請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93756| 標題: | 利用Tauc模型最佳化單接合太陽能電池於香港區域年發電量分析 Applying Tauc model for optimizing annual energy yield of single junction solar cells in Hong Kong area |
| 作者: | 陳彥善 Yen-Shan Chen |
| 指導教授: | 劉建豪 Chien-Hao Liu |
| 關鍵字: | 鈣鈦礦太陽能電池,建築整合太陽能,年能量產出,Tauc圖,傳遞矩陣法, Perovskite solar cells,building-integrated photovoltaics,year energy yield,Tauc plot,transfer matrix method, |
| 出版年 : | 2024 |
| 學位: | 碩士 |
| 摘要: | 近年來,隨著材料科學與製程快速進步,各種材料的太陽能電池與堆疊型太陽能電池相繼出現並帶來極高的經濟價值。為了解決傳統太陽能系統在美學、空間利用和建築一體化方面的問題,建築整合太陽能(Building-Integrated PhotoVoltaics,BIPV)技術應運而生。BIPV技術的目標是將太陽能裝置結合到建築物的設計中,以在保持建築美觀的同時更有效地利用太陽能資源。
本研究旨在利用MATLAB建立單接合鈣鈦礦太陽能電池之一維模型並透過轉移矩陣法(Transfer Matrix Method,TMM)配合有限元素分析、商用一維SCAPS和三維COMSOL有限元素模擬軟體分析電場分布、光電轉換效率等參數進而預測其年能量產生(Energy yield,EY)輸出,本研究將分為三個部分進行研究。 首先,研究將使用開源多層膜光吸收分析模擬網站KLA FILMETRICS和COMSOL驗證以MATLAB所撰寫的程式在垂直入射和斜向入射下的吸收率、反射率和穿透率的正確性,並確保在存在非相干層的情況下不會出現Fabry-Pérot 干涉的現象,以驗證MATLAB中TMM的部分。接著,通過已發表的文獻驗證內部電場和光電子的生成分布。最後,進一步驗證了JV(電流-電壓特性曲線)、Jsc (光電流)、Voc (開路電壓)、FF (填充係數)、PCE (光電轉換效率)等參數以及每小時能量產出(hour EY)的結果,以確認MATLAB中光電轉換的部分。同時,借鑒Richard Tauc於1966年開發的Tauc plot方法,將原先基於吸收係數(α)的Tauc plot改寫從已知能隙獲得理想吸收係數(α)的Tauc model。通過MATLAB和有限元素模擬軟體,由此可以找到使利用光學量測儀器量測的吸收係數(α)與模擬得到的吸收係數(α)之間能量產出誤差最小(5%)的參數值(A=9×10^4,B=0),這有助於後續尋找能量產出最大的最佳化能隙。 最後,本研究將以香港科技大學(22.34°N 114.27°E)為模擬地點,採用建築附加型太陽能產品中的固定式太陽能板。利用Tauc model(A=9×10^4,B=0),模擬了能隙為1.25~1.85 eV的範圍,每0.05 eV一個間隔,以及太陽能板固定傾角從0°到80°,吸收層厚度從300到1000 nm的範圍。透過模擬,最終發現最大能量產出是發生在太陽能板固定傾角(Tilt angle,β)等於20°,吸收層厚度為1000 nm以及吸收層能隙為1.35 eV的情況下,並且產出能得到一年中EY=4.474×10^9 J/m2的能量產生(以每天太陽時間12點進行模擬)。 Recent advances in material science and manufacturing processes have led to the development of various types of solar cells and composite stacked solar cells, which bring substantial economic value. To address issues with traditional solar systems in aesthetics, space utilization, and architectural integration, Building-Integrated Photovoltaics (BIPV) technology has emerged. The goal of BIPV technology is to integrate solar devices into the design of buildings, maintaining aesthetic appeal while efficiently utilizing solar energy resources. This study aims to establish a one-dimensional model of single-junction perovskite solar cells using MATLAB and analyze parameters such as electric field distribution and photoelectric conversion efficiency through the Transfer Matrix Method (TMM) in conjunction with finite element analysis, commercial one-dimensional SCAPS, and three-dimensional COMSOL finite element simulation software. The study will be divided into three parts. Firstly, the study will use the open-source multi-layer film optical absorption analysis simulation website KLA FILMETRICS and COMSOL to verify the accuracy of the program written in MATLAB regarding absorption, reflection, and transmission rates under vertical and oblique incidence. This verification will ensure that there is no Fabry-Pérot interference in the presence of incoherent layers, validating the TMM part of MATLAB. Subsequently, the distribution of internal electric fields and photogenerated carriers will be verified against published literature. Finally, parameters such as JV, Jsc, Voc, FF, PCE, and hour energy yield (hour EY) will be further verified to confirm the photoelectric conversion part of MATLAB. Additionally, by referencing the Tauc plot method developed by Richard Tauc in 1966, the original Tauc plot based on the absorption coefficient (α) will be rewritten to derive the ideal absorption coefficient (α) from a known bandgap using the Tauc model. Through MATLAB and finite element simulation software, this approach will help find parameter values (A=9×10^4, B=0) that minimize the energy yield error (5%) between the measured and simulated absorption coefficients (α), aiding in the subsequent search for the optimal bandgap for maximum energy yield. Lastly, the study will simulate fixed solar panels in the building-attached solar products at the Hong Kong University of Science and Technology (22.34°N, 114.27°E). Using the Tauc model (A=9×10^4, B=0), simulations will cover a bandgap range of 1.25 to 1.85 eV, at intervals of 0.05 eV, with fixed tilt angles of the solar panel from 0° to 80° and absorption layer thicknesses from 300 to 1000 nm. The simulation results reveal that the maximum energy yield occurs with a fixed tilt angle (β) of 20°, an absorption layer thickness of 1000 nm, and a bandgap of 1.35 eV, producing an annual energy yield of EY=4.474×10^9 J/m² (simulated at solar noon each day). |
| URI: | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93756 |
| DOI: | 10.6342/NTU202402228 |
| 全文授權: | 同意授權(全球公開) |
| 顯示於系所單位: | 機械工程學系 |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 15.58 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
