請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93454
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 謝馬利歐 | zh_TW |
dc.contributor.advisor | Mario Hofmann | en |
dc.contributor.author | 陳建安 | zh_TW |
dc.contributor.author | Tawat Chen | en |
dc.date.accessioned | 2024-08-01T16:12:39Z | - |
dc.date.available | 2024-08-02 | - |
dc.date.copyright | 2024-08-01 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-07-29 | - |
dc.identifier.citation | Schaller, R.R., Moore's Law: Past, present, and future. Ieee Spectrum, 1997. 34(6): p. 52-+.
Wikipedia. Moore's law. Available from: https://en.wikipedia.org/wiki/Moore%27s_law. Liu, Y., et al., Promises and prospects of two-dimensional transistors. Nature, 2021. 591(7848): p. 43-53. Jin, S.H., M.V. Fischetti, and T.W. Tang, Modeling of surface-roughness scattering in ultrathin-body SOI MOSFETs. Ieee Transactions on Electron Devices, 2007. 54(9): p. 2191-2203. Liu, A.H., et al., The Roadmap of 2D Materials and Devices Toward Chips. Nano-Micro Letters, 2024. 16(1): p. 96. Knot, R. More than Moore: the next steps for the semiconductor industry. 2023 May 25; Available from: https://blog.delmic.com/more-than-moore-the-next-steps-for-the-semiconductor-industry. Dong, Z.Y., et al., Raman Characterization on Two-Dimensional Materials-Based Thermoelectricity. Molecules, 2019. 24(1): p. 25. Shanmugam, V., et al., A Review of the Synthesis, Properties, and Applications of 2D Materials. Particle & Particle Systems Characterization, 2022. 39(6): p. 22. Kulkarni, G.S., et al., Graphene nanoelectronic heterodyne sensor for rapid and sensitive vapour detection. Nature Communications, 2014. 5: p. 7. Borhade, P.S., et al., Self-Expansion Based Multi-Patterning for 2D Materials Fabrication beyond the Lithographical Limit. Small, 2024. 20(22): p. 7. Nguyen, H.T., et al., 2D Material-Enabled Optical Rectennas with Ultrastrong Light-Electron Coupling. Small, 2022. 18(37): p. 6. Goldfarb, D.L., Evolution of patterning materials towards the Moore's Law 2.0 Era. Japanese Journal of Applied Physics, 2022. 61(SD): p. 17. Thompson, S.E. and S. Parthasarathy, Moore's law: the future of Si microelectronics. Materials Today, 2006. 9(6): p. 20-25. Stoykovich, M.P. and P.F. Nealey, Block copolymers and conventional lithography. Materials Today, 2006. 9(9): p. 20-29. Wu, Y. and Z. Xiao, The Recent Progress of Lithography Machine and the State-of-art Facilities. Highlights in Science, Engineering and Technology, 2022. 5: p. 155-165. Wikipedia. Multiple Patterning. Available from: https://en.wikipedia.org/wiki/Multiple_patterning. Bencher, C., et al., 22nm half-pitch patterning by CVD spacer self alignment double patterning (SADP). SPIE Advanced Lithography. Vol. 6924. 2008: SPIE. Wikipedia. Glass transition. Available from: https://en.wikipedia.org/wiki/Glass_transition. Perego, M., et al., Silicon crystallization in nanodot arrays organized by block copolymer lithography. Journal of Nanoparticle Research, 2014. 16(12): p. 10. Feng, H.B., et al., Block Copolymers: Synthesis, Self-Assembly, and Applications. Polymers, 2017. 9(10): p. 31. Bates, C.M., et al., Block Copolymer Lithography. Macromolecules, 2014. 47(1): p. 2-12. Chen, W.Q., et al., Nanotopographical surfaces for stem cell fate control: Engineering mechanobiology from the bottom. Nano Today, 2014. 9(6): p. 759-784. Poinern, G.E.J., N. Ali, and D. Fawcett, Progress in Nano-Engineered Anodic Aluminum Oxide Membrane Development. Materials, 2011. 4(3): p. 487-526. Lee, W. and S.J. Park, Porous Anodic Aluminum Oxide: Anodization and Templated Synthesis of Functional Nanostructures. Chemical Reviews, 2014. 114(15): p. 7487-7556. Li, Y.W., et al., Preparation of Aluminum Nanomesh Thin Films from an Anodic Aluminum Oxide Template as Transparent Conductive Electrodes. Scientific Reports, 2016. 6: p. 7. Furneaux, R.C., W.R. Rigby, and A.P. Davidson, The formation of controlledporosity membranes from anodically oxidized aluminium. Nature, 1989. 337(6203): p. 147-149. Rabin, O., et al., Formation of thick porous anodic alumina films and nanowire arrays on silicon wafers and glass. Advanced Functional Materials, 2003. 13(8): p. 631-638. Hillebrand, R., et al., Quantitative analysis of the grain morphology in self-assembled hexagonal lattices. Acs Nano, 2008. 2(5): p. 913-920. Masuda, H. and K. Fukuda, Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina. Science, 1995. 268(5216): p. 1466-1468. Zhang, L., et al., Cellular growth of highly ordered porous anodic films on aluminium. Journal of Materials Science Letters, 1998. 17(4): p. 291-294. Kim, J., et al., Au/Ag Bilayered Metal Mesh as a Si Etching Catalyst for Controlled Fabrication of Si Nanowires. Acs Nano, 2011. 5(4): p. 3222-3229. Robatjazi, H., et al., Ultrathin AAO Membrane as a Generic Template for Sub-100 nm Nanostructure Fabrication. Chemistry of Materials, 2016. 28(13): p. 4546-4553. Miney, P.G., et al., Growth and characterization of a porous aluminum oxide film formed on an electrically insulating support. Electrochemical and Solid State Letters, 2003. 6(10): p. B42-B45. Grado-Caffaro, M.A. and M. Grado-Caffaro, Electrical conductance from the Fowler-Nordheim tunneling. Optik, 2005. 116(6): p. 299-300. Beebe, J.M., et al., Transition from direct tunneling to field emission in metal-molecule-metal junctions. Physical Review Letters, 2006. 97(2): p. 4. Lundgren, P. and M.O. Andersson, Temperature dependence confirmation of tunneling through 2-6 nm silicon dioxide. Solid-State Electronics, 1996. 39(8): p. 1143-1147. Zhao, Y., E. Sivaniah, and T. Hashimoto, SAXS Analysis of the Order-Disorder Transition and the Interaction Parameter of Polystyrene-<i>block</i>-poly(methyl methacrylate). Macromolecules, 2008. 41(24): p. 9948-9951. Wikipedia. Dewetting. Available from: https://en.wikipedia.org/wiki/Dewetting. Li, F.Y., L. Zhang, and R.M. Metzger, On the growth of highly ordered pores in anodized aluminum oxide. Chemistry of Materials, 1998. 10(9): p. 2470-2480. Parkhutik, V.P. and V.I. Shershulsky, Theoretical modeling of porous oxide growth on aluminum. Journal of Physics D-Applied Physics, 1992. 25(8): p. 1258-1263. Lin, Y.J., et al., A Highly Controllable Electrochemical Anodization Process to Fabricate Porous Anodic Aluminum Oxide Membranes. Nanoscale Research Letters, 2015. 10: p. 8. Sulka, G.D. and K.G. Parkola, Temperature influence on well-ordered nanopore structures grown by anodization of aluminium in sulphuric acid. Electrochimica Acta, 2007. 52(5): p. 1880-1888. Ikonopisov, S., Theory of electrical breakdown during formation of barrier anodic films. Electrochimica Acta, 1977. 22(10): p. 1077-1082. Prasad, S. and J. Quijano, Development of nanostructured biomedical micro-drug testing device based on in situ cellular activity monitoring. Biosensors & Bioelectronics, 2006. 21(7): p. 1219-1229. Eessaa, A.K. and A.M. El-Shamy, Review on fabrication, characterization, and applications of porous anodic aluminum oxide films with tunable pore sizes for emerging technologies. Microelectronic Engineering, 2023. 279: p. 21. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93454 | - |
dc.description.abstract | 摩爾定律一直是半導體產業發展的指導基準,但隨著電子裝置已發展到奈米級尺度,物理限制也隨之而來。二维材料為單層原子厚度的晶體,因其卓越的電學和光學特性而為人知曉,它超越了矽基電子元件的極限並且為推動後摩爾定律時代的有前途的材料。為了製作二維材料電子元件,微影製程已然是個成熟的技術並已在半導體產業中被廣泛使用。然而,當圖案大小縮放至奈米尺度,微影製程被瑞利判別準則所描述的解析度所限制,用來製作高解析度奈米特徵的技術的花費也會漸漸高漲,使得微影製程成本增加、難以普及。
在本論文中,我們研究不同超越微影製程極限的奈米圖案化技術。首先,我們展示利用自我限制和溫度控制的氧化過程來製作奈米特徵的自膨脹雙圖案化(SEDP)過程。為了擺脫傳統微影製程的幫助,我們接著著重於團聯式共聚合物的自組成以及奈米孔洞陽極氧化鋁生成,並且從中製作出直徑 37nm 的奈米級孔洞。 | zh_TW |
dc.description.abstract | Moore’s law has been the guideline for the advancement in the semiconductor industry, but as electronics have reached nanoscale, physical limitations are met. 2D materials, which are single-layer atomic thickness solids, have emerged due to its exceptional electrical and optical properties, it surpasses the limits of silicon-based devices and are promising materials to advance the post-Moore era. To create 2D material devices, photolithography is a mature technique and has been widely used in the semiconductor industry. However, as patterns are scaled down to nanoscale, photolithography is limited by the resolution governed by Rayleigh’s criteria, the cost of the technology to create high resolution nano-features will also increase, making it the lithography process costly and harder to be accessed.
In this thesis, we focused on nanopatterning techniques that surpasses the lithography limit. We first demonstrate with a self-expansion double patterning (SEDP) process to create nanometer features through a self-limiting and temperature-controlled oxidation process. To be freed from the help of conventional photolithography, we then focused on block copolymer self-assembly and porous-type anodic aluminum oxide formation, where we were able to create nanofeature pores with a diameter of 37 nm. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-01T16:12:38Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-01T16:12:39Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Acknowledgement ................................................................................................................................ I
摘要 ..................................................................................................................................................... II ABSTRACT ....................................................................................................................................... III CONTENTS ....................................................................................................................................... IV LIST OF FIGURES ........................................................................................................................... VI Chapter 1 Introduction ...................................................................................................................... 1 1.1 Moore’s Law .................................................................................................................... 1 1.2 Two-Dimensional Materials ............................................................................................. 2 1.3 Photolithography .............................................................................................................. 4 1.4 Nanopatterning ................................................................................................................. 6 1.4.1 Multiple Patterning .............................................................................................. 6 1.4.2 Block Copolymer ................................................................................................. 8 1.4.3 Anodic Aluminum Oxide ..................................................................................... 9 1.5 Motivation ...................................................................................................................... 13 Chapter 2 Experimental Section ..................................................................................................... 14 2.1 Experimental Procedures ............................................................................................... 14 2.1.1 Graphene Growth ............................................................................................... 14 2.1.2 Graphene Transfer .............................................................................................. 15 2.1.3 SEDP Process ..................................................................................................... 15 2.1.4 BCP Self-Assembly ........................................................................................... 16 2.1.5 Porous-Type AAO Formation ............................................................................ 17 2.2 Apparatus ....................................................................................................................... 19 2.2.1 3D Printer ........................................................................................................... 19 2.2.2 Atomic Force Microscopy ................................................................................. 20 2.2.3 Chemical Vapor Deposition Setup ..................................................................... 21 2.2.4 IV Measurement ................................................................................................. 21 2.2.5 Oxygen Plasma Cleaner ..................................................................................... 22 2.2.6 Photolithography ................................................................................................ 23 2.2.7 Reactive Ion Etching .......................................................................................... 23 2.2.8 Scanning Electron Microscopy .......................................................................... 24 2.2.9 Thermal Evaporator ........................................................................................... 25 2.2.10 Ultraviolet-Ozone Cleaner ................................................................................. 26 Chapter 3 Result and Discussion .................................................................................................... 27 3.1 SEDP Process ................................................................................................................. 27 3.2 BCP Self-Assembly ....................................................................................................... 30 3.3 AAO Fabrication ............................................................................................................ 33 3.3.1 Process of Anodization....................................................................................... 33 3.3.2 Porous-Type AAO Characterization .................................................................. 35 Chapter 4 Conclusion ..................................................................................................................... 38 Reference ........................................................................................................................................... 39 | - |
dc.language.iso | en | - |
dc.title | 未來奈米元件的非傳統二維材料奈米圖案化 | zh_TW |
dc.title | Unconventional Nanopatterning of 2D Materials For Future Nanoelectronics | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 謝雅萍;陳永芳;王偉華 | zh_TW |
dc.contributor.oralexamcommittee | Ya-Ping Hsieh;Yang-Fang Chen;Wei-Hua Wang | en |
dc.subject.keyword | 微影製程,奈米圖案化,自膨脹雙圖案化(SEDP),團聯式共聚合物,奈米孔洞陽極氧化鋁, | zh_TW |
dc.subject.keyword | Photolithography,nanopatterning,self-expansion double patterning (SEDP),block-copolymer,porous-type anodic aluminum oxide, | en |
dc.relation.page | 42 | - |
dc.identifier.doi | 10.6342/NTU202402572 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-07-31 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 應用物理研究所 | - |
顯示於系所單位: | 應用物理研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.86 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。