study

We apply our methods to the data from the ACTG 175 study. Since patients with
lower CD4 cell counts are more likely to have a higher risk of AIDS or death, a strictly
decreasing transformation of CD4 cell counts, e.g. Y =-CD4, is used to ascertain that
most of the AUC values fall within the range of 0.5 to 1. In our analysis, a class of
appropriate survival models is applied to investigate the relationship between the

censoring time and the CD4 cell counts, and no apparent association is detected.
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We thus assume that totally independent censorship is reasonable and the estimator
é;(f[at) is suggested to be used in this analysis. Due to a small number of failures
and large variation of estimators at the initial weeks, we only provide the estimates
within the time period after week 98. The nonparametric estimates of AUCs for all
patients are displayed in figure 5.3 (a) together with the corresponding 0.95 pointwise
and simultaneous confidence intervals, which are constructed from (2.25) and (2.28).
A high classification accuracy curve of CD4 cell counts throughout appears within
the time period of interest.

Let Y and Y® be the CD4 cell biomarkers of non—therapy and therapy patients
with the corresponding time-dependent PAUCs 6" (¢\})) and 6" (¢{?). Our aim in
this data study is to evaluate the effect of prior therapy on the classification accuracy
of CD4 cell counts. Currently, there is still no standard of clinically meaningful values
of FPR for the PAUC in AIDS research, we consider the time-dependent PAUC with
FPR less than 0.1, 0.3, and 1. Based on two independent data sets {XZ.(I), 651), v :”1

2

and {X? 6 YP}"2  the confidence intervals for 8 (¢*))’s are constructed and
compared with /2. Tt is detected from figure 5.1 that the time-dependent PAUCs
9( )(qat ) and 9 (qat) are significantly higher than 0.502 for all a during the time
period of interest. This indicates that CD4 cell counts are useful in classifying pa-
tient’s survival time for all patients. For patients without prior therapy, a decreasing
trend in 9( (qat)) over time is detected especially for small a. The decreasing trend
is also found for 915 (qat ) before week 155, but it appears to increase after that time.
For the time-dependent AUC, this classification measures stay very close to a con-
stant throughout the study period for both groups. In view of the time-dependent
AUC, the classification ability of CD4 cell counts seems to be irrelevant to the time
parameter ¢t.

The difference in the classification accuracies of Y and Y can be further
measured by the summary index v, (t) = oL (qat )— 6% (qat ). It is natural to estimate
Yalt) by Fu(t) = 9(1 (qat ) — 9( )(E]ﬁ ). Along the same lines as the proof in Section

2.2, we can derive that /n(7,(t) — va(t)) converges weakly to a mean zero Gaussian
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process in t with variance-covariance function

Ta(s.0) = B (5w 0] +

(e%2

B[, ()2 (1)) (5.2)

a

provided that ny/n — £ (0 < k < 1) as n = (ny + na) — oo, where ¥ (1) is a
counterpart of WZ.(t), k = 1,2. To make inference on ~,(t), I'%(s,t) is first estimated
by

22\11 o +—QZ\11 (). (5.3)

A (1—¢) pointwise confidence interval for v,(¢) and a (1 —¢) simultaneous confidence

band for {7,(t) : t € [71, T2]} are separately given via

and {7, L?)\/ @ (tem, ) (5.4)

with L being obtained as that in (2.4). Tt is revealed in figures 5.2 (a)-(c) that
only 7,(t) with @=0.1 and 0.3 tend to be positive before week 155 but the difference

704 :I: Zc/2

becomes negligible for all a’s after that week. Thus, with small values of F'PR,(y),
a prior antiretroviral therapy might lower the performance of CD4 cell counts in
classifying subject’s t-week survival. One possible explanation for this conclusion is
that the prior therapy makes patients more homogeneous in survival time and CD4
cell counts. For long term survival classification, the performance of CD4 cell counts
is irrelevant to whether patients receive prior therapy or not. Since no significant
difference between 6" (qat ) and IS (qézt)) exists, it would necessitate increasing sample
size to detect a difference between the time-dependent PAUCs.

To characterize the effect of the therapy status (Z = 1 indicates a patient with
prior therapy and 0 otherwise) on the classification accuracy of CD4 cell counts, we

consider a saturated time-varying coefficient logistic regression model

exp(vu + Vel + Vs + YuliZ;)

0.2, Z;
( )= 1 +exp(va + Ve li + Vs Zj + yuZiZ;)

4 F ],
As evidenced by our numerical study, the performance of this working model is gener-

ally good in the estimation of 6,(Z;, Z;). A positive linear combination of coefficients
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Y2 + Y3 + Y (figure 5.3 (b)) means that the CD4 cell counts of patients with a
prior therapy are more sensitive in classifying failure status than those without. We
find that CD4 cell counts perform better among patients with a prior therapy ex-
cept for weeks 118-152. However, the difference is not significant enough and the
same conclusion can be drawn based on the nonparametric estimate of 7,(¢). Using
the time-varying coefficient logistic regression model, the estimated time-dependent
AUCs are given in figures 5.3 (¢)-(d). These figures show the appropriateness of model

specification because the same patter as obtained by nonparametric methods (figures

5.1 (e)-()).

5.2.2 Angiography CAD Study

The main objective of this study is to evaluate the classification abilities of CRP, SAA,
IL-6, and tHcy on the CAD-related vital status over time. Let H(CRP Gt(SAA), 9§IL'6),
and 0, (tHey) Jenote the time-dependent AUCs of CRP, SAA, IL-6, and tHcy, respec-

tively. Nonparametric estimates of the quantities (H(CRP), gt(SAA), %IL'G) 0, p{tHey) ) based

on 0(Gr;) and (9", gAY -0 gUHN)Y based on 6,(qi;), which are computed un-

der the validity of totally independent censoring and marker-dependent censoring, are

(1Y) is the highest at the beginning

displayed in figures 5.4-5.5. The estimates of 6,
and decreases rapidly from 0.732 to 0.643, and the estimates of other biomarkers are
all lower than 0.7. The comparable estimates are found in these figures and imply
the first estimation approach is robust against violation of marker-dependent censor-
ing. The results of statistical analysis in the paper of Lee, et al. (2006) indicated
that the performance of IL-6 is superior than the other biomarkers. This conclusion
is also evidenced in our analysis in which the classification accuracy of IL-6 is the
largestat the end of study. We further detect that the plasma biomarker of tHcy
has the best classification power at the stating time period. It can be seen that the
time-dependent AUC of CRP and tHcy have a decreasing trend while that of IL-6 has

an increasing trend. As for that of SAA, the estimates seem to stably stay around

0.6. The constructed 0.95 confidence intervals show that all plasma biomarkers are
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indicative of disease over time.

To further improve the classification accuracy of multiple plasma biomarkers, we
search for combinations of these biomarkers through a very flexible time-varying co-
efficient EGLM in (4.1) for the conditional survival distribution. In the numerical
implementation, the linear predictors without considering tHcy are not likely to be
optimal composite biomarker. For the sake of identifiability, the coefficient of tHcy
in the linear predictor is set to be one. The smoothing parameters for Bt are all set
to be 0.05 and a bootstrap sampling is carried out to compute the standard errors
of the estimators and construct the confidence intervals of the parameter functions.
The analysis results are exhibited in tables 5.17-5.18. One can see that form table
5.17 that CRP and IL-6 are negatively and positively, respectively, associated with
CAD-related death and significantly classify the CAD-related vital status after about
day 1500 and day 2000. Except at the small period around day 2000, the effect of
SAA is generally nonsignificant. Moreover, tHey is detected to have an overall supe-
rior classification capacity within the study period. It is found in table 5.18 that the
estimated values 6,(3,) and 8,(3,) decline as time progresses and are higher than 0.7
before day 3500, which demonstrate the advantage from combining biomarkers.

The appropriateness of a time-varying coefficient logistic regression model is also
investigated via comparing the estimated linear predictors By tHey+ 3,2 CRP+ 35 SAA+
BilL-6 of Chiang and Huang (2009) with those of optimal linear predictors and the
corresponding estimates of the time-dependent AUCs. The estimated coefficients im-
ply a rather similar biological explanation. Although the estimated values é\t(@t) and
0,(3;) are found to be relatively lower than @(@) and 6,(6,), they are not significantly
different from our estimates within the study period. The time-varying coefficient
logistic regression model might be a suitable working model to characterize the con-

ditional survival distribution.
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Table 5.1: The averages (Mean) and the standard deviations (SD) of 500 estimates,
the averages of 500 standard errors (SE) of estimators, and the empirical coverage
probabilities (CP) under totally independent censoring

a=0.1 cr.=30%
n 250 500
ty  0:(qat) Mean SD SE CP  Mean SD SE CP
toa 0.0264 0.0276 0.0070 0.0048 0.826 0.0270 0.0049 0.0039 0.876
é\t(f]\at) tos 0.0269 0.0284 0.0071 0.0048 0.810 0.0275 0.0051 0.0038 0.846
(0.01) toe 0.0279 0.0293 0.0071 0.0050 0.808 0.0284 0.0053 0.0040 0.864
toa 0.0264 0.0221 0.0064 0.0078 0.942 0.0234 0.0047 0.0056 0.952
@(@at) tos 0.0269 0.0233 0.0068 0.0074 0.918 0.0244 0.0048 0.0054 0.942
(Aopt)  tos 0.0279 0.0252 0.0076 0.0072 0.886 0.0258 0.0052 0.0054 0.910
toxa 0.0264 0.0193 0.0043 0.0082 0.966 0.0189 0.0029 0.0059 0.872
@(@at) tos 0.0269 0.0210 0.0051 0.0077 0.932 0.0202 0.0036 0.0057 0.846
(0.2) toe 0.0279 0.0228 0.0059 0.0076 0.914 0.0218 0.0041 0.0058 0.854
tosa 0.0264 0.0293 0.0070 0.0069 0.928 0.0279 0.0048 0.0048 0.928
gt(ffat) tos 0.0269 0.0306 0.0076 0.0071 0.880 0.0287 0.0049 0.0050 0.918
tos 0.0279 0.0332 0.0088 0.0075 0.832 0.0301 0.0056 0.0054 0.910
a=0.1 cr. =50%
n 250 500
ty  0:(qat) Mean SD SE CP  Mean SD SE CP
toa 0.0264 0.0272 0.0073 0.0049 0.802 0.0268 0.0051 0.0040 0.880
é\t(fj\at) tos 0.0269 0.0271 0.0075 0.0050 0.786 0.0271 0.0056 0.0040 0.820
(0.01) toe 0.0279 0.0268 0.0082 0.0051 0.756 0.0278 0.0062 0.0042 0.798
toa 0.0264 0.0223 0.0070 0.0085 0.944 0.0234 0.0055 0.0062 0.944
é\t(f]\at) tos 0.0269 0.0235 0.0077 0.0081 0.910 0.0243 0.0057 0.0060 0.920
()\opt) tos 0.0279 0.0251 0.0086 0.0080 0.884 0.0257 0.0060 0.0059 0.906
toa 0.0264 0.0192 0.0046 0.0091 0964 0.0186 0.0032 0.0066 0.894
é\t(f]\at) tos 0.0269 0.0209 0.0055 0.0087 0.958 0.0200 0.0040 0.0064 0.878
(0.2) toe 0.0279 0.0227 0.0069 0.0085 0.914 0.0221 0.0049 0.0065 0.896
toa 0.0264 0.0304 0.0080 0.0081 0.922 0.0284 0.0060 0.0055 0.916
@(Z]at) tos 0.0269 0.0319 0.0091 0.0083 0.882 0.0292 0.0062 0.0057 0.920
tos 0.0279 0.0349 0.0106 0.0091 0.830 0.0312 0.0063 0.0062 0.908
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Table 5.2: The averages (Mean) and the standard deviations (SD) of 500 estimates,
the averages of 500 standard errors (SE) of estimators, and the empirical coverage
probabilities (CP) under totally independent censoring

a=0.3 cr.=30%
n 250 500
ty  0:(qat) Mean SD SE CP  Mean SD SE CP
toa 0.1420 0.1436 0.0192 0.0138 0.836 0.1433 0.0134 0.0115 0.908
é\t(Z]\at) tos 0.1423 0.1441 0.0190 0.0135 0.842 0.1434 0.0138 0.0111 0.886
(0.01) toe 0.1446 0.1451 0.0195 0.0138 0.820 0.1450 0.0140 0.0112 0.880
toa 0.1420 0.1331 0.0197 0.0215 0.958 0.1366 0.0136 0.0149 0.960
/Q\t(qAat) tos 0.1423 0.1341 0.0202 0.0203 0.940 0.1376 0.0136 0.0142 0.960
()\opt) tos 0.1446 0.1376 0.0210 0.0201 0.924 0.1403 0.0144 0.0143 0.940
toa 0.1420 0.1266 0.0164 0.0230 0.974 0.1257 0.0115 0.0166 0.920
/Q\t(qAat) tos 0.1423 0.1294 0.0172 0.0215 0.954 0.1277 0.0125 0.0157 0.902
(0.2) tpe 0.1446 0.1329 0.0183 0.0211 0.956 0.1309 0.0131 0.0157 0.914
toa 0.1420 0.1474 0.0187 0.0192 0.936 0.1448 0.0130 0.0134 0.952
gt(fjat) tos 0.1423 0.1480 0.0194 0.0191 0.928 0.1456 0.0135 0.0135 0.934
tos 0.1446 0.1523 0.0210 0.0199 0.900 0.1483 0.0145 0.0141 0.928
a=03 cr.=50%
n 250 500
ty  0:(qat) Mean SD SE CP  Mean SD SE CP
toa 0.1420 0.1422 0.0211 0.0145 0.820 0.1423 0.0140 0.0120 0.908
@(Z]\at) tos 0.1423 0.1414 0.0207 0.0142 0.814 0.1420 0.0148 0.0117 0.874
(0.01) toe 0.1446 0.1396 0.0233 0.0146 0.762 0.1437 0.0162 0.0119 0.848
toa 0.1420 0.1325 0.0217 0.0238 0.956 0.1355 0.0156 0.0166 0.952
é\t(f]\at) tos 0.1423 0.1345 0.0228 0.0228 0.932 0.1366 0.0157 0.0161 0.946
()\opt) tos 0.1446 0.1372 0.0235 0.0226 0.928 0.1391 0.0161 0.0162 0.948
toa 0.1420 0.1263 0.0180 0.0257 0972 0.1246 0.0125 0.0186 0.944
é\t(Z]\at) tos 0.1423 0.1296 0.0186 0.0244 0.968 0.1269 0.0135 0.0178 0.930
(0.2) toe 0.1446 0.1325 0.0217 0.0241 0.954 0.1317 0.0152 0.0179 0.926
toa 0.1420 0.1477 0.0217 0.0220 0.942 0.1448 0.0156 0.0154 0.938
@;(?jat) tos 0.1423 0.1503 0.0229 0.0226 0.926 0.1458 0.0160 0.0158 0.938
tos 0.1446 0.1545 0.0247 0.0238 0.904 0.1490 0.0163 0.0168 0.940
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Table 5.3: The averages (Mean) and the standard deviations (SD) of 500 estimates,
the averages of 500 standard errors (SE) of estimators, and the empirical coverage
probabilities (CP) under totally independent censoring

a=1 cr.=30%
n 250 500
ty  0:(qat) Mean SD SE CP  Mean SD SE CP
toa 0.7769 0.7765 0.0345 0.0255 0.842 0.7773 0.0236 0.0211 0.912
é\t(f]\at) tos 0.7746 0.7742 0.0341 0.0250 0.832 0.7748 0.0242 0.0205 0.884
(0.01) toe 0.7765 0.7732 0.0345 0.0253 0.854 0.7758 0.0242 0.0205 0.892
toa 0.7769 0.7574 0.0374 0.0388 0.962 0.7660 0.0259 0.0263 0.946
/Q\t(@at) tos 0.7746 0.7541 0.0386 0.0381 0.946 0.7639 0.0251 0.0258 0.954
(Aopt)  tos 0.7765 0.7565 0.0385 0.0389 0.940 0.7648 0.0265 0.0265 0.948
toa 0.7769 0.7455 0.0334 0.0419 0964 0.7451 0.0232 0.0299 0.914
/Q\t(@at) tos 0.7746 0.7447 0.0332 0.0409 0968 0.7431 0.0241 0.0295 0.904
(0.2) toe 0.7765 0.7456 0.0341 0.0420 0.964 0.7445 0.0242 0.0303 0.902
toa 0.7769 0.7800 0.0326 0.0340 0946 0.7790 0.0237 0.0239 0.944
gt(ffat) tos 0.7746 0.7766 0.0343 0.0339 0.946 0.7770 0.0237 0.0238 0.948
tos 0.7765 0.7794 0.0345 0.0349 0.934 0.7781 0.0250 0.0246 0.938
a=1 cr. =50%
n 250 500
ty  0:(qat) Mean SD SE CP  Mean SD SE CP
toa 0.7769 0.7745 0.0378 0.0266 0.838 0.7765 0.0258 0.0221 0.896
é\t(f]\at) tos 0.7746 0.7712 0.0371 0.0261 0.818 0.7733 0.0267 0.0215 0.890
(0.01) toe 0.7765 0.7651 0.0414 0.0268 0.782 0.7738 0.0282 0.0216 0.880
toa 0.7769 0.7566 0.0413 0.0434 0.958 0.7639 0.0278 0.0297 0.962
é\t(f]\at) tos 0.7746 0.7553 0.0426 0.0428 0.948 0.7614 0.0290 0.0295 0.954
()\opt) tos 0.7765 0.7538 0.0437 0.0444 0.956 0.7619 0.0299 0.0306 0.952
toa 0.7769 0.7451 0.0369 0.0467 0.968 0.7437 0.0255 0.0337 0.936
é\t(f]\at) tos 0.7746 0.7460 0.0362 0.0460 0.974 0.7423 0.0262 0.0334 0.932
(0.2) toe 0.7765 0.7457 0.0403 0.0478 0.976 0.7459 0.0277 0.0347 0.944
toa 0.7769 0.7785 0.0379 0.0390 0.946 0.7775 0.0267 0.0274 0.962
@(Z]at) tos 0.7746 0.7772 0.0393 0.0395 0.946 0.7749 0.0282 0.0279 0.936
to 0.7765 0.7762 0.0426 0.0416 0.942 0.7755 0.0291 0.0293 0.946
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Table 5.4: The empirical coverage probabilities of 0.95 simultaneous confidence bands
under totally independent censoring

c.r. = 30% n = 250 n = 500

a  [toa.tos] [toa,tos) [toa,tos] [toa,tos]

0.1 0.718 0.664 0.812 0.792

0:G) 0.3 0794 0750  0.862  0.840

(0.01) 1 0.818 0.792 0.904 0.878

0.1 0.916 0.882 0.932 0.930

G:(G) 0.3 0946 0930 0962  0.952

()\Opt) 1 0.956 0.942 0.952 0.958

0.1 0.930 0.920 0.882 0.866

G:G) 0.3 0962 0960 0932  0.928

02) 1 0966 0964 0918  0.924

0.1 0.860 0.812 0.906 0.884

0,(G) 0.3 0922  0.892 0928  0.918

1 0.940 0.924 0.926 0.924

c.r. = 50% n = 250 n = 500

a  [toa,tos] [toa tos] [toa,tos] [toa,tos)

0.1 0.714 0.650 0.772 0.712

6:G) 0.3 0728  0.672 0832  0.806

0.01) 1 0760 0722 0854  0.824

0.1 0.908 0.876 0.914 0.892

G:(Gw) 0.3 0936 0916 0936  0.934

Qo) 1 0960 0952 0962  0.956

0.1 0.950 0.922 0.884 0.896

Gi(G) 0.3 0974 0970 0928  0.926

(0.2) 1 0.978 0.980 0.948 0.954

0.1 0.850 0.788 0.868 0.854

Gi(G) 03 0.898  0.884 0928 0918

1 0.946 0.932 0.940 0.942
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Table 5.5: The averages (Mean) and the standard deviations (SD) of 500 estimates,
the averages of 500 standard errors (SE) of estimators, and the empirical coverage
probabilities (CP) under marker-dependent censoring

a=0.1 cr.=30%
n 250 500
ty  0:(qat) Mean SD SE CP  Mean SD SE CP
toa 0.0264 0.0274 0.0073 0.0048 0.796 0.0268 0.0052 0.0040 0.834
é\t(f]\at) tos 0.0269 0.0276 0.0073 0.0048 0.794 0.0272 0.0055 0.0040 0.846
(0.01) toe 0.0279 0.0282 0.0080 0.0049 0.738 0.0279 0.0055 0.0041 0.848
toa 0.0264 0.0219 0.0068 0.0081 0.954 0.0234 0.0050 0.0058 0.948
@(@at) tos 0.0269 0.0233 0.0070 0.0077 0.926 0.0248 0.0054 0.0056 0.932
(Aopt)  tos 0.0279 0.0252 0.0078 0.0075 0.890 0.0264 0.0055 0.0056 0.924
tox 0.0264 0.0192 0.0043 0.0086 0.974 0.0190 0.0032 0.0062 0.894
@(@at) tos 0.0269 0.0208 0.0053 0.0082 0.942 0.0203 0.0037 0.0061 0.868
(0.2) toe 0.0279 0.0231 0.0067 0.0082 0.918 0.0218 0.0045 0.0061 0.864
tox 0.0264 0.0301 0.0076 0.0082 0.940 0.0294 0.0052 0.0058 0.948
gt(ffat) tos 0.0269 0.0314 0.0077 0.0085 0.928 0.0301 0.0053 0.0060 0.932
tos 0.0279 0.0340 0.0084 0.0092 0.902 0.0314 0.0058 0.0065 0.940
a=0.1 cr. =50%
n 250 500
ty  0:(gat) Mean  SD SE CP  Mean  SD SE CP
tosa 0.0264 0.0258 0.0080 0.0050 0.760 0.0266 0.0062 0.0042 0.786
é\t(fj\at) tos 0.0269 0.0248 0.0079 0.0049 0.722 0.0268 0.0064 0.0041 0.772
(0.01) toe 0.0279 0.0238 0.0083 0.0050 0.668 0.0265 0.0066 0.0043 0.754
toa 0.0264 0.0233 0.0078 0.0093 0.954 0.0237 0.0057 0.0067 0.950
é\t(f]\at) tos 0.0269 0.0245 0.0086 0.0086 0.912 0.0250 0.0061 0.0064 0.918
(Aopt)  tos 0.0279 0.0268 0.0095 0.0081 0.864 0.0266 0.0071 0.0064 0.892
toa 0.0264 0.0195 0.0053 0.0098 0.970 0.0192 0.0037 0.0073 0.952
é\t(f]\at) tos 0.0269 0.0214 0.0066 0.0094 0.928 0.0209 0.0047 0.0071 0.932
(0.2) toe 0.0279 0.0235 0.0078 0.0090 0.906 0.0225 0.0056 0.0072 0.908
toa 0.0264 0.0337 0.0090 0.0116 0.934 0.0303 0.0060 0.0080 0.972
@(Z]at) tos 0.0269 0.0346 0.0093 0.0120 0.920 0.0310 0.0062 0.0085 0.986
tos 0.0279 0.0380 0.0099 0.0134 0.928 0.0330 0.0067 0.0095 0.978
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Table 5.6: The averages (Mean) and the standard deviations (SD) of 500 estimates,
the averages of 500 standard errors (SE) of estimators, and the empirical coverage
probabilities (CP) under marker-dependent censoring

a=0.3 cr.=30%
n 250 500
ty  0:(qat) Mean SD SE CP  Mean SD SE CP
toa 0.1420 0.1431 0.0197 0.0141 0.836 0.1424 0.0140 0.0116 0.880
@(q}t) tos 0.1423 0.1424 0.0197 0.0138 0.844 0.1427 0.0142 0.0113 0.874
(0.01) toe 0.1446 0.1429 0.0204 0.0141 0.830 0.1438 0.0137 0.0115 0.892
toa 0.1420 0.1318 0.0210 0.0223 0.952 0.1362 0.0144 0.0154 0.948
@\t(qAat) tos 0.1423 0.1337 0.0208 0.0210 0.938 0.1383 0.0150 0.0147 0.932
()\opt) to 0.1446 0.1374 0.0213 0.0207 0.930 0.1414 0.0143 0.0146 0.940
toa 0.1420 0.1272 0.0169 0.0242 0.982 0.1265 0.0122 0.0174 0.938
/Q\t(qAat) tos 0.1423 0.1297 0.0179 0.0227 0960 0.1281 0.0129 0.0164 0.914
(0.2) tpe 0.1446 0.1342 0.0191 0.0223 0.956 0.1310 0.0137 0.0164 0.916
toa 0.1420 0.1493 0.0200 0.0228 0.946 0.1496 0.0139 0.0159 0.950
gt(fjat) tos 0.1423 0.1504 0.0194 0.0221 0946 0.1494 0.0138 0.0156 0.952
tos 0.1446 0.1543 0.0197 0.0225 0.950 0.1515 0.0145 0.0159 0.930
a=03 cr.=50%
n 250 500
ty  0:(qat) Mean SD SE CP  Mean SD SE CP
toa 0.1420 0.1377 0.0226 0.0148 0.788 0.1417 0.0167 0.0122 0.826
é\t(fj\at) tos 0.1423 0.1330 0.0222 0.0145 0.768 0.1407 0.0168 0.0118 0.824
(0.01) toe 0.1446 0.1274 0.0231 0.0147 0.668 0.1389 0.0176 0.0120 0.796
toa 0.1420 0.1355 0.0238 0.0249 0.942 0.1369 0.0168 0.0176 0.948
é\t(f]\at) tos 0.1423 0.1366 0.0242 0.0235 0.928 0.1390 0.0173 0.0168 0.934
()\opt) tos 0.1446 0.1410 0.0247 0.0228 0916 0.1418 0.0184 0.0169 0.928
toa 0.1420 0.1278 0.0196 0.0275 0974 0.1273 0.0137 0.0201 0.968
é\t(f]\at) tos 0.1423 0.1306 0.0212 0.0257 0.960 0.1295 0.0154 0.0190 0.954
(0.2) toe 0.1446 0.1340 0.0227 0.0249 0.948 0.1321 0.0163 0.0190 0.938
toa 0.1420 0.1569 0.0232 0.0297 0.948 0.1523 0.0157 0.0212 0.964
@;(?jat) tos 0.1423 0.1570 0.0231 0.0286 0.946 0.1521 0.0154 0.0203 0.958
tos 0.1446 0.1615 0.0234 0.0284 0.936 0.1541 0.0163 0.0203 0.944
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Table 5.7: The averages (Mean) and the standard deviations (SD) of 500 estimates,
the averages of 500 standard errors (SE) of estimators, and the empirical coverage
probabilities (CP) under marker-dependent censoring

a=1 cr.=30%
n 250 500
ty  0:(qat) Mean SD SE CP  Mean SD SE CP
toa 0.7769 0.7775 0.0355 0.0256 0.874 0.7760 0.0244 0.0212 0.926
é\t(f]\at) tos 0.7746 0.7729 0.0352 0.0252 0.844 0.7746 0.0238 0.0205 0.906
(0.01) toe 0.7765 0.7708 0.0353 0.0256 0.858 0.7743 0.0247 0.0207 0.886
toa 0.7769 0.7555 0.0398 0.0396 0.940 0.7665 0.0263 0.0268 0.948
/Q\t(@at) tos 0.7746 0.7531 0.0391 0.0387 0.934 0.7631 0.0263 0.0264 0.946
(Aopt)  tos 0.7765 0.7557 0.0385 0.0392 0.946 0.7633 0.0269 0.0270 0.944
toa 0.7769 0.7479 0.0341 0.0426 0.968 0.7436 0.0237 0.0305 0.888
/Q\t(@at) tos 0.7746 0.7461 0.0341 0.0415 0956 0.7431 0.0236 0.0298 0.894
(0.2) toe 0.7765 0.7486 0.0339 0.0422 0.968 0.7442 0.0242 0.0306 0.908
toa 0.7769 0.7827 0.0353 0.0345 0.918 0.7853 0.0242 0.0241 0.920
gt(ffat) tos 0.7746 0.7792 0.0342 0.0342 0.942 0.7812 0.0240 0.0239 0.930
tos 0.7765 0.7811 0.0336 0.0349 0.950 0.7809 0.0246 0.0245 0.918
a=1 cr. =50%
n 250 500
ty  0:(qat) Mean SD SE CP  Mean SD SE CP
toa 0.7769 0.7658 0.0419 0.0272 0.788 0.7755 0.0280 0.0222 0.866
é\t(f]\at) tos 0.7746 0.7554 0.0408 0.0271 0.760 0.7682 0.0288 0.0218 0.854
(0.01) toe 0.7765 0.7418 0.0435 0.0281 0.660 0.7621 0.0308 0.0223 0.824
toa 0.7769 0.7605 0.0438 0.0434 0.944 0.7650 0.0298 0.0304 0.956
é\t(f]\at) tos 0.7746 0.7576 0.0441 0.0425 0.932 0.7621 0.0303 0.0301 0.942
()\opt) tos 0.7765 0.7607 0.0449 0.0429 0944 0.7626 0.0323 0.0310 0.934
toa 0.7769 0.7465 0.0393 0.0481 0.972 0.7457 0.0277 0.0346 0.930
é\t(f]\at) tos 0.7746 0.7455 0.0399 0.0467 0.968 0.7424 0.0280 0.0342 0.928
(0.2) toe 0.7765 0.7454 0.0413 0.0475 0.964 0.7420 0.0296 0.0351 0.924
toa 0.7769 0.7915 0.0398 0.0388 0.914 0.7879 0.0273 0.0276 0.936
@(Z]at) tos 0.7746 0.7859 0.0407 0.0388 0.908 0.7823 0.0268 0.0276 0.938
to 0.7765 0.7871 0.0413 0.0397 0.928 0.7808 0.0285 0.0284 0.942
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Table 5.8: The empirical coverage probabilities of 0.95 simultaneous confidence bands
under marker-dependent censoring

c.r. = 30% n = 250 n = 500
a  [toa.tos] [toa,tos) [toa,tos] [toa,tos]

0.1 0.710 0.606 0.800 0.754

0:(G) 03 0780 0734 0860  0.838
(0.01) 1 0.834 0.802 0.890 0.868
0.1 0.918 0.878 0.936 0.908

G:(Ge) 0.3 0932 0918 0946  0.936
()\Opt) 1 0.946 0.942 0.948 0.946
0.1 0.946 0.924 0.888 0.878

0:(G) 03 0970 0966 0934  0.936
(0.2) 10970 0976 0914  0.922
0.1 0.912 0.888 0.912 0.900

0,(Ge) 0.3 0938 0932 0944  0.940
1 0.914 0.922 0.910 0.908

c.r. = 50% n = 250 n = 500
a  [toa,tos] [toa tos] [toa,tos] [toa,tos)

0.1 0.616 0.520 0.702 0.614

:G) 0.3 0670 0584 0774 0.720
001) 1 0712 0610 0850  0.794
0.1 0.916 0.844 0.908 0.878

G:G) 0.3 0926 0.900  0.940  0.928
Qo) 1 0940 0924 0958  0.954
0.1 0.938 0.896 0.940 0.896

6:(G) 03 0964 0948  0.966  0.952
02) 1 0972 0968 0946  0.942
0.1 0.920 0.904 0.970 0.972

G:(G) 03 0950 0932 0968  0.952
1 0.884 0.878 0.918 0.916
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Table 5.9: The averages (Mean) and standard deviations (SD) of 500 estimates,
the averages of 500 standard errors (SE) of estimators, and the empirical coverage
probabilities (CP) of 0.95 pointwise confidence intervals of 7;

cr. = 30%

n 250 500
tq Vi Mean  SD SE CP Mean SD SE Cp
toz 0.086 0.088 0.054 0.053 0.948 0.086 0.037 0.037 0.942
Y tos 0.111 0.112 0.051 0.054 0.952 0.112 0.038 0.038 0.938
tor 0.157 0.162 0.067 0.070 0.944 0.161 0.047 0.049 0.940
tos 0.115 0.117 0.083 0.080 0.928 0.114 0.054 0.055 0.948
Y2 tos 0.099 0.101 0.079 0.080 0.956 0.098 0.054 0.054 0.960
tor 0.063 0.058 0.103 0.105 0.946 0.063 0.071 0.072 0.954
tos 0427 0.425 0.104 0.101 0.932 0430 0.073 0.071 0.948
Y3 tos 0.469 0.463 0.104 0.102 0.930 0.473 0.073 0.072 0.944
tor 0.518 0.521 0.123 0.119 0.912 0.521 0.084 0.083 0.940
tos 0.286 0.284 0.111 0.108 0.940 0.284 0.076 0.075 0.940
Y tos 0211 0.212 0.110 0.108 0.938 0.208 0.074 0.075 0.954
tor 0.105 0.099 0.131 0.125 0.934 0.100 0.093 0.088 0.908

cr. =50%

n=250 n=>500
tq Vi Mean  SD SE CP  Mean SD SE CpP
tos 0.086 0.089 0.057 0.057 0.932 0.085 0.038 0.040 0.946
Y1 tos 0.111 0.115 0.064 0.063 0.934 0.108 0.041 0.044 0.942
to.r 0.157 0.151 0.106 0.099 0.904 0.156 0.073 0.069 0.912
tos 0.115 0.109 0.085 0.085 0.928 0.116 0.057 0.059 0.954
V2 tos 0.099 0.096 0.098 0.095 0.936 0.102 0.063 0.066 0.944
tor 0.063 0.075 0.177 0.155 0.910 0.066 0.111 0.108 0.934
tog 0.427 0.418 0.109 0.110 0.952 0.429 0.073 0.076 0.954
Y3 tos 0.469 0.470 0.120 0.122 0.950 0.471 0.082 0.085 0.962
tor 0.518 0.519 0.179 0.166 0.910 0.517 0.119 0.120 0.924
tos 0.286 0.301 0.122 0.117 0.922 0.287 0.081 0.082 0.952
Y tos 0.211  0.216 0.132 0.131 0.950 0.210 0.091 0.091 0.944
tor 0.105 0.112 0.196 0.179 0.906 0.108 0.133 0.131 0.930
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Table 5.10: The averages (Mean) and standard deviations (SD) of 500 estimates

6"

.’ (20, 20)’s, the averages of 500 standard errors (SE) of estimators, and the empirical

coverage probabilities (CP) of 0.95 pointwise confidence intervals

cr. = 30%
n 250 500
z t, O(tlz,z) Mean SD SE CP Mean SD SE CP
tos  0.560  0.560 0.038 0.038 0.934 0.561 0.026 0.027 0.950
1.5 tos 0.571  0.570 0.038 0.038 0.950 0.573 0.027 0.027 0.938
to7  0.587  0.590 0.046 0.047 0.952 0.591 0.034 0.033 0.948
tos 0.613  0.612 0.052 0.050 0.932 0.615 0.035 0.035 0.948
25 tos 0.634 0.632 0.051 0.050 0.940 0.637 0.036 0.035 0.944
tor 0.665  0.669 0.059 0.060 0.946 0.668 0.044 0.043 0.935
c.r. = 50%
n 250 500
z t, 0O(tlz,z) Mean SD SE CP Mean SD SE CP
tos  0.560  0.562 0.042 0.040 0.934 0.562 0.027 0.029 0.960
1.5 tos 0571  0.577 0.043 0.044 0.944 0.571 0.032 0.031 0.950
tor 0.587 0.590 0.071 0.066 0.888 0.588 0.051 0.048 0.910
tos 0.613 0.614 0.055 0.053 0.940 0.615 0.036 0.038 0.962
25 tos 0.634  0.641 0.056 0.068 0.954 0.634 0.041 0.042 0.946
to7  0.665  0.665 0.093 0.086 0.894 0.665 0.064 0.062 0.932
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Table 5.11: The averages (Mean) and standard deviations (SD) of 500 estimates
o) (20, 20)’s, the averages of 500 standard errors (SE) of estimators, and the empirical

coverage probabilities (CP) of 0.95 pointwise confidence intervals

cr. = 30%

n 250 500

z t, O(tlz,z) Mean SD SE CP Mean SD SE CP
tos  0.560  0.567 0.047 0.047 0.926 0.567 0.033 0.033 0.944

1.5 tos 0571  0.576 0.045 0.045 0.950 0.579 0.033 0.032 0.925
tor  0.587  0.597 0.054 0.054 0.944 0.597 0.039 0.038 0.931
tos 0.613  0.624 0.059 0.057 0.906 0.626 0.040 0.040 0.931

25 tos 0.634  0.641 0.055 0.064 0.936 0.646 0.039 0.038 0.913
tor 0.665 0.676 0.061 0.062 0.932 0.675 0.045 0.044 0.927

cr. = 50%

n 250 200

z t, 0O(tlz,z) Mean SD SE CP Mean SD SE CP
tos  0.560  0.569 0.053 0.050 0.926 0.569 0.034 0.036 0.954

1.5 tos 0.571  0.585 0.052 0.053 0.936 0.577 0.038 0.038 0.938
tor  0.587 0.597 0.083 0.077 0.888 0.595 0.059 0.055 0.916
tos 0.613  0.626 0.063 0.061 0.924 0.627 0.041 0.043 0.944

25 tos 0.634 0.651 0.060 0.063 0.928 0.643 0.044 0.045 0.934
tor  0.665 0.673 0.096 0.088 0.882 0.672 0.066 0.063 0.920
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Table 5.12: The empirical coverage probabilities of 0.95 simultaneous confidence
bands with the sample sizes of 250 and 500, and the censoring rates of 30% and
50%

c.r. = 30%
n = 250 n = 500
(tos,tos] [tos.tor] [tos.tosl [tos,tor]
o 0936 0926 0946  0.933
Yo 0964 0934 0958  0.950
o 0926 0918 0923  0.931
oM 0928 0910 0946  0.921
0(1.5,1.5) 0940 0922 0933  0.927
0"(2.5,25) 0932 0920 0935  0.948

o")(1.5,15) 0942 0922 0921  0.938
o) (2.5,25) 0910  0.886  0.896  0.915
c.r. = 50%
n = 250 n = 500
(tos,tos] [tosstor] [tos.tos] [tos,tor]
o 0.896  0.896  0.934  0.918
o 0.926  0.902  0.948  0.948
o 0916  0.894 0936  0.930
Fua 0920  0.892 0936  0.930
0"(1.5,1.5) 0944  0.900  0.946  0.922
0" (2.5,2.5) 0934 0896 0946  0.930

) 0.930 0.902 0.932 0.930
2.5,2.5)  0.908 0.846 0.924 0.900
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Table 5.13: The averages and standard deviations (SD) of 500 estimates, the boot-
strap standard errors (BSE), and the empirical coverage probabilities (CP) under
totally independent censoring with c.r. = 30%

tq

B

G

SD

BSE

CP

0.(5:)

6u(5%)

SD

BSE

CP

250

500

to.3
tos
to.7

o3
los
to.7

0.679
0.637
0.602

0.679
0.637
0.602

0.693
0.648
0.612

0.689
0.646
0.609

0.050
0.038
0.034

0.035
0.027
0.023

0.050
0.042
0.040

0.034
0.028
0.025

0.95
0.96
0.95

0.93
0.92
0.95

0.817
0.803
0.805

0.817
0.803
0.805

0.816
0.801
0.802

0.812
0.798
0.799

0.034
0.035
0.037

0.024
0.024
0.025

0.033
0.033
0.037

0.024
0.024
0.027

0.95
0.96
0.95

0.95
0.96
0.97

tq

G

B

SD

BSE

CP

0:(5:)

6:(0:)

SD

BSE

CP

250

200

o3
tos
to.7

o3
tos
o7

0.679
0.637
0.602

0.679
0.637
0.602

0.683
0.639
0.604

0.684
0.640
0.603

0.042
0.032
0.029

0.033
0.023
0.021

0.046
0.038
0.034

0.032
0.025
0.022

0.95
0.97
0.97

0.96
0.95
0.93

0.817
0.803
0.805

0.817
0.803
0.805

0.821
0.808
0.812

0.816
0.802
0.807

0.031
0.032
0.035

0.023
0.023
0.024

0.031
0.031
0.035

0.023
0.023
0.025

0.93
0.93
0.92

0.93
0.94
0.94
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Table 5.14: The averages and standard deviations (SD) of 500 estimates, the boot-
strap standard errors (BSE), and the empirical coverage probabilities (CP) under
totally independent censoring with c.r. = 50%

tq

B

5,

SD

BSE

CP

0:(5)

6u(5%)

SD

BSE

CP

250

500

to.3
tos
to.7

o3
los
to.7

0.679
0.637
0.602

0.679
0.637
0.602

0.708
0.662
0.627

0.690
0.649
0.614

0.063
0.054
0.052

0.037
0.031
0.028

0.057
0.054
0.054

0.038
0.034
0.033

0.936
0.916
0.922

0.952
0.944
0.928

0.817
0.803
0.805

0.817
0.803
0.805

0.811
0.792
0.792

0.812
0.796
0.794

0.040
0.042
0.046

0.028
0.029
0.032

0.039
0.040
0.045

0.027
0.028
0.032

0.964
0.958
0.962

0.958
0.940
0.932

tq

G

B

SD

BSE

CP

0:(5:)

6:(01)

SD

BSE

CP

250

200

o3
tos
to.7

o3
tos
o7

0.679
0.637
0.602

0.679
0.637
0.602

0.686
0.643
0.607

0.681
0.638
0.605

0.051
0.040
0.040

0.035
0.026
0.025

0.053
0.046
0.043

0.036
0.030
0.027

0.966
0.962
0.954

0.970
0.970
0.958

0.817
0.803
0.805

0.817
0.803
0.805

0.823
0.808
0.814

0.820
0.807
0.809

0.037
0.037
0.041

0.026
0.028
0.030

0.036
0.037
0.041

0.026
0.026
0.030

0.924
0.934
0.914

0.932
0.922
0.934
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Table 5.15: The averages and standard deviations (SD) of 500 estimates, the boot-
strap standard errors (BSE), and the empirical coverage probabilities (CP) under
marker-dependent censoring with c.r. = 30%

tq

B

G

SD

BSE

CP

0.(5:)

6u(5%)

SD

BSE

CP

250

500

to.3
tos
to.7

o3
los
to.7

0.679
0.637
0.602

0.679
0.637
0.602

0.692
0.645
0.610

0.687
0.643
0.605

0.054
0.047
0.042

0.037
0.030
0.026

0.054
0.045
0.042

0.037
0.030
0.027

0.95
0.96
0.95

0.97
0.94
0.96

0.817
0.803
0.805

0.817
0.803
0.805

0.811
0.796
0.799

0.813
0.799
0.800

0.037
0.037
0.041

0.027
0.028
0.029

0.037
0.036
0.039

0.026
0.026
0.029

0.96
0.96
0.95

0.96
0.95
0.96

tq

G

B

SD

BSE

CP

0:(5:)

6:(01)

SD

BSE

CP

250

200

o3
tos
to.7

o3
tos
o7

0.679
0.637
0.602

0.681
0.638
0.605

0.688
0.644
0.609

0.687
0.643
0.607

0.045
0.034
0.032

0.031
0.024
0.020

0.048
0.039
0.035

0.033
0.026
0.023

0.97
0.96
0.96

0.95
0.95
0.96

0.817
0.803
0.805

0.817
0.803
0.805

0.833
0.818
0.819

0.833
0.817
0.819

0.030
0.031
0.034

0.022
0.022
0.024

0.032
0.031
0.033

0.023
0.022
0.024

0.89
0.88
0.90

0.86
0.88
0.87
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Table 5.16: The averages and standard deviations (SD) of 500 estimates, the boot-
strap standard errors (BSE), and the empirical coverage probabilities (CP) under
marker-dependent censoring with c.r. = 50%

tq

B

5,

SD

BSE

CP

0:(5)

6u(5%)

SD

BSE

CP

250

500

to.3
tos
to.7

o3
los
to.7

0.679
0.637
0.602

0.679
0.637
0.602

0.704
0.658
0.619

0.697
0.648
0.611

0.075
0.068
0.057

0.051
0.041
0.037

0.065
0.060
0.057

0.044
0.039
0.036

0.936
0.922
0.928

0.934
0.920
0.938

0.817
0.803
0.806

0.817
0.803
0.805

0.805
0.790
0.790

0.808
0.795
0.797

0.047
0.047
0.049

0.035
0.036
0.039

0.045
0.043
0.047

0.032
0.032
0.034

0.964
0.952
0.958

0.942
0.926
0.930

tq

G

B

SD

BSE

CP

0:(5:)

6:(01)

SD

BSE

CP

250

200

o3
tos
to.7

o3
tos
o7

0.679
0.637
0.602

0.681
0.638
0.605

0.691
0.645
0.612

0.690
0.645
0.609

0.057
0.044
0.037

0.038
0.028
0.025

0.055
0.046
0.042

0.038
0.031
0.027

0.964
0.948
0.966

0.962
0.968
0.944

0.817
0.803
0.806

0.817
0.803
0.805

0.842
0.827
0.827

0.841
0.824
0.825

0.036
0.036
0.037

0.026
0.026
0.027

0.036
0.035
0.037

0.026
0.025
0.027

0.822
0.816
0.874

0.804
0.798
0.836
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(b) With Prior Therapy (alpha=0.1)
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(f) With Prior Therapy (alpha=1)

Figure 5.1: The estimated time-dependent PAUCs (solid curve) with the correspond-
ing 0.95 pointwise (dotted curve) and simultaneous confidence bands (dashed curve)
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Figure 5.2: The estimated curves for the difference of the time-dependent PAUCs
between non-therapy and therapy patients (solid curve) with the corresponding 0.95
pointwise (dotted curve) and simultaneous confidence bands (dashed curve)
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Figure 5.3: The estimated coefficient and time-dependent AUC curves (solid curve)

with the corresponding 0.95 pointwise (dotted curve) and simultaneous confidence
bands (dashed curve)
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Figure 5.4: The estimated time-dependent AUCs (solid curve) under totally indepen-
dent censoring with the corresponding 0.95 pointwise (dotted curve) and simultaneous
(dashed curve) confidence bands
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Figure 5.5: The estimated time-dependent AUCs (solid curve) under marker-
dependent censoring with the corresponding 0.95 pointwise (dotted curve) and si-

multaneous (dashed curve) confidence bands
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Table 5.17: The estimates of the coefficients in the linear predictor tHcy + G, CRP +

BisSAA + GyuIL-6 (95% bootstrap confidence intervals) at the selected time points

Days B2 B3 Bia

300 -0.25(-1.64,169) 0.22(-041,1.04) -0.31(-1.51,345)
500 -0.16 (-1.54,0.32) 0.27(-045,1.60) -0.33(-1.23,3.13)
1000 -0.38 (-2.40,0.02) 0.23(-0.39,1.63) 0.51 (-0.84,6.96)
1500 -1.32 (-4.72,0.04 ) 0.27 (-0.77 ,1.76 ) 4.76 ( 0.11 , 15.95 )
2000 -1.79 (-5.67,-043) 1.17(0.01,3.13) 4.29 (-0.51,14.49)
2500 -2.32 (-6.62,-0.60 ) 0.44 (-0.43,2.64) 9.74 ( 1.11,26.09 )
3000 -4.31 (-8.67,-1.00) 1.81 (-0.16,4.01) 14.43 (2.42,29.73)
3500 -1.70 (-6.02,-0.50) 0.24 (-0.49,2.42) 6.84 (1.22,22.52)
Days B2 By Bia

300 -0.25(-2.01,0.17) 0.22 (-0.55,1.50) -0.31 (-1.51,4.50)
500 -0.16 (-1.98,0.46 ) 0.27(-0.20,2.16) -0.33 (-1.45,4.11)
1000 -0.42 (-2.54,-0.04 ) 0.29 (-0.26,2.00) 0.36 (-0.84,6.81)
1500 -0.76 ( -4.50 ,-0.08 ) 0.15 (-0.53,2.07 ) 3.11 (-0.12, 16.09 )
2000 -1.51 (-4.89,-0.35) 1.17(0.09,3.13) 3.69 (-0.51,11.73)
2500 -2.60 (-6.92,-0.52) 1.34(-0.26,3.52) 8.99 ( 1.04,25.26 )
3000 -2.87 (-7.19,-1.03) 1.49 (-0.08,3.69) 9.78 ( 1.98,26.05 )
3500 -1.14 (-5.36,-0.18 ) 0.20 (-1.01,2.15) 3.84 (-0.51,17.94)
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Table 5.18: Estimates of /%), 9844 gIl-6)  g(Hy) opq 0;(5;) at the selected time

points

Days

@CRH

éfAA)

éFLﬁ)

/e‘gtHcy)

6,(5)

6.(01)

300
500
1000
1500
2000
2500
3000
3500

0.638
0.616
0.598
0.605
0.596
0.596
0.596
0.576

0.629
0.645
0.618
0.592
0.620
0.609
0.623
0.589

0.653
0.653
0.666
0.681
0.668
0.663
0.678
0.634

0.730
0.734
0.719
0.683
0.666
0.627
0.634
0.642

0.777
0.764
0.752
0.737
0.733
0.697
0.707
0.680

0.738
0.732
0.745
0.732
0.725
0.684
0.695
0.675

Days

%CRH

éfAA)

é?Lﬁ)

'é’IStHCy)

6u(%)

6.(01)

300
500
1000
1500
2000
2500
3000
3500

0.640
0.623
0.606
0.611
0.595
0.598
0.599
0.523

0.641
0.652
0.627
0.601
0.626
0.616
0.630
0.550

0.663
0.659
0.672
0.687
0.673
0.672
0.687
0.597

0.730
0.733
0.724
0.690
0.673
0.633
0.636
0.635

0.779
0.768
0.760
0.744
0.745
0.708
0.724
0.675

0.739
0.735
0.751
0.742
0.737
0.697
0.711
0.668



Chapter 6

Discussion

6.1 Concluding Remarks

Based on censored survival data, a unified approach to make inference about the time-
dependent AUC and PAUC is developed. We express these accuracy measures as a
functional of the joint survival function S(¢,y) and simplify the estimation problem.
Under different types of censoring mechanisms, two easily computed nonparametric
estimators are proposed with rigorously established asymptotic Gaussian processes.
Together with the directly estimated variance-covariance functions and the asymp-
totic i.i.d. representations, statistical inferences about the time-dependent AUC and
PAUC are constructed. Provided S(¢,y) is estimable, our estimation procedures can
also be successfully applied to data with various truncation and/or censoring mech-
anisms. As mentioned in the paper of Cai et al. (2006), the cases and controls con-
sidered for the time-dependent ROC analysis are more suitably defined as {T" = t}
and {T" > 7} (or {T" > t}), respectively, in some applications such as the breast
cancer study, where 7 is a pre-specified time point or the end of study. The proposed
methods can be naturally extended to these settings with a slight modification. This
extension is reasonable at least in the case with discrete failure time.

Since the performance of a biomarker might be influenced by possible risk fac-

tors, an appropriate regression model for the time-dependent AUC is usually used to

74
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delve into their relationship. Another important issue arises when multiple biomark-
ers are available as we have encountered in the Angiography CAD Study. It is desire
to seek combinations of CRP, SAA, IL-6, and tHcy to achieve higher classification
abilities at different time points. Our proposed nonparametric estimation method
for the time-dependent AUC can be applied to these two topics. For the regression
model of the time-dependent AUC, we are motivated by spirit of the estimator gt(fjlt)
to develop estimating equations for the parameters of interest. Under the validity
of a time-varying coefficient EGLM with unspecified link function Gy(-), the non-
parametric estimation procedures for the optimal composite biomarkers are obtained
via maximizing the modified time-dependent AUC quantities. The predictor @T Y is
found to be appropriate in predicting the vital statuses of subjects in the numerical
studies, while the predictor BtT Y is shown to be suitable even if the censoring time
is highly correlated with the baseline markers. We also provide estimation methods
for the corresponding accuracy measures ROC;(3;) and 6;(3;) of 3IY. As we can see
the time-varying coefficient EGLM is very flexible and contains many practical used
models as special cases such as the Cox’s proportional hazards model, the GAFT
model, and the time-varying coefficient logistic regression model. Our methods can
also be used to diagnose the appropriateness of model specification. The rationale
behind this fact is that the estimated time-dependent AUC based on a specific model
should be close to that based on our nonparametric estimators if the model is correctly
specified.

When the assumption of marker-dependent censorship is valid, it is usually un-
avoidable to use smoothing techniques which will complicate the development of
the corresponding inference. Obviously, this can be seen in the issue of combining
biomarkers where a higher order kernel function is required to ensure y/n-consistency.
When the number of biomarkers is large, the curse of dimensionality will be encoun-
tered and the estimation will become more unstable. It is evidenced by our limited
simulation studies that the estimators proposed under totally independent censorship

are robust toward the violation of marker-dependent censorship. In applications, they
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have the advantage that no smoothing technique is involved. Thus, we suggest to use
and compare both methods even the behavior of censoring is believed to be highly

correlated with biomarkers.

6.2 Future Works

6.2.1 Multiple Biomarker Comparison

The time-dependent ROC curve as well as its summary measures are usually used
to evaluate the classification abilities of biomarkers. As shown in the analysis of
ACTG 175 study in Chapter 5, our proposed methodologies can be extended to
compare the corresponding time-dependent AUCs and PAUCs of several biomarkers.
On the other hand, different accuracy measures might be more preferable in the
assessment. Provided a subject being diagnose to be disease at the current stage, a
scientific question might be raised concerning the probability that the subject is really
diseased in the future. Thus, the prediction ability is more relevant to the end user or
subject being diagnosed. Two measure indices are widely applied in the assessment:
the time-dependent positive predictive value PPV,(q) = P(T < t|Fy(Y) > ¢) and
the time-dependent negative predictive value NPV;(q) = P(T > t|Fy(Y) < q) with
Fy(y) = P(Y <) (Zheng et al. (2008)), display the prediction accuracy at various
quantile value g. One can observe that the higher the curves, the better the biomarker
in prediction. The given condition {Fy(Y) > ¢} and {Fy (Y') < ¢} represent ”predict
100(1 — )% of subjects to be diseased” and ”predict 100¢% of subjects to be non-
diseased”, respectively. The purpose of using Fy (y) in the definitions is mainly to
facilitate biomarkers with different measurement scales to have the same base of

comparison, i.e., the same ¢. Interestingly, we can derive that

PPV =1 - 2L D, (61)

which is a monotone function of NPV;(q) for any fixed ¢. It’s further implied from

this fact that we only need to consider PPV(q) in the comparison of prediction
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abilities. Same with the role of the AUC in the time-dependent ROC curve analysis,

the quantity fol PPVy(q)dq can be used as a summary measure of prediction ability.
Let the biomarker Y *) have the corresponding TPRﬁk) (y), FPng) (y), and PPVt(k) (q),

k = 1,2. Recall that we adopt that measure 7,(¢) in 5.2.1 to compare the classification

abilities. As to the case of assessing prediction abilities, the quantity

u(t) = / (PP (q) - PPV (g)}dg (6.2)

provides useful information. The positive (negative) value of 7,(t) or w(t) then in-
dicate the superiority (inferiority) of Y1) is classification or prediction. Just like we
have discussed the insensitivity of the AUC in Chapter 2, two total different biomark-
ers may result in u(f) = 0. The more sensitive summary measures of the difference

between Y1) and Y are the area between the curves (ABC), which are defined as

ABC e (t) = / I TPRM (FPRMY ™ (w)) — TPR® (FPR ™ (u))|du (6.3)
and
1
ABCrn(t) = [ 1PV (a) - PV (0) o (6.4)
0

The magnitude of difference between Y ") and Y® in classification (prediction) abil-
ities is then reflected by the distance of ABCroc(t) (ABCppy(t)) and zero.

In some empirical examples such as the paired-design experiment in clinical trial
where each subject undergoes both diagnostic tests, data of the form {X;, d;, Yi(l), Yi(g) ]
are often collected. The scientific interests usually focus on the comparison of the
performances between Y1) and Y®). We can re-expressed the aforementioned sum-
mary measures as functionals of S (t,y) = P(T > t, Y > y) and SP(t,y) =
P(T > t,Y® > y). Under the totally independent censoring (C' and (7, YD) Y ?)
are independent), the proposed estimation criterion can be naturally applied to make
statistical inferences about these quantities directly because SM(t,y) and S@(t,y)
can be marginally estimated by { X}, d;, Yi(l)}?:l and {X;, d;, YZ@) " .. As an illustra-

tive example in the CAD study, the censoring mechanism might relate to the baseline
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biomarkers. The assumptions of marker-dependent censorship made separately on
(T,C, YN and (T, C,Y®) are clearly inappropriate. Under a more flexible marker-
dependent censoring assumption (7' and C' are independent conditioning on Y'") and
Y @), the estimators used for SM (¢, ) and S@(¢,y) in this article need to be further
modified. To circumvent this difficulty, Akritas (1994) suggested using

S(t, 1, y2) = ZStIY NI > 4, v > ), (6.5)

to estimate S(t,y1,y2) = P(T > t,YD > 4 Y® > y,), where S(t|y1,ys) is a
smoothing estimator of P(T > t|YM) = y;,Y® = y,) (cf. Beran (1981)). Thus,
SW (¢, y) and SP(t,y) can be separately estimated by S(¢,y, —o0) and S(t, —o0, y).

It is worthwhile to investigate the related comparison procedures in the future study.

6.2.2 Optimality in Classification and Prediction

It is found in our recent research that the problem of prediction power can be equiv-
alently transformed into that of classification ability. More precisely speaking, we
obtain that a biomarker with the highest time-dependent ROC curve will possess
the largest PPV;(q) and, hence, N PV,(q) for any ¢, and vice versa. One interesting
topic arises in whether we can find another estimation procedure for the parameter of
the optimal composite biomarker. Instead of maximizing the time-dependent AUC,
we seek the optimal markers that maximizes the area under the curve of PPV,(q).
Although it can be concluded that these criteria are the same from the above argu-
ments, the obtained estimators of optimal composite biomarkers might be different.
The gain and loss of these estimators will be promised to be deeply studied in future.

As we have discussed in Chapter 2, the AUC is an overall evaluation and some
useful information may not be captured. To significantly improve the classification
accuracy, an alternative strategy is to find an optimal combination in the sense that
the time-dependent true positive rate is maximized at the same value of false positive
rate. The optimization can be also achieved via maximizing the time-dependent

PAUC of composite biomarker. According to the research purposes, our proposed
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estimators for the time-dependent PAUC, TPR,(c, ), and FPR;(c, 3) can be naturally

generalized to this issue and should be investigated.

6.2.3 Partly Conditional Time-Dependent AUC

Throughout this thesis, we only focus on the classification ability of a baseline biomarker
for time-dependent vital status. When the considered biomarker has an underly-
ing continuous-time stochastic process {Y'(s) : s € [0, 7]}, the succeeding measured
biomarker might be more predictive than the baseline one. Thus, we can consider a
more flexible partly conditional partly conditional AUC to characterize the updated

information in classifying the binary vital status, which is formulated as
O = P(Yi(s) > Yj(s)|s <T; <t,T; >t) fori#70<s<t.

In some applications such as the ACTG 175 study, a test result might be intermit-
tently collected at multiple follow-up times. Based on the censored survival data
{Xi,6:,Yi(sa), -, Yi(sin,) }1y with s;;’s being longitudinal measurement times, the
corresponding statistical inference procedure for 6, remains to be established in fu-
ture studies. Again, when the time-dependent or time-independent covariates Z(s)
are considered as possible risk factors on the performance of Y'(s), the covariate-

specific time-dependent AUC
0:(Zi, Z;) = P(Yi(s) > Y;(s)|s <T; < t,T; > t, Z;(s), Z;(s)) for 0 < s < t,
can be appropriately modeled by the the time-varying coefficient regression model
0st(Zi, Z;) = h(ysZij(s)),

where h is a response function and Z;;(s) is a function of Z;(s) and Z;(s). Similar to
the discussion in Chapter 3, the estimating equations for v, can be constructed from

the estimation method for 6.
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