請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93819完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王暉 | zh_TW |
| dc.contributor.advisor | Huei Wang | en |
| dc.contributor.author | 蔡瑋軒 | zh_TW |
| dc.contributor.author | Wei-Hsuan Tsai | en |
| dc.date.accessioned | 2024-08-08T16:23:15Z | - |
| dc.date.available | 2024-08-09 | - |
| dc.date.copyright | 2024-08-08 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-01 | - |
| dc.identifier.citation | [1] M. -K. Cho, J. -G. Kim and D. Baek, "A Switchless CMOS Bi-Directional Distributed Gain Amplifier With Multi-Octave Bandwidth," in IEEE Microwave and Wireless Components Letters, vol. 23, no. 11, pp. 611-613, Nov. 2013.
[2] D. -W. Kang, J. -G. Kim, B. -W. Min and G. M. Rebeiz, "Single and Four-Element Ka -Band Transmit/Receive Phased-Array Silicon RFICs With 5-bit Amplitude and Phase Control," in IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 12, pp. 3534-3543, Dec. 2009. [3] S. Masuda et al., "GaN single-chip transceiver frontend MMIC for X-band applications," 2012 IEEE/MTT-S International Microwave Symposium Digest, Montreal, QC, Canada, 2012, pp. 1-3. [4] E. Cohen, C. Jakobson, S. Ravid and D. Ritter, "A Bidirectional TX/RX Four-Element Phased Array at 60 GHz With RF-IF Conversion Block in 90-nm CMOS Process," in IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 5, pp. 1438-1446, May 2010. [5] Ping Chen, “Design of Si-Based Distributed Amplifiers for Microwave and Millimeter-Wave Applications,” Master dissertation, National Taiwan University, 2010. [6] A. Alizadeh, M. Meghdadi, M. Yaghoobi, and A. Medi, "Design of a 2–12-GHz Bidirectional Distributed Amplifier in a 0.18- um CMOS Technology," IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 2, pp. 754-764, Feb. 2019. [7] J. -C. Chien and L. -H. Lu, "40-Gb/s High-Gain Distributed Amplifiers With Cascaded Gain Stages in 0.18- μm CMOS," in IEEE Journal of Solid-State Circuits, vol. 42, no. 12, pp. 2715-2725, Dec. 2007 [8] M. Nazari, R. Rezaei Siahrood, J. Yavand Hassani and A. Farahani, "Design of a wideband low noise amplifier using modified cascode structure for 45GHz band applications," 2016 8th International Symposium on Telecommunications (IST), Tehran, Iran, 2016, pp. 575-580. [9] Zuomin blog [Online] https://zuomin.blogspot.com/2009/11/rf.html [10] Song, M. Cho, J. Kim, and J. D. Cressler, "A SiGe-BiCMOS Wideband (2–22 GHz) Active Power Divider/Combiner Circuit Supporting Bidirectional Operation," IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 12, pp. 4676-4684, Dec. 2016. [11] M. Cho, I. Song, Z. E. Fleetwood, and J. D. Cressler, "A SiGe-BiCMOS Wideband Active Bidirectional Digital Step Attenuator With Bandwidth Tuning and Equalization," IEEE Transactions on Microwave Theory and Techniques, vol. 66, no. 8, pp. 3866-3876, Aug. 2018. [12] C. Çalışkan, M. Yazıcı, M. Kaynak and Y. Gurbuz, "A Switchless SiGe BiCMOS Bidirectional Amplifier for Wideband Radar Applications," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 10, pp. 1844-1848, Oct. 2020. [13] S. Sim, L. Jeon and J. -G. Kim, "A Compact X-Band Bi-Directional Phased-Array T/R Chipset in 0.13 μm CMOS Technology," in IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 1, pp. 562-569, Jan. 2013. [14] David M. Pozar, Microwave Engineering, Fourth Edition, John Wiley & Sone, Inc., 2012. [15] Yen-Chih Chen, “Design of the Broadband LNA and Ka-band PA,” Master dissertation, National Taiwan University, 2018. [16] G. Nikandish and A. Medi, "Transformer-Feedback Interstage Bandwidth Enhancement for MMIC Multistage Amplifiers," in IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 2, pp. 441-448, Feb. 2015. [17] G. Nikandish, A. Yousefi and M. Kalantari, "A Broadband Multistage LNA With Bandwidth and Linearity Enhancement," in IEEE Microwave and Wireless Components Letters, vol. 26, no. 10, pp. 834-836, Oct. 2016. [18] J. Hu, K. Ma, S. Mou and F. Meng, "Analysis and Design of a 0.1–23 GHz LNA MMIC Using Frequency-Dependent Feedback," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 66, no. 9, pp. 1517-1521, Sept. 2019. [19] Y. -T. Chou, C. -C. Chiong and H. Wang, "A Q-band LNA with 55.7% bandwidth for radio astronomy applications in 0.15-μm GaAs pHEMT process," 2016 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Taipei, Taiwan, 2016, pp. 1-3. [20] L. -Y. Lee, Y. Wang and H. Wang, "A 25-31 GHz LNA in GaAs 0.15-μm pHEMT," 2021 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Hualien, Taiwan, 2021, pp. 1-3. [21] J. Hu, K. Ma, S. Mou and F. Meng, "A Seven-Octave Broadband LNA MMIC Using Bandwidth Extension Techniques and Improved Active Load," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 10, pp. 3150-3161, Oct. 2018. [22] X. Yan, P. Yu, J. Zhang, S. -P. Gao and Y. Guo, "A Broadband 10–43-GHz High-Gain LNA MMIC Using Coupled-Line Feedback in 0.15-μm GaAs pHEMT Technology," in IEEE Microwave and Wireless Components Letters, vol. 32, no. 12, pp. 1459-1462, Dec. 2022. [23] J. -S. Seo, J. -H. Hwang, K. -J. Kim and G. -H. Ahn, "High Linearity Ka-band GaN Hemt Low Noise Amplifier," 2021 International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Korea, Republic of, 2021, pp. 383-385. [24] Shou-Hsien Weng, Chi-Hsien Lin, Hong-Yeh Chang and Chau-Ching Chiong, "Q-band low noise amplifiers using a 0.15μm MHEMT process for broadband communication and radio astronomy applications," 2008 IEEE MTT-S International Microwave Symposium Digest, Atlanta, GA, USA, 2008, pp. 455-458. [25] P. -H. Ho, C. -C. Chiong and H. Wang, "An ultra low-power Q-band LNA with 50% bandwidth in WIN GaAs 0.1-μm pHEMT process," 2013 Asia-Pacific Microwave Conference Proceedings (APMC), Seoul, Korea (South), 2013, pp. 713-715. [26] Zuomin blog [Online] https://zuomin.blogspot.com/2017/09/blog-post.html [27] S. -H. Chang, C. -C. Chiong, K. -Y. Kao and H. Wang, "A Q-band amplifier with low noise figure and medium output power capability for ALMA band-1 receiver," 2017 IEEE Asia Pacific Microwave Conference (APMC), Kuala Lumpur, Malaysia, 2017, pp. 755-758. [28] W. -H. Tsai, Y. Wang and H. Wang, "A Switchless Bidirectional Distributed Amplifier with 2-dB Gain Variation in One Decade Frequency Range in 90-nm CMOS Process," 2022 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Busan, Korea, Republic of, 2022, pp. 71-73 [29] Yu-Ting Chou, “Research of Low Noise Amplifier, I/Q Demodulator, and Power Amplifier for Millimeter-wave Application,” Master dissertation, National Taiwan University, 2016. [30] Bo-Jr Huang, “Design and Analysis of Microwave and Millimeter-wave RF Electrostatic Discharge Protection and Millimeter-wave Multi-Cascode Low Noise Amplifiers ,” Doctor dissertation, National Taiwan University, 2010. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93819 | - |
| dc.description.abstract | 放大器在無線收發機中扮演著重要的腳色。在5G和高數據速率應用的時代,對高效且高性能放大器的需求日益增加。隨著第五代行動通訊的蓬勃發展,毫米波的研究與應用已成為當今的主要趨勢。然而,隨著對更高頻寬和更快傳輸速率的需求不斷增長,目前的無線通訊頻率主要在6 GHz以下已經相當飽和。因此,往更高頻率的設計已成為技術發展中的關鍵方向。其中,Ka-band被視為第五代行動通訊的主要潛在發展頻段。在無線通訊系統中,發射機的設計至關重要,而本論文的主要焦點在於對放大器的設計和進行研究。
本篇論文主要分成兩個部分: 第一部分為利用90-nm CMOS所設計的雙向分佈式放大器的研究。雙向放大器對收發系統面積的縮減有幫助,藉由電路的架構選擇讓電路可以有寬頻的特性和共用匹配電路。此雙向分佈式放大器從1.9到33.5 GHz的3 dB頻寬,並且有13.8 dB的增益,還有著2.9 dB的雜訊指數。因此,它是用於高速數據傳輸的系統。 第二部分設計了3個以0.18 μm GaAs pHEMT製程所設計的Ka-band低雜訊放大器,其中設計頻段為5G可行通訊頻段。第一個低雜訊放大器利用電容匹配的設計有著19.4到32.1 GHz的3 dB頻寬,還有23 dB的增益,與1.5 dB的雜訊指數。第二個低雜訊放大器利用傳輸線匹配的設計有著22.9到32.9 GHz的3 dB頻寬,還有21.5 dB的增益,與1.8 dB的雜訊指數。第三個低雜訊放大器利用Cascode的架構設計有著21.3到34 GHz的3 dB頻寬,還有15.9 dB的增益,與2.2 dB的雜訊指數。 | zh_TW |
| dc.description.abstract | Amplifiers play a crucial role in wireless transceivers. The demand for efficient and high-performance amplifiers is increasing in the area of 5G and high-data-rate applications. The booming growth of fifth-generation mobile communication (5G) has made millimeter-wave research and applications an important trend. However, as the demand for higher bandwidth and faster transmission rates continues to grow, the current wireless communication frequencies, primarily below 6 GHz, are becoming saturated. Therefore, designing for higher frequencies has become a key direction in technological development. Among these, the Ka-band is considered a primary potential development frequency band for 5G. In wireless communication systems, the design of the transmitter is crucial, and this thesis focuses primarily on the design and study of amplifiers.
This thesis is primarily divided into two parts. The first part focuses on the study of a bidirectional distributed amplifier using 90-nm CMOS process. Bidirectional amplifiers contribute to the reduction of the overall system area by employing a circuit structure that enables broadband characteristics and shared matching circuits. This bidirectional distributed amplifier achieves a 3 dB bandwidth from 1.9 to 33.5 GHz, with a gain of 13.8 dB and a noise figure of 2.9 dB. Therefore, it is suitable for systems requiring high-speed data transmission. The second part involves the design of three Ka-band low noise amplifiers (LNAs) using the 0.18 μm GaAs pHEMT process, targeting the communication frequencies for 5G. The first LNA, employing capacitor matching, achieves a 3 dB bandwidth from 19.4 to 32.1 GHz, with a gain of 23 dB and a noise figure of 1.5 dB. The second LNA, utilizing transmission line matching, achieves a 3 dB bandwidth from 22.9 to 32.9 GHz, with a gain of 21.5 dB and a noise figure of 1.8 dB. The third LNA, designed with a Cascode architecture, achieves a 3 dB bandwidth from 21.3 to 34 GHz, with a gain of 15.9 dB and a noise figure of 2.2 dB. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-08T16:23:15Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-08T16:23:15Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | CONTENTS
口試委員會審定書 i 致謝 ii 中文摘要 iii ABSTRACT v CONTENTS vii LIST OF FIGURES x LIST OF TABLES xv Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Literature Survey 3 1.2.1 Bidirectional Distributed Amplifier 3 1.2.2 LNA in GaAs pHEMT Process 5 1.3 Contributions 7 1.4 Thesis Organization 9 Chapter 2 The Design of A Switchless Bidirectional Distributed Amplifier in 90-nm CMOS Process 10 2.1 Introduction 10 2.2 Circuit Architecture 11 2.3 Device Size Selection 12 2.4 Number of Stage Considerations 14 2.5 Bias Selection 17 2.6 Gm Cell Design 18 2.6.1 Resonate Inductor Design 18 2.6.2 Positive Feedback Design 20 2.7 Gate Line and Drain Line Design 22 2.8 RF Choke Design 24 2.9 Circuit Schematic and Post-Simulation Result 28 2.10 Measurement Result 35 2.11 Summary 41 Chapter 3 The Design of Three Ka-band LNAs in 0.18 μm GaAs E-Mode pHEMT Process 43 3.1 Introduction and Circuit Specification 43 3.2 Bias Selection 45 3.3 Device Size Selection 48 3.4 Source Degeneration 49 3.5 Common Source LNA using Capacitance Matching (CSC) 52 3.5.1 Source Degeneration Selection and Bypass Design 52 3.5.2 Circuit Schematic and Simulation Result 54 3.6 Common Source LNA using Transmission Line Matching (CST) 57 3.6.1 The Differences from The Previous Version LNA. 57 3.6.2 Circuit Schematic and Simulation Result 60 3.7 Cascode version LNA 63 3.7.1 Cascode version Design 63 3.7.2 Circuit Schematic and Simulation Result 65 3.8 Off-Chip Bypass and Bond Wire Effect 69 3.9 Measurement Result 79 3.9.1 Common Source LNA using Capacitance Matching 79 3.9.2 Common Source LNA using Transmission Line Matching 82 3.9.3 Cascode version LNA 85 3.9.4 Summary 88 Chapter 4 Conclusions 91 REFERENCES 92 | - |
| dc.language.iso | en | - |
| dc.subject | 分佈式放大器 | zh_TW |
| dc.subject | 低雜訊放大器 | zh_TW |
| dc.subject | 雙向放大器 | zh_TW |
| dc.subject | 寬頻 | zh_TW |
| dc.subject | 高速電子遷移率電晶體 | zh_TW |
| dc.subject | pHEMT | en |
| dc.subject | Distributed Amplifier | en |
| dc.subject | Low Noise Amplifier | en |
| dc.subject | Bidirectional Amplifier | en |
| dc.subject | broadband | en |
| dc.title | 應用於第五代行動通訊系統之低雜訊放大器及寬頻雙向分佈式放大器 | zh_TW |
| dc.title | Research on Low-Noise Amplifier and Broadband Bidirectional Distributed Amplifier for Fifth-Generation Mobile Communication Systems | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃天偉;林坤佑;蔡政翰;王雲杉 | zh_TW |
| dc.contributor.oralexamcommittee | Tian-Wei Huang;Kun-You Lin;Jeng-Han Tsai;Yunshan Wang | en |
| dc.subject.keyword | 分佈式放大器,低雜訊放大器,雙向放大器,寬頻,高速電子遷移率電晶體, | zh_TW |
| dc.subject.keyword | Distributed Amplifier,Low Noise Amplifier,Bidirectional Amplifier,broadband,pHEMT, | en |
| dc.relation.page | 95 | - |
| dc.identifier.doi | 10.6342/NTU202402726 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-04 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電信工程學研究所 | - |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 3.35 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
