Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93416
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor朱致遠zh_TW
dc.contributor.advisorJames C. Chuen
dc.contributor.author戴于雯zh_TW
dc.contributor.authorYu-Wen Taien
dc.date.accessioned2024-07-31T16:13:15Z-
dc.date.available2024-08-01-
dc.date.copyright2024-07-31-
dc.date.issued2024-
dc.date.submitted2024-07-29-
dc.identifier.citation中文文獻
臺北市政府捷運工程局(2021)。捷運工程叢書 精進版。
英文文獻
Cacchiani, V., Caprara, A., & Toth, P. (2010). Solving a real-world train unit assignment problem. Math. programming, 124(12), 207–231.
Carey, M., & Lockwood, D. (1995). A Model, Algorithms and Strategy for Train Pathing. The Journal of the Operational Research Society, 46(8), 988–1005.
Cheng, Y., (2014). An Integrated Bus-Based Progression System for Arterials Having Heavy Transit Flows. University of Maryland, Master.
Currie, G., & Shalaby, A. (2008). Active Transit Signal Priority for Streetcars: Experience in Melbourne, Australia, and Toronto, Canada. Transportation Research Record: Journal of the Transportation Research Board, 2042, 41–49.
Dai, G.Y., Wang, H., & Wang, W. (2016). Signal optimization and coordination for bus progression based on MAXBAND. KSCE Journal of Civil Engineering, 20(2), 890–898.
F. V. Webster. (1958). Traffic Signal Settings (No. 39; Road Research Technique Paper). Road Research Laboratory, London.
Jeong, Y., & Kim, Y. (2014). Tram Passive Signal Priority Strategy Based on the MAXBAND Model. KSCE J. Civ. Eng. 18 (5), 1518–1527.
Ji, Y., Tang, Y., Du, Y., & Zhang, X. (2019). Coordinated optimization of tram trajectories with arterial signal timing resynchronization. Transportation Research Part C: Emerging Technologies, 99, 53–66.
Khan, M. B. & Zhou, X. (2010). Stochastic Optimization Model and Solution Algorithm for Robust Double-Track Train-Timetabling Problem. IEEE Transactions on Intelligent Transportation Systems, 11(1), 81–89.
Kittelson & Associates, Herbert S. Levinson Transportation Consultants, DMJM+ HARRIS., Transit Cooperative Research Program, United States. Federal Transit Administration, & Transit Development Corporation. (2007). Bus Rapid Transit Practitioner's Guide (Vol. 118). Transportation Research Board.
Li, J., Bai, Y., Chen, Y., Yang, L., & Wang, Q. (2022). A Two-Stage Stochastic Optimization Model for Integrated Tram Timetable and Speed Control with Uncertain Dwell Times. Energy, 260, 125059. https://doi.org/https://doi.org/10.1016/j.energy.2022.125059
Lin, Y., Yang, X., Zou, N., & Franz, M. (2015). Transit signal priority control at signalized intersections: a comprehensive review. Transportation Letters, 7(3), 168-180.
Niu, H., Zhou, X., & Gao, R. (2015). Train scheduling for minimizing passenger waiting time with time-dependent demand and skip stop patterns: Nonlinear integer programming models with linear constraints. Transportation Research Part B: Methodological, 76, 117–135.
Robenek, T., Maknoon, Y., Azadeh, S. S., Chen, J., & Bierlaire, M. (2016). Passenger centric train timetabling problem. Transportation Research Part B: Methodological, 89, 107–126.
Shi, J., Sun, Y., Schonfeld, P., & Qi, J. (2017). Joint Optimization of Tram Timetables and Signal Timing Adjustments at Intersections. Transportation Research Part C: Emerging Technologies, 83, 104-119
Szpigel, B. (1973). Optimal train scheduling on a single track railway. Operational Research. 72, 343–352.
Zhang, T., Mao, B., Xu, Q., & Feng, J. (2019). Timetable Optimization for a Two-Way Tram Line with an Active Signal Priority Strategy. IEEE Access, 7, 176896–176911. https://doi.org/https://doi.org/10.1109/ACCESS.2019.2957437
Zhou, W., Bai, Y., Li, J., Zhou, Y., & Li, T. (2019). Integrated Optimization of Tram Schedule and Signal Priority at Intersections to Minimize Person Delay. Journal of Advanced Transportation, 2019(1), 1–18. https://doi.org/https://doi.org/10.1155/2019/4802967
Zhou, Y., Bai, Y., Li, J., Mao, B., & Li, T. (2017). Integrated Optimization on Train Control and Timetable to Minimize Net Energy Consumption of Metro Lines. Journal of Advanced Transportation, 2018(3), 1–19. https://doi.org/https://doi.org/10.1155/2018/7905820
Zlatkovic, M., Martin, P.T., & Stevanovic, A. (2011). Predictive Priority for Light Rail Transit: University Light Rail Line in Salt Lake County, Utah. Transportation Research Record: Journal of the Transportation Research Board, 2259, 168–178.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93416-
dc.description.abstract近年來,基於輕軌系統低成本與運量特性,其逐漸成為臺灣中小型都市提供給民眾的大眾運輸選擇之一。輕軌系統比起其他軌道系統有更多與其他車流共用的路權,為減少於衝突點的停等,以提升輕軌運轉效率,可以規劃適當的時刻表,或提供輕軌列車優先號誌。然而,同步考量兩者的現有研究還不多,其中主要集中於單一優先號誌策略,忽略了多種策略結合使用的潛力。因此,本研究旨在建立一個綜合的最佳化模型架構,用於模擬雙向輕軌路網的營運,並最佳化輕軌列車的旅行時間和一般車流延滯。本研究架構包含被動優先和主動優先等多種優先號誌策略調整空間,以及列車軌跡相關餐變數,並且,針對一些關鍵參數,例如目標式權重,也可以根據需求差異進行調整。
為了驗證模型的實用性,本研究選擇以臺灣新北市的安坑輕軌平面段(雙城站~景文科大站)為例進行實例分析和示範。結果顯示,不同種的優先策略皆能顯著提升輕軌系統的效率,減少旅行時間和車流延滯。此外,敏感度分析結果表明,不同交通流量和權重條件對最佳化結果有顯著影響,趨勢亦符合現實中的預期,結果可以做為實際參數設置時有價值的依據。
本研究的創新在於提出了一個全面的輕軌時刻表最佳化框架,考慮了多種優先號誌策略和不同營運條件,並將可能額外產生的停等情境整理成詳細流程,使本最佳化架構可以應對全面考量時,列車軌跡更多元的可能性,希望為城市輕軌系統與號誌的營運管理提供各式實踐可能性與其理論基礎。
zh_TW
dc.description.abstractIn recent years, light rail systems have gradually become a popular public transportation option in Taiwan due to their low cost and high capacity. Compared to other railway transportation systems, light rail systems often not having exclusive right-of-way. To reduce stops and delays at conflict points and improve operational efficiency, appropriate timetables can be planned, or transit signal priority can be provided for trams. However, there is limited existing research that simultaneously considers both approaches. Most of them focusing on simplistic signal priority strategies and neglecting the potential of combining multiple strategies. Therefore, this study aims to develop a comprehensive optimization model for programming the operation of bidirectional light rail networks and optimize the travel time of light rail trains and general traffic delays. The proposed framework includes various signal priority strategies. Also, some key parameters, could be modified according to varying needs.
To validate the model's practicality, this study chooses the at-grade section (from Shuangcheng Station to Jingwen University Station) of Ankeng light rail system in New Taipei City, Taiwan as a case for analysis and demonstration. The results show that all priority strategies have potential to enhance the efficiency of the light rail system, reducing travel time and traffic delays. Furthermore, the sensitivity analysis indicates that different traffic volumes and weight conditions have significant impacts on the optimization results, aligning with real-world expectations. These results provide valuable references for actual parameter settings.
The innovation of this study lies in proposing a comprehensive framework for light rail timetable optimization, considering various signal priority strategies and different operational conditions. It also organizes possible additional stopping scenarios into detailed processes, allowing the optimization framework to handle a broader range of tram trajectory possibilities. This study aims to provide theoretical foundations and practical possibilities for the operation and management of urban light rail systems and signals.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-07-31T16:13:15Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-07-31T16:13:15Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
中文摘要 iii
英文摘要 iv
目次 v
圖次 vii
表次 x
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 1
1.3 研究目的 2
1.4 研究內容 2
第二章 文獻回顧 4
2.1 大眾運輸優先號誌相關研究 4
2.2 軌道運輸時刻表相關研究 5
2.3 輕軌路網綜合最佳化模型 5
2.4 小結 8
第三章 研究方法 9
3.1 問題定義與模式描述 9
3.2 模式假設 14
3.3 集合與索引 14
3.4 參數 15
3.5 變數 17
3.6 目標式 21
3.7 限制式 22
3.7.1 列車營運 22
3.7.2 號誌與優先規則 23
3.7.3 路口停等時間 30
第四章 案例實作與分析 47
4.1 路網選擇 47
4.2 基礎參數設定 48
4.3 情境討論與成果展示 51
4.3.1 不執行優先策略 51
4.3.2 只執行主動式優先 55
4.3.3 只執行被動式優先 61
4.3.4 執行主動式優先及被動式優先 67
4.4 敏感度分析 72
4.4.1 車流量 72
4.4.2 權重 76
4.5 案例實作與分析小結 80
第五章 結論與建議 82
5.1 結論 82
5.2 建議 83
參考文獻 85
-
dc.language.isozh_TW-
dc.subject優先號誌控制策略zh_TW
dc.subject混合整數規劃zh_TW
dc.subject速度控制zh_TW
dc.subject輕軌運輸系統zh_TW
dc.subject時刻表zh_TW
dc.subjectMILPen
dc.subjectSpeed controlen
dc.subjectTimetablesen
dc.subjectTransit signal priorityen
dc.subjectLight rail transit systemen
dc.title考量優先號誌策略之輕軌路線時刻表最佳化架構zh_TW
dc.titleAn Optimization Framework for Light Rail Transit Timetabling Considering Signal Priority Strategiesen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee水敬心;沈宗緯;許聿廷zh_TW
dc.contributor.oralexamcommitteeChin-Sum Shui;Tsung-Wei Shen;Yu-Ting Hsuen
dc.subject.keyword輕軌運輸系統,優先號誌控制策略,時刻表,速度控制,混合整數規劃,zh_TW
dc.subject.keywordLight rail transit system,Transit signal priority,Timetables,Speed control,MILP,en
dc.relation.page86-
dc.identifier.doi10.6342/NTU202402382-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-07-30-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
3.98 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved