Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93821
Title: 基於積分線性二次調節器於四輪轉向車輛橫向操縱與穩定性控制
Lateral Handling and Stability Control of Four-Wheel Steering Vehicles Using LQR with Integral Action
Authors: 林宗昱
Tsung-Yu Lin
Advisor: 蘇偉儁
Wei-Jiun Su
Keyword: 四輪轉向(4WS),線性二次調節器(LQR),穩定性控制,主動後輪轉向(ARS),直接橫擺力矩控制(DYC),煞車壓力分配,
Four-Wheel Steering (4WS),Linear Quadratic Regulator (LQR),Stability Control,Active Rear Wheel Steering (ARS),Direct Yaw Moment Control (DYC),Brake Pressure Distribution,
Publication Year : 2024
Degree: 碩士
Abstract: 本研究主要針對四輪轉向車輛的橫向操縱與穩定性控制進行開發,並基於積分線性二次調節器(LQR with Integral Action, LQRI)設計控制器,以提升橫擺角速度的追蹤性能,並有效限制車身側滑角。首先,上層控制器透過傳統零側滑角方法計算出前輪與後輪轉向角的比例關係,再藉由線性二自由度單軌模型設計LQRI控制器,以計算所需的額外後輪轉向角及橫擺力矩之參考命令。下層控制則透過阿克曼轉向幾何和四輪獨立煞車系統,將上層控制器的控制命令分配至各輪,其中煞車力分配考慮到輪胎摩擦圓的限制,以避免輪胎力飽和,從而防止輪胎鎖死。最後,在MATLAB/Simulink環境中建立本研究提出的控制策略,並結合CarSim車輛模擬軟體進行模型在環(Model-in-the-Loop, MiL)驗證。模擬結果顯示,本研究所開發的控制策略能夠在激烈操控下有效改善車輛的操控性及穩定性,且轉向角與煞車壓力的利用率較低,進而減少能量消耗。此外,在車輛穩態時,有效減少橫擺角速度的誤差。
This research focuses on the lateral control and stability of four-wheel steering (4WS) vehicles, developing a control strategy based on Linear Quadratic Regulator with Integral Action (LQRI) to enhance the tracking performance of yaw rate and effectively limit the vehicle's sideslip angle. Initially, the upper-level controller calculates the proportional relationship between front and rear wheel steering angles using traditional zero sideslip angle methods. Subsequently, employing a linear two-degree-of-freedom single-track model, the LQRI controller computes reference commands for additional rear wheel steering angle and yaw moment. The lower-level control utilizes Ackermann steering geometry and four-wheel independent brake system (4WIB) to distribute commands from the upper-level controller to each wheel, with brake force distribution considering tire friction circle limits to prevent tire saturation and locking. Finally, the proposed control strategy is implemented in MATLAB/Simulink and validated through Model-in-the-Loop (MiL) simulations using CarSim vehicle simulation software. Simulation results demonstrate that the developed control strategy effectively improves vehicle handling and stability under aggressive maneuvers, with lower utilization of steering angles and brake pressures, thereby reducing energy consumption. Additionally, it effectively reduces yaw rate error during steady-state conditions.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93821
DOI: 10.6342/NTU202402438
Fulltext Rights: 未授權
Appears in Collections:機械工程學系

Files in This Item:
File SizeFormat 
ntu-112-2.pdf
  Restricted Access
7.3 MBAdobe PDF
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved