Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93574
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曾惠斌zh_TW
dc.contributor.advisorHui-Ping Tserngen
dc.contributor.author蔡宜真zh_TW
dc.contributor.authorYi-Jinn Tsaien
dc.date.accessioned2024-08-05T16:39:45Z-
dc.date.available2024-08-06-
dc.date.copyright2024-08-05-
dc.date.issued2024-
dc.date.submitted2024-07-29-
dc.identifier.citation中文文獻
交通部運輸研究所. 全國橋梁統計資訊網, 4 2024.
國家運輸安全調查委員會. 重大運輸事故調查報告第一冊:南方澳大橋斷裂重大公路事故. Technical report, 國家運輸安全調查委員會, 2020.
運輸計畫及陸運組. 我國橋梁檢測方式之發展探究. Technical report, 交通部運輸研究所, 2018.
王炤烈, 宋裕祺, 林曜滄, 彭康瑜, and 黃炳勳. Morandi 橋崩塌帶來的省思與建議. 土木水利, 45(5):44–45, 2018.
饒見有, 李志清, 劉光晏, and 林昭宏. 無人機搭配 ai 影像辨識應用於橋梁檢測之研究 (2/2)-無人機自動化檢測架構探討. Technical report, 交通部運輸研究所, 2023.
王姿樺 (Zi-Hua Wang), 高書屏 (Szu-Pyng Kao), and 林志憲 (Jhih-Sian Lin). 應用深度學習技術輔助橋梁裂縫辨識. 航測及遙測學刊, 27(4):247–257, Dec 2022.
張永辰, 高書屏, 王豐良, and 林志憲. 應用 uav 影像及深度學習技術輔助橋梁裂縫量化分析. 國土測繪與空間資訊, 11(1):15–34, Jan 2023.

英文文獻
Jeroen Guinee. Handbook on life cycle assessment. an operational guide to the iso standards. The International Journal of Life Cycle Assessment, 7:311–313, 09 2001.
Linjie Xing, Xiaoyan Fan, Yaxin Dong, Zenghui Xiong, Lin Xin, Yang Yang, Haicheng Bai, and Chengjiang Zhou. Multi-uav cooperative system for search and rescue based on yolov5. SSRN Electronic Journal, 01 2021.
Julian Kedys, Igor Tchappi, and Amro Najjar. Uavs for disaster management - an exploratory review. Procedia Computer Science, 231:129–136, 01 2024.
Zhengxia Zou, Keyan Chen, Zhenwei Shi, Yuhong Guo, and Jieping Ye. Object detection in 20 years: A survey. Proceedings of the IEEE, PP:1–20, 03 2023.
Qianyun Zhang, Kaveh Barri, Saeed Babanajad, and Amir Alavi. Real-time detection of cracks on concrete bridge decks using deep learning in the frequency domain. Engineering, 7, 11 2020.
Kui Luo, Xuan Kong, Jie Zhang, Jiexuan Hu, Jinzhao Li, and Hao Tang. Computer vision-based bridge inspection and monitoring: A review. Sensors, 23(18), 2023.
Matthew Gillins, Daniel Gillins, and Christopher Parrish. Cost-effective bridge safety inspections using unmanned aircraft systems (uas). 02 2016.
NajihaYusof, AliSophian, HasanFirdausMohdZaki, AliBawono, Abd Halim Embong, and Arselan Ashraf. Assessing the performance of yolov5, yolov6, and yolov7 in road defect detection and classification: a comparative study. Bulletin of Electrical Engineering and Informatics, 13:350–360, 02 2024.
Jian Zhang, Songrong Qian, and Can Tan. Automated bridge crack detection method based on lightweight vision models. Complex Intelligent Systems, 9:1–14, 09 2022.
Xin Wu, Wei Li, Danfeng Hong, Ran Tao, and Qian Du. Deep learning for unmanned aerial vehicle-based object detection and tracking: A survey. IEEE Geoscience and Remote Sensing Magazine, 10(1):91–124, 2022.
Alison Cleary, Kristopher Yoo, Paul Samuel, Sean George, Fei Sun, and Steven A. Israel. Machine learning on small uavs. In 2020 IEEE Applied Imagery Pattern Recognition Workshop (AIPR), pages 1–5, 2020.
Qiwen Qiu and Denvid Lau. Real-time detection of cracks in tiled sidewalks using yolo-based method applied to unmanned aerial vehicle (uav) images. Automation in Construction, 147:104745, 03 2023.
Chen Xing, Xi Liang, and Yanna Ma. A solution to improve object detection for images captured by uav-mounted camera. In 2019 IEEE 7th International Conference on Computer Science and Network Technology (ICCSNT), pages 317–320, 2019.
Tianjie Zhang, Donglei Wang, and Yang Lu. A data-centric strategy to improve performance of automatic pavement defects detection. Automation in Construction, 160:105334, 2024.
Siling Feng, Yuanlong Wang, Mengxing Huang, and Guanjun Wang. Aerial object detection by uav based on improved yolov7. In 2023 IEEE 6th International Conference on Pattern Recognition and Artificial Intelligence (PRAI), pages 63–67, 2023.
Yingkun Wei, Jiahui Li, Wenwen Duan, Xinmin Li, Xiaoqiang Zhang, and Yi Huang. Yolov7-uav: Improved yolov7 algorithm for small object detection in uav image scenarios. In 2023 International Conference on Artificial Intelligence of Things and Systems (AIoTSys), pages 64–70, 2023.
Yong Shi, Limeng Cui, Zhiquan Qi, FanMeng, and Zhensong Chen. Automatic road crack detection using random structured forests. IEEE Transactions on Intelligent Transportation Systems, 17(12):3434–3445, 2016.
Lei Zhang, Fan Yang, Yimin Daniel Zhang, and Ying Julie Zhu. Road crack detection using deep convolutional neural network. In 2016 IEEE International Conference on Image Processing (ICIP), pages 3708-3712, 2016.
Fan Yang, Lei Zhang, Sijia Yu, Danil Prokhorov, Xue Mei, and Haibin Ling. Fea- ture pyramid and hierarchical boosting network for pavement crack detection. IEEE Transactions on Intelligent Transportation Systems, 21(4):1525–1535, 2020.
Mohammadreza Sabouri and Alireza Sepidbar. Sut-crack: A comprehensive dataset for pavement crack detection across all methods. Data in Brief, 51:109642, 10 2023.
Dwyer B., Nelson J., and Hansen T. Roboflow, 2024.
Adrian Rosebrock. Intersection over union (iou) for object detection, 2023.
H.Rezatofighi, N.Tsoi, J.Gwak, A.Sadeghian, I.Reid, and S.Savarese. Generalized intersection over union: A metric and a loss for bounding box regression. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 658–666, Los Alamitos, CA, USA, jun 2019. IEEE Computer Society.
Meixia Fu, Qu Wang, Jianquan Wang, Lei Sun, Zhangchao Ma, Chaoyi Zhang, Wanqing Guan, Qiang Liu, Danshi Wang, and Wei Li. Deep cnn-based materials location and recognition for industrial multi-crane visual sorting system in 5g network. Applied Sciences, 13:1066, 01 2023.
Zhaohui Zheng, Ping Wang, Dongwei Ren, Wei Liu, Rongguang Ye, Qinghua Hu, and Wangmeng Zuo. Enhancing geometric factors in model learning and inference for object detection and instance segmentation. IEEE Transactions on Cybernetics, 52(8):8574–8586, 2022.
Hong Vin Koay, Joon Huang Chuah, Chee Onn Chow, Yang-Lang Chang, and Keh Yong. Yolo-rtuav: Towards real-time vehicle detection through aerial images with low-cost edge devices. Remote Sensing, 13, 10 2021.
Zhora Gevorgyan. Siou loss: More powerful learning for bounding box regression, 2022.
Xiangqian Xu and Xing Li. Research on surface defect detection algorithm of pipeline weld based on yolov7. Scientific Reports, 14, 01 2024.
Dengjie Yang, Changyun Miao, Xianguo Li, Yi Liu, Yimin Wang, and Yao Zheng. Improved yolov7 network model for gangue selection robot for gangue and foreign matter detection in coal. Sensors, 23:5140, 05 2023.
John H. Holland. Genetic algorithms. Scientific American, 267(1):66–73, 1992.
Musatafa Albadr, Sabrina Tiun, Masri Ayob, and Fahad Al-Dhief. Genetic algorithm based on natural selection theory for optimization problems. Symmetry, 12:1–31, 10 2020.
medusalix. medusalix xone: Linux kernel driver for xbox one and xbox series x|s accessories, 2021.
Clyde Mcqueen. Clydemcqueen flock: Ros driver for dji tello drones, 2018.
Phuoc Nguyen. Phuoc101 yolov7_ros: Ros package for official yolov7, 2022.
Fredrik Lundh. An introduction to tkinten, 1999.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93574-
dc.description.abstract在建築物和橋梁的生命週期中,使用階段佔了絕大部分的時間和資源,這包括了後續的維護和定期檢修,因此要如何更有效地管理和監測它們成為一個極為重要的議題。傳統的檢測方法主要依賴目視檢測,這需要花費大量的時間和人力成本。尤其在橋梁檢測方面,橋檢人員為了監測特定區域,必須承受高安全風險。而在建築物檢測方面,通常需要監測有倒塌風險的建築物,這使得監測人員面臨極高的生命風險,因此,如何改善這些監測方法成為一個迫切需要解決的問題。
近年來,隨著 AI (Artificial Intelligence) 相關技術的發展,尤其是深度學習演算法的興起,目前已經許多研究學者將無人機 (Unmanned Aerial Vehicle, UAV) 和影像辨識結合,利用無人機的高機動性以解決因位置不便而橋檢人員難以到達的問題,或是無人機的大面積偵查能力提高工作效率。然而,過去的研究大多僅將無人機用於現場拍攝,再將所拍攝的影像做後續的影像處理和辨識,這樣需花費額外人力和時間成本,而且導致缺乏即時性,使用者無法即時獲取影像資訊。
隨著 ROS (Robot Operating System) 系統的蓬勃發展,這一問題迎刃而解, ROS 系統為軟硬體整合提供了一個便利的平台,藉此,無人機影像辨識就能夠實現即時化,從而進一步提升了監測效率和即時性。本研究旨在結合無人機和影像辨識模型,透過 ROS 系統建立一個即時的裂縫辨識系統。
該系統首先將無人機捕獲的影像進行一系列的影像處理步驟,最終將處理完的影像,匯入已訓練好的影像辨識模型進行裂縫辨識。辨識結果將被儲存,同時向使用者發出警示通知,實現即時的裂縫檢測和通報功能。這樣的整合機制不僅提高了工作效率,也確保了即時性和準確性,有望未來能在建築物及橋梁的監測和維護中發揮重要作用。
除此之外,該系統還可應用於災後搜救和災害評估,提高搜救工作的效率和準確性。本研究旨在建構一個即時的裂縫影像辨識系統,以提高建築物和橋梁監測作業的效率和安全性,以應對日益嚴峻的社會需求。
zh_TW
dc.description.abstractIn the life cycle of buildings and bridges, the operational phase occupies the majority of time and resources, including subsequent maintenance and periodic inspections. Effective management and monitoring of these structures have become crucial issues, given the substantial investment required. Traditional inspection methods primarily rely on visual assessments, which demand significant time and human resources. Particularly in bridge inspections, personnel face high safety risks when monitoring specific areas. Similarly, building inspections often require monitoring structures at risk of collapse, posing severe life-threatening risks to the inspectors. Thus, improving these monitoring methods is an urgent problem that needs to be addressed.
In recent years, with the development of Artificial Intelligence (AI) technologies, especially the rise of deep learning algorithms, many researchers have begun integrat- ing Unmanned Aerial Vehicles (UAVs) with image recognition to leverage UAVs’ high mobility for addressing the difficulties inspectors face in accessing certain areas, or to enhance work efficiency through UAVs’ extensive reconnaissance capabilities. However, past studies mostly utilized UAVs for onsite shooting, followed by subsequent image pro- cessing and recognition, which incurs additional labor and time costs and lacks real-time capabilities, preventing users from obtaining immediate image information.
With the rapid advancement of the Robot Operating System (ROS), this issue can now be effectively resolved. The ROS provides a convenient platform for hardware and software integration, enabling real-time image recognition through UAVs, thereby further enhancing monitoring efficiency and immediacy. This study aims to develop a real-time crack recognition system by integrating UAVs and image recognition models through the ROS.
The system first processes images captured by the UAV through a series of image processing steps. The processed images are then input into a pre-trained image recognition model for crack detection. The recognition results are stored and simultaneously send alert notifications to users, achieving real-time crack detection and reporting. This integrated mechanism not only improves work efficiency but also ensures immediacy and accuracy, promising significant contributions to the monitoring and maintenance of buildings and bridges in the future.
Additionally, the system can be applied in post-disaster search and rescue and disaster assessment, enhancing the efficiency and accuracy of rescue operations. This study aims to construct a real-time crack image recognition system to improve the efficiency and safety of building and bridge monitoring operations, addressing the increasingly severe societal demands.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-05T16:39:45Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-05T16:39:45Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
誌謝 iii
摘要 iv
Abstract vi
目次 ix
圖次 xiii
表次 xv
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 3
1.3 論文架構 4
第二章 文獻回顧 5
2.1 影像辨識於建物裂縫之發展 5
2.2 無人機影像辨識 8
2.3 小物件影像辨識 11
2.4 小結 12
第三章 研究方法 14
3.1 硬體介紹 15
3.1.1 NVIDIA Jetson Orin Nano 15
3.1.2 無人機載具 16
3.1.2.1 DJI Tello EDU 16
3.1.2.2 DJI Inspire 2 17
3.2 研究流程圖 18
3.3 影像蒐集及處理 19
3.3.1 裂縫資料集蒐集與建立 20
3.3.2 裂縫標註 21
3.3.3 影像處理 22
3.3.4 資料集分割 23
3.4 模型建置及訓練 24
3.4.1 模型選擇 24
3.4.1.1 損失函數選擇 26
3.4.2 模型驗證指標 30
3.4.2.1 精確度 (Precision) 30
3.4.2.2 召回率 (Recall) 30
3.4.2.3 mAP (mean Average Precision) 31
3.4.3 調整模型架構 32
3.4.3.1 YOLOv7 32
3.4.3.2 YOLOv7-UAV 33
3.4.4 調整模型參數 34
3.5 無人機即時影像辨識 37
3.5.1 無人機影像取得 38
3.5.1.1 DJI Tello EDU 38
3.5.1.2 DJI Inspire 2 39
3.5.2 影像處理 40
3.5.2.1 DJI Tello EDU 40
3.5.2.2 DJI Inspire 2 41
3.5.3 YOLOv7模型 42
3.6 裂縫警示 42
3.7 流程圖 43
3.7.1 DJI Tello EDU 43
3.7.2 DJI Inspire 2 44
3.8 節點圖 45
3.8.1 DJI Tello EDU 45
3.8.2 DJI Inspire 2 46
3.9 小結 46
第四章 研究結果 47
4.1 裂縫辨識模型 47
4.1.1 設備規格 47
4.1.2 模型架構 48
4.1.3 YOLOv7 初步參數微調 49
4.1.3.1 Batch Size 49
4.1.3.2 Loss Function 51
4.1.3.3 Learning Rate 53
4.1.3.4 Epoch、凍結層 55
4.1.3.5 Evolution 58
4.1.4 YOLOv7-UAV 初步參數微調 59
4.1.4.1 Batch Size 59
4.1.4.2 Loss Function 61
4.1.4.3 Learning Rate 63
4.1.4.4 Epoch、凍結層 65
4.1.4.5 Evolution 68
4.1.5 實際裂縫影像測試 69
4.1.6 實際裂縫影片測試 70
4.2 無人機影像辨識系統實測 71
4.2.1 DJI Tello EDU 71
4.2.1.1 建物裂縫辨識 72
4.2.1.2 一壽橋 73
4.2.2 DJI Inspire 2 74
4.2.2.1 一壽橋 75
4.2.2.2 後龍觀海大橋 76
4.3 實驗結論與探討 77
第五章 結論與未來發展 78
5.1 結論 78
5.2 限制與討論 79
5.3 未來發展 81
參考文獻 82
-
dc.language.isozh_TW-
dc.title以無人機建立即時自動化橋梁裂縫影像辨識系統zh_TW
dc.titleDeveloping a Real-time Automated Bridge Crack Detection System Using Unmanned Aerial Vehicles (UAVs)en
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee曾仁杰;詹瀅潔;林宏益zh_TW
dc.contributor.oralexamcommitteeRen-Jye Dzeng;Ying-Chieh Chan;Hung-Yi Linen
dc.subject.keyword深度學習,電腦視覺,ROS,zh_TW
dc.subject.keywordMachine Learning,Computer Vision,Robot Operating System,en
dc.relation.page86-
dc.identifier.doi10.6342/NTU202402259-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-07-30-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf29.24 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved